34,201 research outputs found

    Fast and accurate Slicewise OutLIer Detection (SOLID) with informed model estimation for diffusion MRI data

    Get PDF
    The accurate characterization of the diffusion process in tissue using diffusion MRI is greatly challenged by the presence of artefacts. Subject motion causes not only spatial misalignments between diffusion weighted images, but often also slicewise signal intensity errors. Voxelwise robust model estimation is commonly used to exclude intensity errors as outliers. Slicewise outliers, however, become distributed over multiple adjacent slices after image registration and transformation. This challenges outlier detection with voxelwise procedures due to partial volume effects. Detecting the outlier slices before any transformations are applied to diffusion weighted images is therefore required. In this work, we present i) an automated tool coined SOLID for slicewise outlier detection prior to geometrical image transformation, and ii) a framework to naturally interpret data uncertainty information from SOLID and include it as such in model estimators. SOLID uses a straightforward intensity metric, is independent of the choice of the diffusion MRI model, and can handle datasets with a few or irregularly distributed gradient directions. The SOLID-informed estimation framework prevents the need to completely reject diffusion weighted images or individual voxel measurements by downweighting measurements with their degree of uncertainty, thereby supporting convergence and well-conditioning of iterative estimation algorithms. In comprehensive simulation experiments, SOLID detects outliers with a high sensitivity and specificity, and can achieve higher or at least similar sensitivity and specificity compared to other tools that are based on more complex and time-consuming procedures for the scenarios investigated. SOLID was further validated on data from 54 neonatal subjects which were visually inspected for outlier slices with the interactive tool developed as part of this study, showing its potential to quickly highlight problematic volumes and slices in large population studies. The informed model estimation framework was evaluated both in simulations and in vivo human data.Peer reviewe

    Implementation of robust image artifact removal in SWarp through clipped mean stacking

    Full text link
    We implement an algorithm for detecting and removing artifacts from astronomical images by means of outlier rejection during stacking. Our method is capable of addressing both small, highly significant artifacts such as cosmic rays and, by applying a filtering technique to generate single frame masks, larger area but lower surface brightness features such as secondary (ghost) images of bright stars. In contrast to the common method of building a median stack, the clipped or outlier-filtered mean stacked point-spread function (PSF) is a linear combination of the single frame PSFs as long as the latter are moderately homogeneous, a property of great importance for weak lensing shape measurement or model fitting photometry. In addition, it has superior noise properties, allowing a significant reduction in exposure time compared to median stacking. We make publicly available a modified version of SWarp that implements clipped mean stacking and software to generate single frame masks from the list of outlier pixels.Comment: PASP accepted; software for download at http://www.usm.uni-muenchen.de/~dgruen

    Unsupervised routine discovery in egocentric photo-streams

    Full text link
    The routine of a person is defined by the occurrence of activities throughout different days, and can directly affect the person's health. In this work, we address the recognition of routine related days. To do so, we rely on egocentric images, which are recorded by a wearable camera and allow to monitor the life of the user from a first-person view perspective. We propose an unsupervised model that identifies routine related days, following an outlier detection approach. We test the proposed framework over a total of 72 days in the form of photo-streams covering around 2 weeks of the life of 5 different camera wearers. Our model achieves an average of 76% Accuracy and 68% Weighted F-Score for all the users. Thus, we show that our framework is able to recognise routine related days and opens the door to the understanding of the behaviour of people

    Identification of Outlying Observations with Quantile Regression for Censored Data

    Full text link
    Outlying observations, which significantly deviate from other measurements, may distort the conclusions of data analysis. Therefore, identifying outliers is one of the important problems that should be solved to obtain reliable results. While there are many statistical outlier detection algorithms and software programs for uncensored data, few are available for censored data. In this article, we propose three outlier detection algorithms based on censored quantile regression, two of which are modified versions of existing algorithms for uncensored or censored data, while the third is a newly developed algorithm to overcome the demerits of previous approaches. The performance of the three algorithms was investigated in simulation studies. In addition, real data from SEER database, which contains a variety of data sets related to various cancers, is illustrated to show the usefulness of our methodology. The algorithms are implemented into an R package OutlierDC which can be conveniently employed in the \proglang{R} environment and freely obtained from CRAN
    • …
    corecore