56,740 research outputs found

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Qualitative Spatial Reasoning with Holed Regions

    Get PDF
    The intricacies of real-world and constructed spatial entities call for versatile spatial data types to model complex spatial objects, often characterized by the presence of holes. To date, however, relations of simple, hole-free regions have been the prevailing approaches for spatial qualitative reasoning. Even though such relations may be applied to holed regions, they do not take into consideration the consequences of the existence of the holes, limiting the ability to query and compare more complex spatial configurations. To overcome such limitations, this thesis develops a formal framework for spatial reasoning with topological relations over two-dimensional holed regions, called the Holed Regions Model (HRM), and a similarity evaluation method for comparing relations featuring a multi-holed region, called the Frequency Distribution Method (FDM). The HRM comprises a set of 23 relations between a hole-free and a single-holed region, a set of 152 relations between two single-holed regions, as well as the composition inferences enabled from both sets of relations. The inference results reveal that the fine-grained topological relations over holed regions provide more refined composition results in over 50% of the cases when compared with the results of hole-free regions relations. The HRM also accommodates the relations between a hole-free region and a multi-holed region. Each such relation is called a multi-element relation, as it can be deconstructed into a number of elements—relations between a hole-free and a singleholed region—that is equal to the number of holes, regarding each hole as if it were the only one. FDM facilitates the similarity assessment among multi-element relations. The similarity is evaluated by comparing the frequency summaries of the single-holed region relations. The multi-holed regions of the relations under comparison may differ in the number of holes. In order to assess the similarity of such relations, one multi-holed region is considered as the result of dropping from or adding holes to the other region. Therefore, the effect that two concurrent changes have on the similarity of the relations is evaluated. The first is the change in the topological relation between the regions, and the second is the change in a region’s topology brought upon by elimination or addition of holes. The results from the similarity evaluations examined in this thesis show that the topological placement of the holes in relation to the hole-free region influences relation similarity as much as the relation between the hole-free region and the host of the holes. When the relations under comparison have fewer characteristics in common, the placement of the holes is the determining factor for the similarity rankings among relations. The distilled and more correct composition and similarity evaluation results enabled by the relations over holed regions indicate that spatial reasoning over such regions differs from the prevailing reasoning over hole-free regions. Insights from such results are expected to contribute to the design of future geographic information systems that more adequately process complex spatial phenomena, and are better equipped for advanced database query answering

    Educating on spatial skills using a paper-folding-and-punched-hole videogame: gameplay data analysis

    Get PDF
    IntroductionPaper folding and punched hole tests are used to measure spatial abilities in humans. These abilities are relevant since they are associated with success in STEM (Science, Technology, Engineering, and Mathematics). This study addresses the challenge of teaching spatial reasoning skills using an educational videogame, the Paper Folding Reasoning Game.MethodsThe Paper Folding Reasoning Game is an interactive game which presents activities intended to help users train and understand how to fold a paper to get a specific shape (Part I) and the consequence of punching a hole on a folded paper (Part II). This educational videogame can automatically generate paper-folding-and-punched-hole questions with varying degrees of difficulty depending on the number of folds and holes made, thus producing additional levels for training due to its embedded reasoning mechanisms (Part III).ResultsThis manuscript presents the results of analyzing the gameplay data gathered by the Paper Folding Reasoning Game in its three parts. For Parts I and II, the data provided by 225 anonymous unique players are analyzed. For Part III (Mastermode), the data obtained from 894 gameplays by 311 anonymous unique players are analyzed. In our analysis, we found out a significant difference in performance regarding the players who trained (i.e., played Parts I and II) before playing the Mastermode (Part III) vs. the group of players who did not train. We also found a significant difference in players' performance who used the visual help (i.e., re-watch the animated sequence of paper folds) vs. the group of players who did not use it, confirming the effectiveness of the Paper Folding Reasoning Game to train paper-folding-and-punched-hole reasoning skills. Statistically significant gender differences in performance were also found

    An intuitive approach to inertial forces and the centrifugal force paradox in general relativity

    Get PDF
    As the velocity of a rocket in a circular orbit near a black hole increases, the outwardly directed rocket thrust must increase to keep the rocket in its orbit. This feature might appear paradoxical from a Newtonian viewpoint, but we show that it follows naturally from the equivalence principle together with special relativity and a few general features of black holes. We also derive a general relativistic formalism of inertial forces for reference frames with acceleration and rotation. The resulting equation relates the real experienced forces to the time derivative of the speed and the spatial curvature of the particle trajectory relative to the reference frame. We show that an observer who follows the path taken by a free (geodesic) photon will experience a force perpendicular to the direction of motion that is independent of the observers velocity. We apply our approach to resolve the submarine paradox, which regards whether a submerged submarine in a balanced state of rest will sink or float when given a horizontal velocity if we take relativistic effects into account. We extend earlier treatments of this topic to include spherical oceans and show that for the case of the Earth the submarine floats upward if we take the curvature of the ocean into account.Comment: 14 pages, 21 figure

    Classical static final state of collapse with supertranslation memory

    Full text link
    The Kerr metric models the final classical black hole state after gravitational collapse of matter and radiation. Any stationary metric which is close to the Kerr metric has been proven to be diffeomorphic to it. Now, finite supertranslation diffeomorphisms are symmetries which map solutions to inequivalent solutions as such diffeomorphisms generate conserved superrotation charges. The final state of gravitational collapse is therefore parameterized by its mass, angular momentum and supertranslation field, signaled by its conserved superrotation charges. In this paper, we first derive the angle-dependent energy conservation law relating the asymptotic value of the supertranslation field of the final state to the details of the collapse and subsequent evolution of the system. We then generate the static solution with an asymptotic supertranslation field and we study some of its properties. Up to a caveat, the deviation from the Schwarzschild metric could therefore be predicted on a case-by-case basis from accurate modeling of the angular dependence of the ingoing and outgoing energy fluxes leading to the final state.Comment: 35 pages, 7 figures, published version (only refs updated with respect to v2
    • …
    corecore