151,723 research outputs found

    Planning and scheduling for robotic assembly

    Get PDF
    A system for reasoning about robotic assembly tasks is described. The first element of this system is a facility for itemizing the constraints which determine the admissible orderings over the activities to be sequenced. The second element is a facility which partitions the activities into independent subtasks and produces a set of admissible strategies for each. Finally, the system has facilities for constructing an admissible sequence of activities which is consistent with the given constraints. This can be done off-line, in advance of task execution, or it can be done incrementally, at execution time, according to conditions in the execution environment. The language of temporal constraints and the methods of inference presented in related papers are presented. It is shown how functional and spatial relationships between components impose temporal constraints on the order of assembly and how temporal constraints then imply admissible strategies and feasible sequences

    Assembly planning in cluttered environments through heterogeneous reasoning

    Get PDF
    Assembly recipes can elegantly be represented in description logic theories. With such a recipe, the robot can figure out the next assembly step through logical inference. However, before performing an action, the robot needs to ensure various spatial constraints are met, such as that the parts to be put together are reachable, non occluded, etc. Such inferences are very complicated to support in logic theories, but specialized algorithms exist that efficiently compute qualitative spatial relations such as whether an object is reachable. In this work, we combine a logic-based planner for assembly tasks with geometric reasoning capabilities to enable robots to perform their tasks under spatial constraints. The geometric reasoner is integrated into the logic-based reasoning through decision procedures attached to symbols in the ontology.Peer ReviewedPostprint (author's final draft

    Human inference beyond syllogisms: an approach using external graphical representations.

    Get PDF
    Research in psychology about reasoning has often been restricted to relatively inexpressive statements involving quantifiers (e.g. syllogisms). This is limited to situations that typically do not arise in practical settings, like ontology engineering. In order to provide an analysis of inference, we focus on reasoning tasks presented in external graphic representations where statements correspond to those involving multiple quantifiers and unary and binary relations. Our experiment measured participants' performance when reasoning with two notations. The first notation used topological constraints to convey information via node-link diagrams (i.e. graphs). The second used topological and spatial constraints to convey information (Euler diagrams with additional graph-like syntax). We found that topo-spatial representations were more effective for inferences than topological representations alone. Reasoning with statements involving multiple quantifiers was harder than reasoning with single quantifiers in topological representations, but not in topo-spatial representations. These findings are compared to those in sentential reasoning tasks

    Weak Lensing Tomographic Redshift Distribution Inference for the Hyper Suprime-Cam Subaru Strategic Program three-year shape catalogue

    Full text link
    We present posterior sample redshift distributions for the Hyper Suprime-Cam Subaru Strategic Program Weak Lensing three-year (HSC Y3) analysis. Using the galaxies' photometry and spatial cross-correlations, we conduct a combined Bayesian Hierarchical Inference of the sample redshift distributions. The spatial cross-correlations are derived using a subsample of Luminous Red Galaxies (LRGs) with accurate redshift information available up to a photometric redshift of z<1.2z < 1.2. We derive the photometry-based constraints using a combination of two empirical techniques calibrated on spectroscopic- and multiband photometric data that covers a spatial subset of the shear catalog. The limited spatial coverage induces a cosmic variance error budget that we include in the inference. Our cross-correlation analysis models the photometric redshift error of the LRGs to correct for systematic biases and statistical uncertainties. We demonstrate consistency between the sample redshift distributions derived using the spatial cross-correlations, the photometry, and the posterior of the combined analysis. Based on this assessment, we recommend conservative priors for sample redshift distributions of tomographic bins used in the three-year cosmological Weak Lensing analyses.Comment: 23 pages, 11 figures, 1 table, submitted to the MNRAS; comments welcom
    • …
    corecore