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Abstract. As the velocity of a rocket in a circular or-
bit near a black hole increases, the outwardly directed
rocket thrust must increase to keep the rocket in its or-
bit. This feature might appear paradoxical from a New-
tonian viewpoint, but we show that it follows naturally
from the equivalence principle together with special rel-
ativity and a few general features of black holes. We also
derive a general relativistic formalism of inertial forces for
reference frames with acceleration and rotation. The re-
sulting equation relates the real experienced forces to the
time derivative of the speed and the spatial curvature of
the particle trajectory relative to the reference frame. We
show that an observer who follows the path taken by a
free (geodesic) photon will experience a force perpendic-
ular to the direction of motion that is independent of the
observers velocity. We apply our approach to resolve the
submarine paradox, which regards whether a submerged
submarine in a balanced state of rest will sink or float
when given a horizontal velocity if we take relativistic ef-
fects into account. We extend earlier treatments of this
topic to include spherical oceans and show that for the
case of the Earth the submarine floats upward if we take
the curvature of the ocean into account.

I Introduction

Consider a rocket in a circular orbit outside the event
horizon of a black hole.1 If the orbit lies within the pho-
ton radius, the radius where free photons can move on
circular orbits,2 a greater outward rocket thrust is re-
quired to keep the rocket in orbit the faster the rocket
moves. However, outside of the photon radius the out-
ward thrust decreases as the orbital speed increases just
as it would for a similar scenario in Newtonian mechan-
ics (the thrust will be inward directed for sufficiently high
speeds, see Fig. 1).

Analogous to the situation in Newtonian mechanics
we can introduce in general relativity a gravitational force
that is velocity independent. This force is fictitious (un-
like in Newtonian mechanics). We can also introduce a
velocity dependent (fictitious) centrifugal force that to-
gether with the gravitational force balances the real force
from the jet engine of the rocket. By this definition, the

Figure 1: Rockets orbiting a static black hole. The solid
arrows correspond to the force (the rocket thrust) nec-
essary to keep the rocket in circular orbit. Inside of the
photon radius (the dashed circle), the required force in-
creases as the orbital velocity increases.

centrifugal force is directed inward inside of the photon
radius and directed outward outside of the photon radius.
This reversal of the direction of the fictitious centrifu-
gal force is described by the formalism of optical geome-
try (see Appendix A) in which the phenomena has been
discussed.3, 4, 5, 6, 7, 8

Our purpose is not to explain the velocity depen-
dence of the rocket thrust by analogy with Newtonian
theory, and we will use neither gravitational nor centrifu-
gal forces. Instead we will use the basic principles of rel-
ativity to explain how the real force required to keep an
object moving along a specified path depends on the ve-
locity of the object.

We start by illustrating how the fact that the rocket
thrust increases with increasing orbital speed (sufficiently
close to the black hole) follows naturally from the equiv-
alence principle (reviewed in Appendix B). We do so by
first considering an idealized special relativistic scenario
of a train moving relative to an (upward) accelerating
platform.

We then consider a more general but still effectively
two-dimensional discussion of forces perpendicular to the
direction of motion for motion relative to an accelerated
reference frame in special relativity. In a static spacetime,
the reference frame connected to the static observers be-
haves locally like an accelerating reference frame in spe-
cial relativity and the formalism can therefore be applied
also to this case.

We then illustrate how to apply the formalism of this
paper to the submarine paradox.9 We ask whether a sub-
marine with a density such that it is vertically balanced
when at rest, will sink or float if given a horizontal veloc-
ity and relativistic effects are taken into account.

Next we generalize the formalism of forces and curva-
ture of spatial paths to include three-dimensional cases,
forces parallel to the direction of motion, and rotating
reference frames. The acceleration and rotation of the
reference frame will be shown (as in Newtonian mechan-
ics) to introduce terms that can be interpreted as iner-
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tial (fictitious) forces. By using the equivalence principle,
the formalism can be applied to arbitrary rigid reference
frames in general relativity. We verify the results by com-
paring with Ref. 10.

Although this paper is primarily aimed at readers
with a background in general relativity, the main part
assumes only an elementary knowledge of special rela-
tivity together with a knowledge of a few basic concepts
of general relativity. Some of the more important con-
cepts such as curvature of a spatial path, spatial geome-
try, geodesics, and the equivalence principle are reviewed
in Appendix B. Sections IX–XI are more specialized.

II The train and the platform

We consider the special relativistic description of a train
moving relative to a platform with proper upward accel-
eration a.11 The force required by a man on the train to
hold an apple at a fixed height increases as the train speed
increases (assuming nonzero acceleration of the platform)
as illustrated in Fig. 2.

v

(a) (b)

Figure 2: A train on a platform with a constant proper
acceleration a upward. (a) The train is at rest; (b) the
train is moving relative to the platform. The force re-
quired of a man on the train to keep an apple at a fixed
height is higher when the train moves than when it is at
rest relative to the platform.

To understand this effect we consider the accelerat-
ing train as observed from two inertial systems. The first
system S is a system in which the platform is momen-
tarily (t = 0) at rest. The second system S′ is comoving
with the train at the same moment. The two systems are
related to each other by a Lorentz transformation of ve-
locity v, where v is the velocity of the train relative to
the platform along the x-axis.

Relative to S the apple moves to the right and ac-
celerates upward with acceleration a. Consider now two
physical events at the apple, one at t = 0 and one at
t = δt, as observed from S. The time separation as ob-
served in S′ is (to lowest nonzero order in δt) given by
δt′ = δt/γ, where γ = 1/

√

1 − v2/c2 and c is the velocity
of light. In the following we will use c as the unit of veloc-
ity so that v = 1 for photons.12 The height δh separating
the two events as observed in S equals the corresponding
separation δh′ relative to S′. If we denote the upward ac-
celeration relative to S′ by a′, we have to lowest nonzero

order in δt

δh = aδt2/2 (1a)

δh′ = a′δt′
2
/2 (1b)

δh′ = δh. (1c)

From these equations follows that

a′ = a
( δt

δt′

)2

= aγ2. (2)

Thus the proper acceleration, that is, the acceleration as
observed from an inertial system momentarily comoving
with the apple, is greater than the acceleration of the
platform by a factor of γ2. The force required to keep the
apple of rest mass m at a fixed height relative to the train
is thus given by F = mγ2a.

To further clarify the main idea, we can also consider
a similar scenario where there are two apples on a hori-
zontal straight line which accelerates upward relative to
an inertial system, as depicted in Fig. 3.

a

Figure 3: Two apples on an upward accelerating line (the
solid line). The apples were initially at the position of
the unfilled apple, one at rest and the other moving hor-
izontally to the right. Both apples have to move up the
same amount for a given coordinate time. But the one
that moves horizontally has less proper time to do it. It
must therefore experience a greater acceleration.

It follows from the equivalence principle (see Appendix
B) that a flat platform on Earth (neglecting the Earth’s
rotation) behaves like a flat platform with proper upward
acceleration g in special relativity. Hence for a sufficiently
flat platform, the force required to hold an apple at rest
inside a moving train on Earth would increase as the ve-
locity of the train increases.

III The static black hole

Let us apply the reasoning of Sec. II to circular motion
around a static black hole. A schematic of the exterior
spatial geometry of an equatorial plane through a black
hole is depicted in Fig. 4 (also see Appendix B).

A local static reference system outside of the black
hole will behave as an accelerating reference frame (train
platform) in special relativity (again see Appendix B).
Locally, the scenario is thus identical to that in Sec. II,
except that the path along which the object in question
moves (a circle in the latter case) is not straight in general
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Figure 4: A freely falling frame (the grid) accelerating rel-
ative to the spatial geometry of a black hole.13 We con-
sider circular motion along the dashed line. The bottom
edge of the depicted surface corresponds to the horizon.
At this edge the embedding approaches a cylinder and
the circle at the horizon is thus straight in the sense that
it does not curve relative to the surface.

(although circles can in fact be straight, see Appendix
B). Instead, the circular motion corresponds locally to
letting the object in question follow a slightly curved path
relative to the accelerating platform (see Fig. 5).

Figure 5: A zoom-in on the circular motion observed from
a static system (with proper upward acceleration). The
trajectory curves slightly downward, which will decrease
the upward acceleration of the object relative to a freely
falling system. In the limit that the acceleration of the
freely falling frames is infinite, we can disregard the small
curvature.

It is a well known property of Schwarzschild black
holes that the proper acceleration of the local static ref-
erence frame goes to infinity as the radius approaches the
radius of the event horizon. In other words the accelera-
tion of a freely falling inertial frame (where special rela-
tivity holds, see Appendix B) which falls relative to the
static reference frame, goes to infinity as the radius ap-
proaches the radius of the horizon. Furthermore we know
that there is a maximum velocity v = 1 for material ob-
jects. Thus the perpendicular acceleration relative to the
properly accelerated reference frame due to the curvature
of the path remains finite (it is given by v2/R) for non-
zero R; R is non-zero for the circular motion in question.
It follows that the acceleration arel, relative to a freely
falling frame, of an object in circular motion is dominated
by the acceleration of the freely falling frame in the limit
where the radius of the circle approaches the radius of
the event horizon. Thus in this limit we can neglect the
curvature of the path and from the reasoning in Sec. II
we conclude that the force required to keep an object in

a circular orbit (given by F = mγ2arel) increases as the
orbital velocity increases.

In brief, if an object moves it has less time (due to
time dilation) to accelerate the necessary distance upward
needed to remain at a fixed height (that is, fixed radius).
Thus we can understand that that close to the horizon a
greater outward force is needed to keep an object in orbit
the faster the object moves.

IV A more quantitative analysis

To understand where the transition from a more Newtonian-
like behavior occurs, we need a more detailed analysis.
Because the reference frame connected to the static ob-
servers around the black hole locally behaves like an ac-
celerating reference frame in special relativity, we first
consider this special relativistic case.

Let v be the velocity of a particle relative to the accel-
erated reference frame and let g be the acceleration of an
inertial frame, momentarily at rest relative to the refer-
ence frame, which falls relative to the the reference frame.
Also assume that the direction of curvature n̂ (discussed
in Appendix B) of the particle trajectory relative to the
reference frame lies in the same plane as that spanned
by v and g. In this way we consider an effectively two-
dimensional scenario as depicted in Fig. 6.

g⊥

g

v

Figure 6: A particle moving along a trajectory of curva-
ture R relative to the accelerating reference frame. The
thick line is freely falling and is initially (t = 0) aligned
with the dashed line. Concerning forces perpendicular to
the direction of motion, only the perpendicular part of
the acceleration g is relevant.

The perpendicular acceleration of a particle moving
on a curve of radius R, as observed from the accelerated
reference frame, is given by v2/R. In other words, the
proper spatial distance δs from the particle to a straight
line fixed to the accelerated reference frame and aligned
with the particle initial (t = 0) direction of motion is
given by δs = (δt)2v2/(2R) to lowest nonzero order in
δt; the latter is the local time as measured in the acceler-
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ated reference frame. Because the inertial (freely falling)
system is initially at rest with respect to the accelerat-
ing reference frame, the time as measured by a grid of
ideal clocks in the freely falling system is identical to time
(to first order in δt) relative to the accelerating reference
frame. The same goes for distances (length contraction
does not kick in until the two frames have an appreciable
relative velocity).

Consider a straight line fixed to the freely falling sys-
tem that at t = 0 coincides with the previously mentioned
line fixed to the reference frame. The separation between
the two lines is (to lowest nonzero order in δt) given by
g⊥(δt)2/2. Here g⊥ is the part of the acceleration of the
freely falling system that is perpendicular to the initial
direction of motion, as observed from the accelerating
reference frame. It follows that observed from the freely
falling system, where special relativity holds, the particle
will have an acceleration perpendicular to the direction
of motion given by g⊥ − v2/R. In analogy to our earlier
reasoning, the perpendicular acceleration as observed in
a system comoving with the particle is greater by a factor
of γ2, and the perpendicular force F⊥ (as experienced in
the particle’s own system) is thus given by

F⊥ = mγ2(g⊥ − v2/R). (3)

To clarify any sign ambiguities we rewrite Eq. (3) in terms
of vectors:

F⊥

m
= −γ2g⊥ + γ2v2 n̂

R
. (4)

Equation (4) relates the perpendicular part of the force
(as observed in the particle’s own reference system) to
the spatial curvature of the particle trajectory relative to
a reference frame with proper acceleration −g. Although
Eq. (4) was derived for an effectively two-dimensional sce-
nario, it holds also in three dimensions as we will see in
Sec. IX. From the equivalence principle it follows that
Eq. (4) applies also to motion around a black hole. For
this case the curvature vector is defined relative to the
spatial geometry connected to the static observers, as ex-
plained in Appendix B.

V Following the geodesic photon

Inspired by the reasoning of Abramowicz et al.,3 we now
consider motion along the spatial trajectory of a geodesic
photon (a photon whose motion is determined by gravity
alone, see Appendix B). For a geodesic particle we have
F⊥ = 0, and thus according to Eq. (3), g⊥ = v2/R. For
a geodesic photon whose path curvature we denote by
Rphot, we have thus g⊥ = 1/Rphot (because v = 1 for
photons). For a particle following the path of a such a
photon (so 1/R = g⊥) we have according to Eq. (3),
F⊥ = mγ2(g⊥ − v2g⊥), which simplifies to F⊥ = mg⊥.
Thus, the perpendicular force required to make a particle
follow the trajectory of a geodesic photon is independent
of the velocity of the particle.

To make this fact more transparent, we consider the
curvature vector of a geodesic photon given by Eq. (4)
(set F⊥ = 0 and v = 1)

n̂phot

Rphot

= g⊥. (5)

We introduce n̂rel/Rrel as the curvature vector relative to
the trajectory of a geodesic photon:

n̂rel

Rrel

=
n̂

R
− n̂phot

Rphot

. (6)

This definition of n̂rel/Rrel gives how quickly a particle
trajectory deviates from a geodesic photon trajectory in
analogy to how n̂/R gives how quickly the particle trajec-
tory deviates from a straight line. We substitute Eqs. (5)
and (6) in Eq. (3) and find

F⊥

m
= −g⊥ + γ2v2 n̂rel

Rrel

. (7)

Equation (7) also holds for more general three-dimensional
scenarios as will be shown in Sec. IX.

Within the photon radius, a photon trajectory departs
inward relative to a locally tangent circle. Thus the rela-
tive curvature direction n̂rel of a circle within the photon
radius is directed outward. From Eq. (7) it then follows
that the faster an object orbits the black hole, the greater
the outward force must be. However, outside of the pho-
ton radius, a photon trajectory departs outward from a
locally tangent circle. Thus the relative curvature of the
circle is directed inward. It follows from Eq. (7) that out-
side of the photon radius, the outward force required to
keep the rocket in orbit will decrease as the velocity in-
creases. Thus we see that the effective centrifugal force
reversal for circular motion occurs exactly at the photon
radius.

Figure 7: Trajectories of geodesic photons (dashed
curves) relative to circles around a black hole. Inside the
photon radius a circle curves outward relative to a locally
tangent photon trajectory.
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VI The difference between the

given and the received force

Before considering a more general analysis, we will dis-
tinguish between two types of forces. The perpendicular
force that we have discussed is the force as observed in
a system comoving with the object in question. Consider
now a situation where the observers connected to the ref-
erence frame in question (like the accelerating platform
we have considered previously) provide the force that
keeps the object on its path. How is this force, which we
will refer to as the given force, related to the previously
considered force, which we will refer to as the received

force, that is, the force as observed in a system comov-
ing with the object? For instance, we might be interested
in the magnitude of the vertical force by the rail that
is needed to support a train moving with a relativistic
speed along the track. Unlike in Newtonian theory, this
given force will be different from the force as observed in
a system comoving with the train.

For forces perpendicular to the direction of motion,
the relation between the given and the received force can
be understood by considering a simple model of force
exertion (a more formal derivation is given in Ref. 10).
Assume that the force on the object is exerted by little
particles bouncing elastically on the object. Every bounce
gives the object a certain impulse (see Fig. 8).

v(a) (b)

Figure 8: A simple model where small particles bounce
elastically on the object. (a) The scenario as observed
from a system where the impulse giving particle has no
horizontal velocity. (b) The corresponding scenario as ob-
served from a system comoving with the object.

If we give an object moving relative to an inertial
system S an impulse perpendicular to the direction of
motion, the object will in its own reference system re-
ceive the same impulse because a Lorentz transformation
does not affect the perpendicular part of the momentum
change. On the other hand, the proper time of the object
runs slower by a factor of γ compared to local time in S.
Hence the bouncing particles will bounce more frequently
by a factor of γ as observed from the reference frame of
the object. Because force equals transferred impulse per
unit time, it follows that the received force, perpendicular
to the direction of motion, is greater than the correspond-
ing given force, by a factor of γ. We let F⊥ denote the
perpendicular received force and Fc⊥ the perpendicular
given force (to conform with the notation of Ref. 10) and

write
Fc⊥ = F⊥/γ. (8)

Hence the given force is smaller than the received force by
a factor of γ. Because the received force required to keep
an object (like an entire train) moving along a straight
horizontal line relative to a vertically accelerating refer-
ence frame is proportional to γ2 (as discussed in Sec. II),
it follows that the force required by the rail to support
the train scales with a factor of γ.

In Sec. V we showed that the perpendicular received
force is independent of the velocity for an object that fol-
lows the trajectory of a geodesic photon. Now we ask if
there is a corresponding path for which the perpendicu-
lar given force is velocity independent. The analogue of
Eq. (4) for the given force is

Fc⊥

m
= −γg⊥ + γv2 n̂

R
. (9)

We now require Fc⊥ to be the same for an object moving
with speed v as that of an object at rest. For v = 0,
Eq. (9) gives Fc⊥/m = −g⊥. We substitute this result
into Eq. (9) and find

n̂

R
=

g⊥

v2

(

1 − 1

γ

)

= g⊥
γ

γ + 1
. (10)

This curvature depends on the velocity.14 Thus consider-
ing the given force (the force as observed from the accel-
erating reference frame), there is no path for which the
perpendicular force is independent of the velocity.

VII The relativistic submarine

As an application of our discussion we consider a subma-
rine submerged in water with a density such that it re-
mains at rest.9 If we take relativistic effects into account,
but disregard the more subtle aspects of fluid dynamics
such as viscosity and turbulence, will the submarine sink
or float when it is given a horizontal velocity?

A A flat ocean in special relativity

We first consider a special relativistic scenario where the
flat bottom of the ocean has a constant proper upward
acceleration. In Ref. 9 accelerated (Rindler) coordinates
are used to find out whether the submarine sinks or floats,
after several pages of calculation.

By using our earlier reasoning, we can readily find
the answer without any calculations. The received force
needed to keep the submarine at the same depth increases
by a factor of γ2 as demonstrated in Sec. II. The given
force needed to keep it at a constant depth thus increases
by a factor of γ because it is smaller than the received
force by a factor of γ as explained in Sec. VI. However,
the submarine is length contracted, so the actual given
force from the water pressure (or rather the differences of
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(a) (b)

Figure 9: (a) An idealized (rectangular) submarine sub-
merged in water at rest relative to the water. (b) As the
submarine moves, it will be length contracted and thus
the given force from the water will decrease by a factor
of γ.

water pressure at the top and bottom of the submarine)
will decrease by a factor of γ (see Fig. 9).

Therefore the given force decreases by a factor of γ,
whereas it should increase by a factor of γ in order for
the submarine to remain at a fixed depth. Thus the sub-
marine will sink (see Fig. 10).

Figure 10: A submarine submerged in a balanced state of
rest in a flat ocean with proper upward acceleration, will
sink due to relativistic effects if it starts moving horizon-
tally.

Now let us analyze the situation from the submarine.
Due to length contraction the actual given force is de-
creased by a factor of γ, as we have argued. The received
force is γ times the given force. Thus, the received force is
independent of the velocity.15 This force is not sufficient
to keep the submarine at the same depth. The experi-
enced force would have to increase by γ2 for that. The
submarine thus sinks.

To understand why the received force on the subma-
rine is independent of the velocity, we can also look at
the water at the molecular level. Assume that the wa-
ter molecules are moving along columns fastened to the
ocean bottom (a very crude model). Assume also that the
particles elastically bounce back down the same column
(without interfering with the up-moving water molecules)
when they hit the hull of the submarine (and analogously
for the water molecules on top of the submarine). The im-
pulse given by a single molecule is the same as when the
submarine was at rest. However, as observed from the
moving submarine the columns of water molecules are
length contracted by a factor of γ. There are thus more
columns under the submarine (and above) in the subma-
rine frame, when the submarine moves than when it is at
rest. On the other hand, due to time dilation, how often
a molecule from a single column hits the hull is decreased
by a factor of γ (consider a clock fixed to the column just
where the column intersects the submarine hull). The ef-
fects thus cancel. It follows that the received force on the

submarine is independent of the velocity.
Although every single column of water yields a re-

ceived force that is smaller than the force given by that
column (by a factor of γ), there are γ2 times more columns
contributing to the net force as observed from the sub-
marine frame, than observed from the rest frame of the
water (see Fig. 11). Thus consistent with the reasoning of
Sec. VI, the net received force is greater than the given
force by a factor of γ.

v

vv

(a) (b)

Figure 11: (a) Observed from the water system the sub-
marine is length contracted by a factor of γ. (b) Observed
from the submarine the water columns are length con-
tracted and thus denser by a factor of γ.

B A real spherical ocean

It is easy to generalize the above discussion to apply to
a submarine in the ocean of a spherical planet. Locally
the scenario is almost identical to the one we have dis-
cussed, assuming that the submarine is small compared
to the size of the planet. The question of whether the
submarine floats or sinks amounts to whether the subma-
rine, when given an azimuthal velocity, departs outward
or inward from a circle locally tangent to the direction of
motion. The answer follows from our previous discussion.
As argued in Sec. A, the force as experienced in a system
comoving with the submarine, is independent of the ve-
locity for this case. It then follows from Eq. (7) that the
submarine will have zero curvature relative to a geodesic
photon and will thus follow the path of a geodesic photon.

Figure 12: Submarines moving at different depths in the
ocean of an imaginary very dense planet. The dashed line
is the photon radius. The submarines outside the photon
radius will float upward if they are given an azimuthal
velocity; the opposite holds within the photon radius.
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So, outside the photon radius (the radius where photons
would move on circular orbits if there were no refraction
effects from the water) the submarine will float upward,
at the photon radius it will remain at the same depth,
and inside the photon radius it will sink. The scenario is
illustrated in Fig. 12.

Consider the Earth, which is not sufficiently dense to
have a photon radius. If we take into account the Earth’s
curvature, it follows that when given a horizontal veloc-
ity, the submarine will not sink after all but rather float
upward.

VIII The weight of a box with

moving particles

As another application of our discussion, we consider the
weight of an object whose internal components move. In
general relativity, if we for instance heat an object, it
will become heavier. In other words, a greater upward
force is required to keep the object at rest (on Earth)
when the object is warm (molecules moving faster) than
when it is cold. Although not directly related to the main
topic of this article (inertial forces), we can give a simple
explanation.

Consider a black box containing two balls connected
by a rod of negligible mass which is suspended in such a
way that the balls can rotate in a horizontal plane. If they
rotate, the upward force needed to keep a single ball in
the horizontal plane as observed from the balls’ reference
system is mgγ2, where m is the rest mass of the ball. The
given force is smaller by a factor of γ and is hence given
by mgγ. So the weight of the box is greater when the
internal particles move than when they are at rest (see
Fig. 13).

(a) (b)

Figure 13: A black box (transparent for clarity) contain-
ing a pair of balls that (a) are at rest and (b) are moving.
The force needed to hold the box at a fixed height on
Earth is greater when the balls are moving than when
they are at rest. The force is proportional to the total
relativistic energy of the box.

For vertical or arbitrary motion, this type of reason-
ing is not as powerful, and we can instead make a more
formal proof using four-vectors and conservation of four-
momentum.

IX Generalizing to three dimen-

sions

Consider a reference frame with a proper (upward) ac-
celeration. Given the curvature and curvature direction
of the path taken by a test particle relative to the refer-
ence frame, we want to express the perpendicular accel-
eration of the test particle relative to an inertial system
S in which the reference frame is momentarily (t = 0)
at rest. In Fig. 14 we illustrate how the trajectory will
deviate from a straight line (directed along the particle
initial direction of motion) which is fixed to S, and thus
falls relative to the accelerated reference frame. From this
deviation we can find the perpendicular acceleration rel-
ative to S, analogous to the two-dimensional discussion
in Sec. IV.

x

y

z

δx1

δx2

δx3

g

Freely falling line

Figure 14: Deviations from a straight line relative to the
(properly) accelerated reference system. The z-direction
is chosen to be antiparallel to the local g. The plane in
which we study the deviations is perpendicular to the
momentary direction of motion (the dashed line) and the
three vectors lie in this plane. The solid curve is the par-
ticle trajectory as observed in the (properly) accelerated
reference system. The thick line is a freely falling line that
was aligned with the dashed line (and at rest relative to
the reference frame) at the time when the particle was at
the origin.

If we let δt denote a small time step and use the def-
initions introduced in Fig. 14, we have to lowest nonzero
order in δt:

δx1 =
n̂

R

v2δt2

2
(11a)

δx2 = g⊥
δt2

2
(11b)

δx3 = δx1 − δx2, (11c)

where R and n̂ are the curvature and curvature direc-
tion of the spatial trajectory relative to the accelerated
reference frame. Let arel⊥ be the acceleration of the test
particle perpendicular to the direction of motion relative
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to the freely falling frame. By using δx3 = arel⊥δt2/2 and
Eq. (11), we find

arel⊥ = −g⊥ + v2 n̂

R
. (12)

We denote the received perpendicular force by F⊥. Ac-
cording to our previous reasoning, we have F⊥ = mγ2arel⊥,
and thus

1

mγ2
F⊥ = −g⊥ + v2 n̂

R
. (13)

Equation (13) relates the experienced perpendicular force
and the curvature relative to the accelerating reference
system. We note that the only difference from its Newto-
nian analogue is the factor of γ2 on the left-hand side. In
analogy to the two-dimensional discussion in Sec. V, we
may introduce a curvature relative to that of a geodesic
photon as

n̂rel

Rrel

=
n̂

R
− n̂phot

Rphot

. (14)

If we use Eq. (13) to find n̂phot/Rphot (setting F⊥ = 0
and v = 1) and substitute the expression for n̂/R from
Eq. (14) into Eq. (13), we obtain

F⊥

m
= −g⊥ + γ2v2 n̂rel

Rrel

. (15)

We see that Eqs. (4) and (7), which were previously de-
rived only for effectively two-dimensional scenarios, are
also valid for arbitrary three-dimensional scenarios. For
the case where the observers at rest in the accelerating
reference frame provide the pushing needed to keep the
particle on track, we obtain the given force as before by
dividing the received force by a factor of γ.

X Parallel accelerations

Now that we know how the spatial curvature depends on
the perpendicular force, it would be useful also to know
how forces in the forward direction affect the speed v of
the particle relative to the accelerated reference frame.
We could derive this relation using four-velocities,16 but
for simplicity, we will use only standard results that follow
from the Lorentz-transformation.

To determine dv/dt, where v is the local velocity rela-
tive to the accelerating reference frame, we must take into
account that the derivative implies that we are comparing
the velocity at two different times, relative to two differ-
ent systems (effectively) because the reference system is
accelerating. Consider a scenario where the acceleration
a of the reference frame is aligned with the direction of
motion. Relative to an inertial system S in which the ref-
erence frame is at rest at t = 0, the reference frame gains
a velocity δu = aδt after a time δt. We denote by δvs the
velocity difference of the particle relative to S from t = 0
to t = δt (see Fig. 15).

The relation between an arbitrary object’s velocity
w (along the x-axis) as observed from S and the corre-
sponding velocity w′ as observed from an inertial system

v v + δv

δu

t = 0 t = δt

Figure 15: An object moving relative to an accelerated
reference frame. At t = 0 the velocity of the particle is
v. In a time δt the reference frame is accelerated to a
velocity δu, and the velocity of the particle relative to
the accelerated reference frame is v + δv.

S′ moving with velocity δu relative to S (along the x-axis)
follows from the Lorentz transformation (see for example,
Ref. 17, p. 31)

w′ =
w − δu

1 − wδu
. (16)

If we substitute w = v + δvs and w′ = v + δv in Eq. (16)
and do a Taylor expansion to first order in δu and δvs,
we obtain

δv = δvs − (1 − v2)δu. (17)

We also know (see for example, Ref. 17, p. 33), that the
proper acceleration α of the object, that is, the acceler-
ation as observed in a system comoving with the object,
is related to the acceleration dvs/dt relative to S by

α = γ3 dvs

dt
. (18)

If we denote the received forward thrust by F‖, we have
F‖ = mα. We use this relation in Eqs. (17) and (18),
take the limit where δt is infinitesimal, together with a =
du/dt and find

dv

dt
=

1

mγ3
F‖ −

a

γ2
. (19)

Consider now a more general case where the accel-
eration of the reference frame need not be aligned with
the direction of motion. It is easy to realize (or at least
guess) that the acceleration of the reference frame per-
pendicular to the direction of motion will not affect the
local speed derivative.18 We let g = −a, where a is the
acceleration of the reference frame relative to an inertial
system in which the reference frame is momentarily at
rest, and write

dv

dt
=

1

mγ3
F‖ +

g‖

γ2
. (20)

Here g‖ is minus the part of the reference frame accel-
eration that is parallel to the particle’s direction of mo-
tion. Thus we now have a general expression for the speed
change relative to the accelerating reference system. Note
that t is the local time relative to the reference frame (so
dt = γdτ).
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A Combining the force equations

From the form of Eqs. (20) and (13), we see that we
can combine them into a single vector relation. Let t̂ be
a normalized vector in the forward direction of motion
(to conform with the notation of Ref. 10). By multiply-
ing Eq. (20) by γ2t̂ and adding the resulting equation to
Eq. (13), we can form a single term g (by adding the g⊥

and g‖t̂ terms) and obtain

1

mγ2
(γF‖t̂ + F⊥m̂) = −g + γ2 dv

dt
t̂ +

v2

R
n̂. (21)

Here m̂ is a unit vector perpendicular to t̂. We thus have
an expression for the spatial curvature and the speed
derivative in terms of the received forces. Note that g

may be interpreted as an inertial (fictitious) force; we
will discuss this interpretation in Sec. XI.

We have previously considered a rocket in circular or-
bit with constant speed around a black hole. Now we con-
sider a rocket in radial motion with constant speed out-
ward from a black hole. From the parallel part of Eq. (21)
we find

F‖ = mgγ, (22)

where g is the magnitude of the acceleration of the local
freely falling frames (g is a function of the radius that can
readily be found from the spacetime metric). Here there
are no reversal issues. However, we can see that (unlike
in Newtonian theory), a greater thrust is needed to keep
a constant speed the faster the rocket moves.

B The given parallel force

If we would like an expression of the type Eq. (21) for
the parallel given force, we need to know how the given
force along the direction of motion is related to the re-
ceived force along the direction of motion. We can make
an argument similar to the one we made in Sec. VI. Let S
denote a certain rest system, and let S′ be a system in a
standard (non-rotated) configuration relative to S, which
comoves with the object in question along the x-axis of
S. Consider the force parallel to the direction of motion
to be mediated by (very light) particles bouncing elasti-
cally on the object. For simplicity let us assume that in a
system comoving with the object, each bouncing particle
is reflected in such a way that the energy of the bouncing
particle is unaffected by the bounce (so ∆p′

0
= 0). If we

consider motion along the x-axis and use the fact that the
change of momentum four-tensor transforms according to
the Lorentz transformation, we have

∆px = γ(∆p′
x

+ v ∆p′
0

︸ ︷︷ ︸

0

). (23)

Thus the received impulse ∆p′
x

is smaller than the given
impulse ∆px by a factor of γ. On the other hand, due to
time dilation the frequency at which these impulses are
received (assuming several bouncing particles) is greater

in the comoving system S′ than in S by a factor of γ.
These two factors of γ cancel each other, and we conclude
that the given and the received force in the direction of
motion are the same. One can easily give a formal proof
of this fact (see for example, Ref. 10).

We can now express Eq. (21) in terms of the given
forces. We let Fc‖ denote the given force in the direction
of motion and write

1

mγ2
(γFc‖t̂ + γFc⊥m̂) = −g + γ2 dv

dt
t̂ +

v2

R
n̂. (24)

We define Fc = Fc‖t̂ + Fc⊥m̂ and write Eq. (24) as

Fc

mγ
= −g + γ2 dv

dt
t̂ +

v2

R
n̂. (25)

If we compare (25) with Eq. (21), we see that the formal-
ism is a bit cleaner if we consider the given force rather
than the received force.

XI Rotating reference frame

Suppose that we would also like to consider stationary
spacetimes, such as the spacetime of a rotating (Kerr)
black hole. For this case we have a spatial geometry de-
fined by the stationary (Killing) observers. In this case
through frame dragging, the local reference frame con-
nected to the stationary observers is not only accelerat-
ing, but also rotating.

Consider (in special relativity) a reference frame that
rotates around its origin relative to an inertial system S.
For simplicity, we consider motion along a straight line
that passes the origin and is fixed to the rotating frame.
The particle is assumed to be at the origin at t = 0. This
scenario is depicted in Fig. 16.

Let δx denote the perpendicular separation from the
particle to a line that is fixed in the inertial system S and
that at t = 0 was aligned with the rotating line. We let
δu denote the velocity of the line fixed to the rotating
system at the position of the particle after a time δt. To
lowest order in δu we have

δx = δu δt. (26)

The position of the particle after a time δt is vδt (to
lowest order in δt), where v = vt̂. We thus have δu =
ω×(vδt). We use this relation in Eq. (26) and obtain δx =
ω×vδt2. In the limit where the time step is infinitesimal,
the perpendicular acceleration coming from the rotation
is

arel⊥ = 2ω × v. (27)

For the low reference frame velocities that occur during
the short time δt, the effects of length contraction and
time dilation will not enter the expressions for the per-
pendicular deviations (to lowest nonzero order). There-
fore we can add the effect of rotation to the effects of cur-
vature and acceleration. The generalization of Eq. (12) is

9



ω

δx

Figure 16: A particle (the black dot) moving along a ro-
tating straight line (depicted at two successive time steps
– the dashed and the solid line), as observed relative to
an inertial system S. Relative to S the particle trajectory
(the dotted line) curves.

thus

arel⊥ = −g⊥ + 2ω × v + v2 n̂

R
. (28)

Here arel⊥ is the perpendicular acceleration of the test
particle relative to the inertial system S.

Because the changes in the reference frame velocity
(as observed from the inertial system in question) are
perpendicular to the direction of motion, the derivative
of the speed will not be affected by the rotation. Thus we
can write the generalization of Eq. (21) as

1

mγ2
(γF‖t̂+F⊥m̂) = −g+2ω×v+γ2 dv

dt
t̂+

v2

R
n̂. (29)

Equation (29) relates the real received forces to both the
curvature and the speed change per unit time relative
to the accelerating and rotating reference frame. Note
that although g is minus the acceleration of the reference
frame, ω is the rotation vector of the reference frame.

As an application we consider a person walking on a
straight line through the center of a rotating flat merry-
go-round (in special relativity). The perpendicular force
experienced as he/she passes the center (where g is zero)
is given by Eq. (29) as

F⊥ = 2ω0vγ2. (30)

Here ω0 is the angular frequency of the merry-go-round.
Apart from the γ2 factor, Eq. (30) is the same as the cor-
responding equation in Newtonian mechanics. For points
other than the central point we must consider that the
proper rotation ω (as measured by an observer riding the
merry-go-round at the point in question) is different from
the rotation ω0 as observed from the outside.19

XII Discussion

On the left-hand side of Eq. (29) there are real forces
as experienced in a system comoving with the object in
question. On the right-hand side the first two terms mul-
tiplied by −m may be interpreted as inertial forces

Acceleration: mg, (31a)

Coriolis: − 2mω × v. (31b)

We might be tempted to denote the first term by “grav-
ity” rather than “acceleration,” but if we consider a ro-
tating merry-go-round as a reference frame, this term
would correspond to what is commonly called the cen-
trifugal force. To avoid confusion we therefore label this
term “acceleration.” For the second term the name Cori-
olis is obvious in analogy with the standard notation for
inertial forces in non-relativistic mechanics.

Note that what we call an inertial force is ambiguous.
For example, we could multiply the perpendicular part of
Eq. (29) by γ. By defining F = F‖t̂+F⊥m̂, we could then
simplify the left-hand side of Eq. (29) to F/mγ. However,
because of the γ-multiplication we would need to express
the g-term as a sum of a parallel and a perpendicular part
(with different factors of γ), thus creating two different
acceleration terms. There is is thus more than one way of
expressing Eq. (29), and identifying inertial forces, that
reduce to the Newtonian analogue by setting γ = 1.

We do not regard the last two terms on the right-
hand side of Eq. (29) as inertial forces, but rather as
descriptions of the motion (acceleration) relative to the
frame of reference. There are alternative interpretations;
see Ref. 10 for further discussion.

Note that dt is the local time (for the local reference
frame observers) and is related to the proper time dτ
for the particle in question by dt = γdτ . Equation (29)
is identical to the more formally derived corresponding
expression in Ref. 10.

We have considered accelerating and rotating refer-
ence frames, but not shearing or expanding reference frames.
The extension is straightforward for an isotropically ex-
panding reference frame, but for brevity we refer to Ref. 10.

In summary, we have seen how we can derive a for-
malism of inertial forces that applies to arbitrary rigid
reference frames in special and general relativity. Apart
from factors of gamma, the formalism is locally equal to
its Newtonian counterpart. We have also applied the in-
sights and formalism of this paper to various examples,
such as moving trains and submarines.

A A comment on static spacetimes,

index notation, and the optical

geometry

For the purposes of this article it is not necessary to dis-
cuss a formalism known as optical geometry. However, be-
cause the latter is the inspiration for this article and the
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formalisms are very similar, a comment is in order. The
index formalism (which distinguishes between covariant
and contravariant vectors) is vital for the comparison.

Suppose that we have a static spacetime with the line
element

ds2 = −e2Φdt2c + gijdxidxj . (A1)

We denote coordinate time by tc so as not to confuse it
with the local time of the reference frame which we denote
by t. Also, Latin indices are spatial indices running from
1–3. It is easy to show (see for example, Ref. 10, Appendix
E) that the acceleration of the freely falling frames for a
line element of this form is given by g = −∇Φ. We can
equivalently write this relation as gk = −gkj∇jΦ. For
later convenience we define F k

⊥ = F⊥mk, where mk is
a normalized spatial vector. If we use these results and
definitions, we can rewrite Eq. (15) as

F⊥

m
mk = [gkj∇jΦ]⊥ + γ2v2 nk

rel

Rrel

. (A2)

Here ⊥ means that we should select the part perpendicu-
lar to the spatial direction of motion tk. For a line element
such as Eq. (A1), the optical geometry (see for example,
Ref. 20 although a different sign convention for Φ is used)
is given by a rescaling of the standard spatial geometry

g̃ij = e−2Φgij . (A3)

We thus stretch space by a factor e−Φ to create a new
spatial geometry. We may consider both metrics to live
on the same (sub)manifold. Relative to the rescaled ge-
ometry, the curvature of a given spatial (coordinate) tra-
jectory is in general different from that relative to the
standard spatial geometry. In particular, the spatial tra-
jectories of geodesic photons are straight with respect to
the optically rescaled space. It follows that the curvature
and curvature direction with respect to the rescaled (op-
tical) space gives how fast (with respect to the distance
along the trajectory) and in what direction a trajectory
deviates from that of a geodesic photon. This curvature
and curvature direction thus correspond to the relative
curvature and curvature direction introduced in Sec. V
and Sec. IX, except that the deviation and the distance
along the trajectory are now rescaled. The optical spatial
curvature R̃, the optical curvature direction ñk, and the
optically normalized direction of the perpendicular force
m̃k for a certain (coordinate) trajectory are related to
Rrel, nk

rel, and mk by21

R̃ = e−ΦRrel (A4a)

ñk = eΦnk
rel (A4b)

m̃k = eΦmk. (A4c)

If we use g̃ij = e2Φgij , we may rewrite Eq. (A2) as (mul-
tiply the entire expression by e2Φ)

F⊥

m
eΦm̃k = [g̃kj∇̃jΦ]⊥ + γ2v2 ñk

R̃
. (A5)

Note that because the covariant derivative acts on a scalar
(in contrast to a vector for example), we have ∇̃j = ∇jΦ

(although ∇̃jΦ = e2Φ∇jΦ). By comparing Eq. (A5) with
the more general (and more formally derived) correspond-
ing equation in Ref. 10, we have a perfect match.22 In
covariant form (lower indices with g̃ij) Eq. (A5) becomes
slightly more compact:

F⊥

m
eΦm̃k = [∇̃kΦ]⊥ + γ2v2 ñk

R̃
. (A6)

Because m̃k = e−Φmk, the left-hand side of Eq. (A6) can
be expressed as F⊥k/m. On the other hand, the left-hand
side of Eq. (A5) can be written as F k

⊥e2Φ/m. Expressed in
these forms, but using the boldface vector notation, the
right-hand sides of Eq. (A5) and Eq. (A6) are identical
and the left-hand sides differ by a factor e2Φ. We hence
understand the hazard of using the bold face vector nota-
tion, at least if we use vectors that naturally “belong” to
two different metrics in the same expression. As Eqs. (A5)
and (A6) are written, only vectors belonging to the opti-
cal geometry are used, and we could use vector notation
after all.

The parallel part of Eq. (21) in index notation (for
the line element in question and a static reference frame)
takes the form

1

mγ
F‖t

k = [gkj∇jΦ]‖ + γ2 dv

dt
tk. (A7)

Here we have dt = eΦdtc. We use the latter relation,
rewrite the tensors in terms of their rescaled analogues,
multiply the entire expression by e2Φ, and add it to Eq. (A5).
The result is

eΦ

m

(F‖

γ
t̃k+F⊥m̃k

)

= g̃kj∇̃jΦ+γ2 dv

dtc
t̃k+γ2v2 ñk

R̃
. (A8)

Equation (A8) is the inertial force formalism in terms
of the optical geometry. Again it agrees with the corre-
sponding equation of Ref. 10.23

B Some basic concepts

This appendix is included for readers with little or no
background in differential geometry or Einstein’s theory
of gravity.

Curvature. Consider a curved path on a plane. At any
point along the path we can find a circle that is precisely
tangent to the path and whose curvature matches that
of the path (see Fig. 17). At any point along the curve
we can thus introduce a curvature direction n̂, a unit
vector, and a curvature radius R as shown. The greater
the curvature, the smaller the curvature radius. For paths
that are not in a plane we can locally match a circle
to every point along the path and define the curvature
direction and curvature radius analogously. Note that the
curvature direction n̂ is always perpendicular to the path.
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n̂

R

Figure 17: A path on a plane always corresponds locally
to a circle as far as direction and curvature are concerned.

Spatial geometry. Consider a symmetry plane through
a black hole. For the purposes of this article we may il-
lustrate the black hole as a black sphere (see Fig. 18).

Figure 18: A symmetry plane through a black hole.

If we could walk around on the plane and measure
distances, we would notice that the distances would not
match those we would expect from a flat plane. Rather,
the apparent geometry would be as that depicted in Fig. 19.
In particular, we would note that as one walks outward
from the surface of the black hole, the circumference
would initially hardly change. Although the geometry of
the curved surface corresponds to the geometry of the
symmetry plane, the symmetry plane neither curves up-
ward nor downward in reality. Distances on the plane are
as if the plane curves as depicted in Fig. 19.

Figure 19: Sketch of the apparent geometry of a symme-
try plane through a black hole. The innermost circle is at
the surface of the black hole.

Straight lines as geodesics. On a curved surface we can
determine if a line is straight or curved at a certain point
by looking at the line. We position our eye somewhere on
an imagined line extending from the point in the direc-
tion of the normal to the surface, and look down along
this imagined line at the surface. If the line on the surface
looks straight, it is straight. If the line looks curved, it

is curved. A line that everywhere, as seen from the lo-
cal normal, looks straight, is known as a geodesic. For a
spherical surface like the surface of the Earth, the equator
is a geodesic.

For a line that is not straight, we can introduce a
curvature direction and a curvature radius by considering
how fast and in what direction the line deviates from a
corresponding straight line on the surface, analogous to
the definition for flat surfaces.

In Einstein’s theory of relativity, the motion of parti-
cles whose motion is determined by gravity alone corre-
sponds to geodesics in curved spacetime. For the purposes
of this article it is sufficient to know that a geodesic par-
ticle is a particle that is free to move as gravity alone
dictates. Examples are a dropped apple or a flying can-
nonball (assuming that we neglect air resistance). In gen-
eral relativity there is no gravitational force, but there are
forces such as air resistance. These forces cause objects
to deviate from the motion determined by gravity.

The equivalence principle can be formulated as fol-
lows: At any point in space and time we can introduce
freely falling coordinates relative to which special relativ-
ity holds. As an example we consider an elevator whose
support cables have just snapped at the topmost level of
a high building. An observer dropping a coin inside the
elevator will note that the coin will float in front of him. If
he tosses the coin, he will note that the coin moves away
from him on a straight line with constant speed just as it
would if the elevator was in outer space where there is no
gravity and special relativity holds. We can alternatively
say that being in an elevator at rest on Earth is equiv-
alent to being in an accelerated elevator in outer space
(see Fig. 20).

(a) (b)

Figure 20: Dropping an apple inside an elevator on Earth
gives the same motion relative to the elevator as drop-
ping it inside a (properly) accelerated elevator in outer
space. In both cases we can introduce an inertial (ficti-
tious) gravitational force – but there is (in either case)
no real gravitational force (in Einstein’s theory).

It is a standard technique of Einstein’s general the-
ory of relativity to first understand how a scenario will
work relative to a freely falling frame where everything
is simple, and then express the result with respect to the
coordinates that really interest us. These freely falling
frames are however not falling relative to a flat spatial
geometry. For the particular case of a symmetry plane of
a static black hole (see Fig. 18), we can imagine the freely
falling frames (a coordinate grid in this case) to be falling
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relative to the curved geometry depicted in Fig. 19. How
fast the freely falling frames accelerate depends on the
position (the radius). At spatial infinity the acceleration
is zero and at the horizon it is infinite. The idea is illus-
trated in Fig. 21.

Figure 21: A coordinate system accelerating (falling) rel-
ative to the curved spatial geometry of a black hole.

The depicted freely falling frame coordinate lines are
geodesics24 on the curved surface. With respect to the
falling coordinate grid a free particle, that is, a particle
whose motion is determined by nothing but gravity, will
move in a straight line. This law of motion applies to all
free particles, including free photons. Because the freely
falling system is accelerating relative to the spatial ge-
ometry, the paths of free particles will curve relative to
the spatial geometry. The fact that the spatial geometry
is curved does not complicate the analysis as far as this
paper is concerned. The point is that locally we can al-
ways consider the geometry to be flat. Living on a small
patch of the curved surface is like living in an accelerated
reference system in special relativity. It is only when we
consider circles around the black hole that we need to
think about the spatial geometry to determine the cor-
rect curvature of the circular path. For instance, due to
the curved spatial geometry, the innermost circle (at the
surface of the black hole) is not curved at all.
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