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Abstract—Spatial big data is considered an essential trend
in future scientific and business applications. Indeed, research
instruments, medical devices, and social networks generate hun-
dreds of petabytes of spatial data per year. However, many
authors have pointed out that the lack of specialized frameworks
for multidimensional Big Data is limiting possible applications
and precluding many scientific breakthroughs. Paramount in
achieving High-Performance Data Analytics is to optimize and
reduce the I/O operations required to analyze large data sets.
To do so, we need to organize and index the data according
to its multidimensional attributes. At the same time, to enable
fast and interactive exploratory analysis, it is vital to generate
approximate representations of large datasets efficiently. In this
paper, we propose the Outlook Tree (or OTree), a novel Multidi-
mensional Indexing with efficient data Sampling (MIS) algorithm.
The OTree enables exploratory analysis of large multidimensional
datasets with arbitrary precision, a vital missing feature in
current distributed data management solutions. Our algorithm
reduces the indexing overhead and achieves high performance
even for write-intensive HPC applications. Indeed, we use the
OTree to store the scientific results of a study on the efficiency of
drug inhalers. Then we compare the OTree implementation on
Apache Cassandra, named Qbeast, with PostgreSQL and plain
storage. Lastly, we demonstrate that our proposal delivers better
performance and scalability.

Index Terms—multidimensional indexing, distributed data
store, High-performance computing

I. INTRODUCTION

Many authors [1] [2] [3] [4] pointed out how multidimen-

sional and spatial big data will be an essential part of future

scientific and business applications. In particular, Eldawy et

al. [1] described how we are entering the “Era of Big Spatial

Data”, with a single space telescope generating up to 150

GB of spatial data per week [5], medical devices producing

spatial images at a rate of 50 PB per year and social networks

managing billions of geo-tagged events per day. However, as

described in Section V, the lack of specialized frameworks

dealing with dimensional and spatial data limits applications,

and probably, precludes many scientific breakthroughs, as most

of the existing algorithms are designed for unidimensional

problems and are suboptimal in high dimensional spaces.

Scientific simulations, IOT sensors, and various business

applications generate complex data sets where multiple corre-

lated characteristics describe each item. For instance, a particle

might have a space position (x,y,z) at a given time (t). If we

want to find all the elements within a particular area at a given

time, we either have to scan the whole dataset, or we organize

and group the items according to their space coordinates

and time. The second approach is called Multidimensional

Indexing (MI). While uni-dimensional indexing on large data

sets is widely adopted in many sectors, MI differs because

multidimensional points lack an intrinsic natural order, and

therefore all indexing techniques which rely on ordering data

cannot be directly applied. An alternative approach is to reduce

the dimensions’ granularity and combine them in a unique,

distinct value. Many databases use this approach, but it only

works well when the data distribution is mostly uniform and

does not change with time. For instance, if we split a city

map into quadrants of one km squared size, and we create a

file for each quadrant containing the names of the restaurants

and shops in that area, the data will be unbalanced, and

some files will be larger, but still, none of them will be

unmanageable. However, if we use the same approach to track

the position of people, we will see that the files whose areas

match with stadiums, concert halls, and shopping malls will

be much larger than others, with a distribution that changes

over time, or day and night. To overcome these limitations,

Multidimensional Indexes take care of adapting the way data

is partitioned following its statistical distribution, even when

it changes over time.

On the other side, approximate analytics has often been

indicated [6][7] as a smart and flexible way to interactively

explore large data sets in a short period, as it allows to test

and to try different hypothesizes rapidly. Still, if we want to

reduce the number of I/O operations, we need efficient data
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sampling, which means that the index layout allows fetching

data in incremental uniform samples until we gather the full

dataset. In such a way, we can stop the query when we retrieve

a large enough sample, or we achieve the desired accuracy.

In contrast, traditional approaches require scanning the whole

index in order to generate a random sample.

To our knowledge, none of the existing solutions com-

bines scalable Multidimensional Indexing and efficient data

Sampling (MIS). We consider such a feature fundamental

when dealing with large data sets, as it enables more flexible

data pipelines, and new types of interactive analysis and data

exploration. For instance, in scientific computation, these two

features combined enable interactive exploration and visual-

ization with any arbitrary level of precision the outcomes of

physics simulation, even when the simulation is still running,

This paper presents our work toward a novel peer-to-peer,

distributed MIS indexing schema that can be applied to both

HPC and data analytics workloads. First, Section II introduces

the topic of multidimensional indexes and describes our previ-

ous contribution, the D8tree. We present the key concepts, the

criticalities, and analyze its limits. As a result of the analysis,

Section III proposes the OutlookTree and its implementation

in Qbeast, our distributed indexing system built on top of

Apache Cassandra. Section IV discusses how we tested the

performance of our solution by using Qbeast to store and

index in real-time the simulation results of Alya[8], an in-

house HPC-based multi-physics simulation code designed to

simulate highly complex problems and efficiently run on high-

end supercomputers. In this section, we also compare Qbeast

against PostgreSQL and plain file storage on GPFS in write

throughput and performance of exploratory queries. Finally,

Section V, presents a summary of the existing related works,

while in Section VI we present our conclusions.

II. BACKGROUND

There are three main categories of multidimensional index-

ing algorithms: Space partitioning indexes like the QuadTree

and the KD-Tree, Binary Tree evolutions such as the R-tree

and its variant, and B+-trees that use space-filling curves to

map the n-dimensional space to a scalar value. While the

three approaches have their strengths and limitations, they all

rely on a hierarchical tree structure, which is not trivial to

distribute and to maintain across multiple machines without

significant drawbacks. There are three main approaches to

build a distributed index. Firstly, randomly partitioning the

data and building a separate index in each machine, but then

we need to broadcast each query to all nodes, nullifying the

scalability of the system. Secondly, assigning a zone partition

to each machine, leading to vulnerability to data hot-spots, and

re-balancing when the distribution of the data changes. Thirdly,

building a global index and randomly assigning each block of

the index to a server. A drawback is that all queries need to

start from the root node of the index; thus, all queries will

question the same single server, which becomes a bottleneck.

Furthermore, we need expensive operations like distributed

transactions and locks to preserve the consistency of the data

when building the index dynamically. The Quadtree is a good

example: first, create a space partition - a square -, and store

data inside. When the number of elements stored reaches a

threshold, split the partition into smaller equally-sized parts,

and move the data into them. During this phase, we lock the

partition, create the smaller squares in remote nodes, move

all the data into them, and finally release the locks. These

operations, while negligible in a multi-thread machine, are too

expensive in multi-servers deployments. Distributed locks are

not only an obstacle for system availability; they also increase

response latency and diminish throughput.

In previous contributions [9] [10], we presented the integra-

tion of Alya [8] and the D8tree, demonstrating the advantages

of interactive real-time exploration of large and long-running

simulations. The D8tree employs de-normalization to avoid

distributed transactions and to enable a uniform workload

distribution between the cluster nodes. The idea is to build the

index on a perfect 8-ary tree1 with a configurable maximum

height. Once they reach their maximum capacity, the nodes

only keep a sample of the data in the node’s domain. The

sample is built using a random hash generated by the item

identifier as the priority, so that when a node reaches its

maximum size, we drop the elements with the lower priority.

In this way, the children nodes contain a superset of the sample

contained in the father. In other words, if α is a sample of 1%

of the elements in a specific area, and β is a 2% sample in the

same space, all items found in α will be present in β as well.

This design ensures that the data is retrieved in incremental

uniform samples that are used to compose a statistically valid

preview of the final results and optimize the query execution.
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Fig. 1. A D8tree with depth 3 and partition max size = 1.

Figure 1 shows an example with three 2-dimensional points

- A, B, C - with decreasing priority stored into a 3-levels

D8tree with partitions that can contain one element at most.

Every new item goes into the smallest corresponding area in

the last level (e.g., “02” for A), and then it propagates to the

“father” (“0” for A). If the father has reached its limit, we

select the elements with a higher priority (A > B > C). We

can see that larger partitions have smaller sampling fractions.

For example, the root node “ ” contains only one of the three

that fall into is the domain(A). Similarly, partition “0” contains

half of them and “02” all the elements in its domain. In this

paper, we will alternately use the terms space partition and

n-cube (or only cube) to identify the n-dimensional subset

1A k-ary tree with all leaf nodes at the same depth. All internal nodes have
degree k.



of the domain. More formally, X is the domain of each n-

cube representing all the elements that can potentially be

stored in an n-cube, while the co-domain Y is the set of

elements that the partition actually contains. Finally, f is the

sampling fraction of each cube. Using the same example of

Figure 1, we can see how X, Y and f are correlated and how

f monotonically increases when the partition gets smaller.

f =
|X|

|Y |
: froot =

|{A}|

|{A,B,C}|
=

1

3
;

f0 =
|{A}|

|{A,B}|
=

1

2
; f02 =

|{A}|

|{A}|
= 1

The rigid structure of the D8tree allows choosing different

paths to complete a query. Let’s suppose we are interested

in all the data in the range 0.3 < x < 0.6 and 0.15 <

y < 0.40 (the dashed blue rectangle in Figure 1). We can

start from the root “ ” and then proceed further down after

analyzing what we found. Or we can directly go to level 1,

reading “0” and “2”, or to level 2 by issuing 4 requests for

“02”,“03”,“20”,“21”.

Such a design allows the D8tree to choose the right trade-

off between the level of parallelism, the overhead of multiple

requests, and the latency of multiple iterations. However, such

a level of freedom comes at the cost of a high-overhead

when building the index, making the D8-tree not feasible for

write-intensive transactional workloads, as it adds numerous

transactions and I/O requests for each insertion. As a result,

the use of the D8tree is limited to read-intensive applications

and slowly growing dataset, while it is unfit for write-intensive

scenarios like HPC applications. Indeed, as the D8tree gener-

ates a perfect 8-ary tree, it means that a 3D index with 10

levels might have up to
∑n=10

n=0
8n = 8

10+1
−1

8−1
≈ 1.2 ∗ 109

n-cubes, and an element can be replicated up to 10 times.

On a uniform distribution, the replication space overhead is

about 1

8
in a 3D index, and more generally 1

2D
for indexes of

D dimensions. However, the cost can be much higher in real

applications, as it strongly depends on the data distribution.

While the user can decide to limit the overhead at the expense

of the query speed by limiting the maximum index height, we

observed replication overheads ranging from 60% to one order

of magnitude [10].

In the D8tree, the replication benefits the query phase,

but not all the additional copies bring sufficient advantages.

Therefore, to understand how to change the D8tree without

penalizing queries, we must study where the replication gives

the most benefits. Replicating involves copying from one

partition to multiple smaller and randomly distributed ones.

Hence, when querying the index, we must find the optimal

compromise between the number of groups and the size of

their payload. Fewer but larger groups lead to higher latency,

and they tend to distribute unevenly across servers, causing

sub-optimal work distribution and parallelization. On the other

hand, many small requests have a higher computation over-

head. To this end, we used an analytical model we developed

in a previous contribution [11] to estimate the performance

of a distributed key-value database when varying the number

of servers and the size of the data partitions. The model

analyzes which architectural components limit the scalability

of distributed databases. Given the data type, the number of

nodes, the model predicts the maximum number of times that

replicating an index partition gives a benefit. The model shows

how the span-out of the D8tree’s nodes in multidimensional

spaces with three or more dimensions is sufficient to reach the

optimal level of parallelism in clusters with up to 10 thousand

nodes. As the fan-out correlates the density ( f ) of the area,

we should favor replicating the areas with a smaller sampling

size. To do so, we need a more general definition of the D8tree

that allows not only to change the max-height dynamically but

also to tune it for the different subparts of the dataset.

III. THE OTREE

Following the previous assumptions, we improved the orig-

inal D8tree design by replacing the global “index max-height”

with the idea that every single cube has its own “max-height”,

what we call the “outlook” (O). Instead of a single K-ary

unbalanced rooted tree, the OuTree is an unbalanced tree

composed of many locally balanced O-ary rooted trees. If cube

”A” has outlook K then all descendants at a distance ≤ K

exists, and each of them contains a copy of all the elements

of “A”’. This information can be used to build query plans, as

the outlook determines which nodes are directly visitable.

Definition III.1. The OTree is a K-ary unbalanced rooted tree

T(D) where D is the number of dimensions and where each

node can have up to K = 2D children. Each node has a domain

X , a co-domain Y and an overflow set F . The domain X is

the set of all elements contained in the Dth partition of the

parent’s domain, which is the KH th disjoint partition of the D-

dimensional space, with H indicating the distance between the

root and the given node. Each node contains Y ⊆ X elements.

The co-domain Y is a random uniform sample of X , where f

is the sampling fraction between the cardinality of the domain

X and the co-domain Y . The OTree guarantees that any node

is the root of a perfect K-ary tree with a local height equal to

the node’s outlook O. When a cube has O > 0, all elements in

its co-domain Y are also stored in the union of the co-domains

of the descendants in each of the O levels downwards. On the

other hand, when a cube has O = 0, the cube’s co-domain

might not be replicated. Thus, when the sampling fraction f

changes, the elements removed from the domain X go in the

overflow set F until they are forwarded to the descendants

when the cube’s outlook increases.

In particular, an OTree is said regular if every outlook is

O ≥ ⌈logK
1

f
⌉, and all cubes have F = ∅. Note that the D8tree

is a sub-case of the OTree where O = max height−H and

F 6= ∅ =⇒ L = max height.

A. Querying the OTree

Querying the OTree is similar to querying the D8tree with

the additional outlook constraint. Like the D8tree, every time

we visit a cube, we use the f of each cube to determine at



which level to jump, but we also need to ensure the jump is

shorter than the outlook, and to consider the items in F .

We achieve a better distribution by keeping in an in-memory

trie the outlooks of the top nodes so that queries can bypass

them. Instead of starting from the root, Queries can start closer

to the minimum bounding box (MBC) of the query, which is

the smallest index partition that can contain all the searched

information. Depending on the status of the index, the MBC

could be directly visitable,if and only if all ancestors have

O > 0, or not. Queries start from the MBC if it is visitable,

and it has O = 0, while we can directly visit its descendants if

0 is greater than zero. Where to start depends on the percentage

of data required by the query. If f = 1, the best approach is to

follow the outlook, while if f < 1, it is better to visit the first

ancestors that contain a large enough sample. For example, in

a 3D OTree, if a cube has f = 1

100
, and 0 = 3, but we need

only 5% of the data, we will go one level down, instead of 3.

In case the MBC is not directly visitable, we must find the

first ancestor that is visitable, and start from there.

Definition III.1 describes the characteristics that the index

must follow to ensure fast and interactive query analysis, but

it does not define how to build the index: how to decide the

outlook and the co-domain size of each cube.

B. A change of outlook

Tuning the outlook of each cube, the OTree uses less disk

space and transactions than the D8tree, as it “cuts” part

of the tree. However, as the outlook changes, so does the

index structure, and mutable structures are hard to keep both

consistent and performant in a distributed environment. To

increase the outlook of a cube, we must forward all its data

to its descending nodes. A straightforward implementation

would require distributed locks and transactions, similar to the

ones needed for the Quadtree, limiting the system scalability

and availability. For this reason, we designed and patented an

architecture that allows implementing the index and ensuring

data consistency without distributed locks while optimizing its

structure asynchronously.

The OTree can use various policies to update the outlooks,

but in this paper, we will focus on a strategy that we found

better fitting for scientific applications. Since the the analysis

of simulations often focuses on a few specific regions or

timestamps, we opted for a strategy that optimizes a part of

the index right after it has been queried. This straightforward

approach has two main advantages: it fits well with interactive

analysis, as we optimize only the parts of the index that has

interested the user; and it makes index optimizations cheaper

as the data is already in primary memory. We call this process

ReadOptimization (RO). Once an RO completes forwarding

the data of a cube to its descendants, we can increase the

outlook. Besides the component that manages ROs, a major

element of our indexing schema is the RangeEstimator, which

has three main duties. Firstly, it reduces the number of

transactions by avoiding to send a copy of the data to n-cubes

where it does not fit. Secondly, it ensures that the outlooks

are respected. Lastly, it avoids the loss of data during ROs. To

achieve its goals, the RE uses an in-memory data structure to

estimate in which nodes to insert the new items. At a higher

level, the RangeEstimator is a function that calculates from

which (rfrom) level and to which (rto) level new inserts should

propagate. The RE uses the unique identifier of each element

to generate a random priority that is used to estimate where a

new element can fit. It starts from the root comparing f and

the priority of the element. If f if smaller, the update does

not fit, and the process iteratively continues until it finds the

first child that can contain it (the rfrom). In the meantime,

the RangeEstimator calculates up to which level it should

propagate the insertion; the value the rto.

To correctly calculate rto we must respect the outlooks of all

nodes and ensure that no update is lost during ROs. Figure 2

shows an example of a Lost Update that can occur in any

tree-based indexing algorithm when we have a node that has

reached its maximum size, and we have to break it into new

sub-partitions. The problem is that we risk losing data when

concurrently reading and updating the index without a lock. In

the image, the “splitter” process reads items from “..212” and

assigns them to either “..2121” or “..2122”, but if a concurrent

insertion goes into node “..212”, it will be propagated to the

children nodes, resulting in an inconsistency.

..212

..2121 ..2122

splitter

t=0.1 read  

t=0.2 writes

t=0.2 insert

new 

nodes

Fig. 2. Possible Lost Update during copy.

Using exclusive locks avoids inconsistency, but it puts on

hold all operations on part of the index. To prevent such

unsustainable performance cost, we designed a protocol that

allows lock-free data copy and index evolution. When ingest-

ing new data, our system builds a OTree with O = 0 that it

is faster to write but less efficient to query. Later, after each

query, as we have already retrieved data from the disk, we

perform a background ReadOptimization that redistributes the

data, speeding up future queries.

During ROs, the RangeEstimator preserves the consistency

of the whole system by timely updating the rto so that all

new items propagate to the new children. Using the example

in Figure 2, we ensure that while the splitter is copying the

data from “..212” to its offspring, the RE sends all concurrent

new insertions also to “..2121” and “..2122”. In the meantime,

queries must be unaffected by running ROs, and the outlook

must not increase prematurely. To do so, we “announce” to

all database nodes that we are going to replicate an n-cube.

If all nodes acknowledge the announcement before we read

the cube, we can optimize it. To ensure this mechanism, we

identify four evolutional states of n-cube. All nodes start in the



leaf state. Then, when a node reaches its maximum capacity,

and it contains only a fraction of its domain (f < 1), it evolves

to full. When we decide a cube could be optimized, its state

evolves to announced. Finally, once an RO eventually redis-

tributes the data of a cube, it becomes replicated. The state is

defined by three variables: the sampling fraction f ; the time of

the announcement acknowledgment (announcement time);

the outlook 0 tracking the number of R0s occurred.

C. Metadata consistency

Databases achieve high-performance aggregating disk ac-

cesses and keeping metadata about the data distribution and

indexes in memory so that each query requires less than one

I/O operation on average. In the case of the OTree, all nodes

need to know the global status of the index, so we must

ensure the metadata does not outgrow the memory of a single

machine. At the same time, strict metadata consistency is

expensive in distributed environments as it requires master-

slave architecture, or guaranteed message delivery or consen-

sus mechanisms like Paxos [12] to coordinate and propagate

updates. To alleviate these problems, we studied how to reduce

the requirements of precision and consistency of the metadata

so we can use approximate data structures and unreliable

communication to reduce the memory footprint and latency.

To preserve the index consistency, the Range Estimator must

ensure that the estimated values (the ones with theˆ) obey the

following inequalities with the real values:

ˆrfrom(u) ≤ rfrom(u) (1)

r̂to(u) ≥ rto(u) (2)

Indeed, a smaller ˆrfrom causes data to propagate to a cube that

cannot accommodate it, and it will be filtered out eventually.

A larger r̂to will insert the element in a node where it is not

reachable by any query yet, a temporary waste of space that a

background process will eventually fix. In both cases, no data

is lost, and consistency is guaranteed.

We use two different functions to calculate ˆrfrom and r̂to.

We define the estimator of rfrom, as:

ˆrfrom(u) = min {Hc : ∀c|Xc ∋ u ∧ p(u) ≤ f̂cj} (3)

f̂c ≥ fc (4)

where Hc is the height of the cube c and p(u) is the priority

of item u. On the other hand, the estimator of rto is:

r̂to(u) = max {Hc : ∀c ∋ u ∧ c ∈ R̂)}, R ⊆ R̂ (5)

R = {c : Oc > 0 ∨ c ∈ A} (6)

where R is the replication set containing all cubes where

updates must propagate to respect the outlooks. A is the set of

all announced cubes that we might optimize in the near future.

Thanks to this formulation we can implement f̂ by keeping

in memory only an arbitrary subset of the f values and

defaulting to 1 in case of a miss. For instance, we can keep

the smallest f values, as they ensure the greatest I/O savings.

Similarly, we can use for R̂ any approximate membership

structure like the Bloom Filters so that we can arbitrarily

reduce the memory footprint at the cost of a higher indexing

overhead. Differently, we might violate Inequality (5) if we

miss a cube announcement in this case. Thus we must ensure

all announcements are delivered.

At the same time, to speed up queries and to achieve

uniform workloads, we need the outlooks so that we can

jump directly to the required part of the index. In this case,

the estimated Ô must be smaller than the real one so that a

query might require more iterations, but it will never miss an

update (Ô ≤ O). Similarly to f , also O has a monotonical

(but increasing) tendency. Therefore, we can keep in memory

an arbitrary large subset of the committed outlook to improve

query performance. Furthermore, the metadata required by R

and R̂ can partially overlap (6), thus reducing the overall

memory footprint. For instance, if cube “012” has O012 = 5,

we can avoid saving all cubes “012*****” in the approximated

membership structure used for the R̂. In a 3D index, this could

save 85 = 32768 entries.

In case of repeated or lost messages, the monotonical

tendency of both f and O makes trivial to rule out which

is the most updated value, enabling the use of faster but

less reliable communication protocols. On the other hand,

we must reliably ensure that all nodes agree that a node is

announced. At the moment, we use a naive implementation

where we broadcast the information to all peers, and we

require all peers to acknowledge. In case of loss messages or

unresponsive peers, the operation is dropped, and it is retried

in the future. In any case, there is no risk of inconsistency

or system unavailability. As future work, we will consider a

more efficient epoch-based approach, where announcements

organize in timeslots so that peers can aggregate multiple

updates in a single communication.

IV. OTREE TESTING

This section contains the tests we ran to validate the perfor-

mance of the OTree implementation of Qbeast. At first, we will

introduce the scalability results generated by an open-source

benchmarking tool. Secondly, we will discuss the performance

of a real HPC application using Qbeast, focusing on its

performance profile and the issues involved in integrating an

MPI based code with a TCP based database. Lastly, we will

propose a performance comparison of the time required to

run the HPC application using as storage Qbeast, Cassandra,

PostgreSQL, and a single file on GPFS.

We ran our tests at the Barcelona Supercomputing Center,

in MareNostrum IV supercomputer. Each server contains two

sockets with an Intel Xeon Platinum 8160 24C for a total

of 48 cores and 96GB of ram for each server. Nodes are

interconnected by a 100Gb Intel Omni-Path and a 10Gb

Ethernet [13]. We use the local SATA 240GB Intel s3520 SSD

scratch disk to store data. The disks are rated for sequential

reads and write up to 320, and 300 MB/s respectively, while

for random reads and writes up to 65000 and 16000 IOPS. We

used fio [14] to benchmark the IOPS of GPFS when writing

blocks of different sizes. The SSDs are 20 times faster for



blocks of 4KB, 15 times for 64KB, while the GPFS is more

than 5 times faster for large writes of 64MB.

Our first test aims to estimate the lower and upper bound

performance of our system. We configured database clusters

of increasing size, and we use numerous clients to perform

random insertions. We used a stress tool shipped with Cassan-

dra to benchmark the system, using twice as many machines

for the stress tool than the database. We performed random

insertions with a Gaussian distribution. We used the data

model of Alya, which consists of a particle identifier as the

partition key and the time as the clustering key. The rest of

the values are the x, y, z positions, speed, acceleration, and

other physical characteristics of the particles, for a total of 15

doubles and 3 integer numbers.

Fig. 3. Thousand of IOPS of Cassandra with 2 replicas vs Qbeast

Figure 3 shows the increase of performance when doubling

the number of nodes in a cluster of Cassandra with replication

set to 2, and with Qbeast storing data in the OTree and

the original table. The level of availability of Cassandra and

Qbeast in these settings is comparable. Indeed, the same hash

value that determines in which server to store an element in the

original Cassandra table, also represents the random priority

in the OTree. As each node has an assigned hash range, we

can query the OTree for the corresponding priority range to

recover the missing information if a node is not available. As

future work, we will modify the database partitioner to ensure

the original and the Otree tables are not co-allocated so that

we can achieve high-availability without additional replicas.

With two nodes, Cassandra and Qbeast perform very sim-

ilarly, achieving respectively ≈ 84K and ≈ 83K IOPS.

Cassandra and Qbeast approximately improve 80% when dou-

bling the nodes. The scalability is not linear as the replica is

synchronous, which adds latency and increases resource usage.

When using a fire-and-forget approach for the replica, we have

better scalability. However, to achieve linear scalability, we

need a smarter client that directly forwards the requests to the

correct node in the cluster, but that would require the client to

be aware (at least approximately) of the current index status,

which is an improvement that we plan as future work.

A. HPC integration

We use the OTree for a scientific use case that studies how

to improve the assumption of drugs with inhalers by using

Alya to simulate Lagrangian particles transported by fluids. A

nontrivial task is integrating an MPI based application with an

asynchronous TCP-based protocol. There are two main prob-

lems. The first is handling the asynchronous communication

with a high enough level of parallelism that can exploit the

distributed database and thus achieve excellent performance.

To this end, we used the C version of Hecuba [15] an

HPC oriented library that we develop in our research group.

Hecuba allows efficient use of NoSQL databases in MPI

oriented applications by taking care of all the callback and

asynchronous management of messages.

In a physics simulation, it is common to split the space into

smaller parts so that each worker can focus on its domain.

After each timestamp, workers share information regarding the

particles that moved from a domain to another. The downside

of such an approach is that particles may concentrate on the

specific area during part of the simulation. In our drug inhalers

study, we used Alya to simulate the flow of particles from the

inhaler’s nose to the human bronchi. Therefore, the experiment

starts with all drug particles residing in a limited area with

consequentially an initial unbalanced workload between nodes.

To improve I/O without penalizing the full execution, we

used a hybrid approach introducing an additional data shuffling

step between workers on the same node, so that each worker

participates equally in the writing process, taking better ad-

vantage of all available CPU resources. Using shared memory

is a sub-optimal solution, but it serves the scope of our tests as

the general goal is to reduce the number of synchronizations

required for I/O. In the future, we will investigate more flexible

solutions such as the integration with dynamic scheduling

framework or more CPU friendly communication protocols.
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Fig. 4. Net I/O time for 1000 steps with different backends.

Figure 4 reports the net time Alya spent performing I/O with

different backends when increasing the number of workers.

There are several insights we can gather from these results.

First, we shall note that Qbeast can store and index data faster

than the GPFS can write into a not-indexed CSV file. As the

reader may be surprised by such a result, we should clarify that



Alya uses a master-slave approach to output data into an ASCII

file, which is arguably not the most efficient format. However,

alternatives such as MPI/IO are not a perfect solution either.

Indeed, the number of particles changes during the simulation

as they might either deposit or move to another domain, thus

making infeasible to use of Hyperslabing. Alternatively, each

worker could write independently in a different file, but then

a second phase of merging and reassembling the results is

required. In any case, the point is not that our system is

generally faster than file storage, but that when applications

require specific file structures to facilitate analysis, our system

can compete, if not be faster, then mere files. Another notable

result is that time required for I/O for one Qbeast node or

eight is not proportional as the I/O time of Alya remains

approximately constant when varying the number of workers.

Such behaviour suggests that either in the MPI3 shuffling or in

the database communication, there is a performance bottleneck

that we will investigate in future works.

Figure 4 also shows that PostgreSQL is considerably slower

while ingesting writes and that its speed decreases when

increasing the number of concurrent actors. For a fair compari-

son, we used the same MPI3 shared memory approach, scratch

SSD and prepared statements for PostgreSQL. To improve the

throughput, each worker commits only after storing the full

timestamp, not after each insertion as in Cassandra. In such

a way, the PostgreSQL driver can optimize the writing of the

single particles.
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Fig. 5. Response time: Qbeast vs. PostgreSQL.

To evaluate the read performance, we selected three typical

queries that scientists use when exploring the result of our

particle inhalation problem. At first, scientists need to have

an overall view of the whole simulation. Secondly, a relevant

query is to see which particles deposited in a specific area of

the nasal cavity, the olfactory region, where drugs get absorbed

faster. Lastly, it is interesting to check how the particles get

expedited from the nozzle of the inhaler.

Given the size of the areas of interest, we will gather only a

sample of the data. More precisely, a sample of 0.01% of the

whole simulation, while 1% of data in the other two queries.

In the following, we will identify the queries as “all 0.01%”,

“olfactory 1%”, “inhaler 1%”. With such configuration, the

three queries return 20, 27, 200 thousand results respectively.

Figure 5 compares the response time of different configu-

rations of Qbeast and PostgreSQL. We analyze two status of

the OTree: when all nodes of the OTree have O = 0, and

when the OTree is optimized, and thus it has the same query

performance of the D8tree. In the case of PostgreSQL, we

can either use a 3D or a 4D secondary index. We can see how

Qbeast always outperforms PostgreSQL with the optimized

OTree. Also, even with the not-optimized OTree, Qbeast is

faster than the PostgreSQL on two queries out of 3.

speedup RO runs iterations cube visited

All 0.01% 24.51 6 2 10
Olfactory 1% 6.34 10 19 19
Inhaler 1% 2.37 8 61 61

TABLE I
QBEAST SPEEDUP AFTER FEW ReadOptimizations.

Table I shows how the OTree improves after multiple Read-

Optimizations. The table shows how many ReadOptimizations

run before increasing the outlook of the part of the index

interested in the three queries. It is crucial to note an RO

execution for one query most likely benefits also others, thus

reducing the overall number of RO required to achieve optimal

performance. The table also reports the different speedup

we can achieve in the three queries, ranging from 24.51 X

improvement to a “mere” factor 2.37. In query “All 0.01%”

we have the highest speedup as we benefit the most from the

efficient sampling of the OTree. In terms of disk usage, a D8tee

built on this dataset requires to replicate each item 5.29 times

on average, while the optimized OTree only 1.14.

V. RELATED WORK

Simion et al. [16] discussed in their work “The Price

of Generality in Spatial Indexing” how re-using existing

solutions for one-dimensional indexing in spatial applications

leads to sub-optimal performance in PostgreSQL. Kornacker

et al. [17] reached a similar conclusion analyzing the use of

generalized indexes in DB2/Common Server. Again, Eldawhy

and Mokbel[1] elaborated a comprehensive survey of the

existing solutions for big spatial data, and they described all

existing approaches and their relative limitations. In particular,

they showed that few solutions target dynamic indexing, and

they only work for small point queries. To our knowledge, our

system is the first that combines multidimensional indexing

and efficient data sampling, but there are related works that

target either the first or the second goal. Typically, approximate

analytics achieves speed by relaxing the precision of the results

within a specific interval of confidence, either via statistical

“synopses” descriptors (e.g., wavelets, histograms, sketches...

) or analyzing uniform random samples of the data. The second

approach is preferable, as it enables complex queries such as

joins, filters, and all types of aggregations. An example of a

query engine with efficient sampling is BlinkDB [7], which

extends Apache hive to build samples of large data sets in a

batch fashion; thus, it does not support real-time indexing as

Qbeast does.



Several works as HGRID[18], MD-HBASE[19] and the

KR+-index[20], have proposed different alternatives on how

to combine both Quadtrees, Kd-trees, and R-trees with hybrid

approaches where different indexes are used globally and

locally, but none of these works support efficient sampling,

and they do not solve the issue related to the change of

data distribution and item popularity over time. Alternatives

approaches, like the Quadboost [21], focus on multi-thread

parallelism but they do not target distributed system. Regard-

ing sampling geographic data sets, Sharma et al. [22] address

how a randomized thinning algorithm for sets of points can

respect the constraints of Visibility, Zoom Consistency, and

Adjacency if we assign to each item a number - a priority

- independently and uniformly at random. We use a similar

approach, but we improve the index creation allowing the

update of the index and query it in real-time while they use a

batch approach.

VI. CONCLUSION

In this paper, we presented the OTree, a novel multidi-

mensional index with efficient data sampling that runs on

distributed key-value databases. We described our previous

solution, the D8tree, and its limits dealing with write-intensive

applications, and we studied how to reduce its transactional

and storage requirements without compromising query perfor-

mance. As a result, we proposed the OTree, which achieves

high indexing speed by building at first a sub-optimal structure

that gets opportunistically optimized in the background. We

tested the performance and the scalability of the OTree, and

we described its use in HPC. In particular, we described

its integration with a medical use case simulation where we

demonstrated that the OTree is not only convenient for users,

but it also speeds up the execution, outperforming alternative

databases, and files stored on a parallel file system.

As future work, we will study how to improve the perfor-

mance of our system using adaptive query algorithms, pre-

dictive index optimization, and locality-aware clients. Finally,

we believe a promising line of research is machine learning

algorithms that use the indexing and sampling capability of

the OTree to reduce the I/O requirements and speed up

convergence.
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