7,322 research outputs found

    A Survey on Spatial Indexing

    Get PDF
    Spatial information processing has been a centre of attention of research in the previous decade. In spatial databases, data related with spatial coordinates and extents are retrieved based on spatial proximity. A large number of spatial indexes have been proposed to make ease of efficient indexing of spatial objects in large databases and spatial data retrieval. The goal of this paper is to review the advance techniques of the access methods. This paper tries to classify the existing multidimensional access methods, according to the types of indexing, and their performance over spatial queries. K-d trees out performs quad tress without requiring additional memory usage

    The OTree: multidimensional indexing with efficient data sampling for HPC

    Get PDF
    Spatial big data is considered an essential trend in future scientific and business applications. Indeed, research instruments, medical devices, and social networks generate hundreds of petabytes of spatial data per year. However, many authors have pointed out that the lack of specialized frameworks for multidimensional Big Data is limiting possible applications and precluding many scientific breakthroughs. Paramount in achieving High-Performance Data Analytics is to optimize and reduce the I/O operations required to analyze large data sets. To do so, we need to organize and index the data according to its multidimensional attributes. At the same time, to enable fast and interactive exploratory analysis, it is vital to generate approximate representations of large datasets efficiently. In this paper, we propose the Outlook Tree (or OTree), a novel Multidimensional Indexing with efficient data Sampling (MIS) algorithm. The OTree enables exploratory analysis of large multidimensional datasets with arbitrary precision, a vital missing feature in current distributed data management solutions. Our algorithm reduces the indexing overhead and achieves high performance even for write-intensive HPC applications. Indeed, we use the OTree to store the scientific results of a study on the efficiency of drug inhalers. Then we compare the OTree implementation on Apache Cassandra, named Qbeast, with PostgreSQL and plain storage. Lastly, we demonstrate that our proposal delivers better performance and scalability.Peer ReviewedPostprint (author's final draft

    Optimizing Spatial Databases

    Get PDF
    This paper describes the best way to improve the optimization of spatial databases: through spatial indexes. The most commune and utilized spatial indexes are R-tree and Quadtree and they are presented, analyzed and compared in this paper. Also there are given a few examples of queries that run in Oracle Spatial and are being supported by an R-tree spatial index. Spatial databases offer special features that can be very helpful when needing to represent such data. But in terms of storage and time costs, spatial data can require a lot of resources. This is why optimizing the database is one of the most important aspects when working with large volumes of data.Spatial Database, Spatial Index, R-tree, Quadtree, Optimization

    Perspects in astrophysical databases

    Full text link
    Astrophysics has become a domain extremely rich of scientific data. Data mining tools are needed for information extraction from such large datasets. This asks for an approach to data management emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Moreover, clustering and classification techniques on large datasets pose additional requirements in terms of computation and memory scalability and interpretability of results. In this study we review some possible solutions

    Data Management and Mining in Astrophysical Databases

    Full text link
    We analyse the issues involved in the management and mining of astrophysical data. The traditional approach to data management in the astrophysical field is not able to keep up with the increasing size of the data gathered by modern detectors. An essential role in the astrophysical research will be assumed by automatic tools for information extraction from large datasets, i.e. data mining techniques, such as clustering and classification algorithms. This asks for an approach to data management based on data warehousing, emphasizing the efficiency and simplicity of data access; efficiency is obtained using multidimensional access methods and simplicity is achieved by properly handling metadata. Clustering and classification techniques, on large datasets, pose additional requirements: computational and memory scalability with respect to the data size, interpretability and objectivity of clustering or classification results. In this study we address some possible solutions.Comment: 10 pages, Late

    Location-based indexing for mobile context-aware access to a digital library

    Get PDF
    Mobile information systems need to collaborate with each other to provide seamless information access to the user. Information about the user and their context provides the points of contact between the systems. Location is the most basic user context. TIP is a mobile tourist information system that provides location-based access to documents in the digital library Greenstone. This paper identifies the challenges for providing effcient access to location-based information using the various access modes a tourist requires on their travels. We discuss our extended 2DR-tree approach to meet these challenges
    corecore