135,085 research outputs found

    Spatial Data Management Challenges in the Simulation Sciences

    Get PDF
    Scientists in many disciplines have progressively been using simulations to better understand the natural systems they study. Faster hardware, as well as increasingly precise instruments, allow the construction and simulation of progressively advanced models of various systems. Governed by algorithms and equations, the spatial models at the core of simulations are changed and updated at every simulation step through spatial queries, implementing massive updates. Therefore, the efficient execution of these numerous spatial queries is essential. Two reasons render current spatial indexes inadequate for simulation applications. First, to ensure quick access to data, most of the spatial models in simulations are stored in memory. Most spatial access methods, however, have been optimized for use on disk and are not efficient in memory. Second, in every time step of a simulation, almost all spatial elements change their position, challenging update mechanisms for spatial indexes. In this paper we discuss how these challenges create opportunities for exciting data management research

    From Social Simulation to Integrative System Design

    Full text link
    As the recent financial crisis showed, today there is a strong need to gain "ecological perspective" of all relevant interactions in socio-economic-techno-environmental systems. For this, we suggested to set-up a network of Centers for integrative systems design, which shall be able to run all potentially relevant scenarios, identify causality chains, explore feedback and cascading effects for a number of model variants, and determine the reliability of their implications (given the validity of the underlying models). They will be able to detect possible negative side effect of policy decisions, before they occur. The Centers belonging to this network of Integrative Systems Design Centers would be focused on a particular field, but they would be part of an attempt to eventually cover all relevant areas of society and economy and integrate them within a "Living Earth Simulator". The results of all research activities of such Centers would be turned into informative input for political Decision Arenas. For example, Crisis Observatories (for financial instabilities, shortages of resources, environmental change, conflict, spreading of diseases, etc.) would be connected with such Decision Arenas for the purpose of visualization, in order to make complex interdependencies understandable to scientists, decision-makers, and the general public.Comment: 34 pages, Visioneer White Paper, see http://www.visioneer.ethz.c

    On-the-Fly Data Synopses: Efficient Data Exploration in the Simulation Sciences

    Get PDF

    Key challenges in agent-based modelling for geo-spatial simulation

    Get PDF
    Agent-based modelling (ABM) is fast becoming the dominant paradigm in social simulation due primarily to a worldview that suggests that complex systems emerge from the bottom-up, are highly decentralised, and are composed of a multitude of heterogeneous objects called agents. These agents act with some purpose and their interaction, usually through time and space, generates emergent order, often at higher levels than those at which such agents operate. ABM however raises as many challenges as it seeks to resolve. It is the purpose of this paper to catalogue these challenges and to illustrate them using three somewhat different agent-based models applied to city systems. The seven challenges we pose involve: the purpose for which the model is built, the extent to which the model is rooted in independent theory, the extent to which the model can be replicated, the ways the model might be verified, calibrated and validated, the way model dynamics are represented in terms of agent interactions, the extent to which the model is operational, and the way the model can be communicated and shared with others. Once catalogued, we then illustrate these challenges with a pedestrian model for emergency evacuation in central London, a hypothetical model of residential segregation tuned to London data which elaborates the standard Schelling (1971) model, and an agent-based residential location built according to spatial interactions principles, calibrated to trip data for Greater London. The ambiguities posed by this new style of modelling are drawn out as conclusions

    Advances and visions in large-scale hydrological modelling: findings from the 11th Workshop on Large-Scale Hydrological Modelling

    Get PDF
    Large-scale hydrological modelling has become increasingly wide-spread during the last decade. An annual workshop series on large-scale hydrological modelling has provided, since 1997, a forum to the German-speaking community for discussing recent developments and achievements in this research area. In this paper we present the findings from the 2007 workshop which focused on advances and visions in large-scale hydrological modelling. We identify the state of the art, difficulties and research perspectives with respect to the themes "sensitivity of model results", "integrated modelling" and "coupling of processes in hydrosphere, atmosphere and biosphere". Some achievements in large-scale hydrological modelling during the last ten years are presented together with a selection of remaining challenges for the future

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Modelling and simulating change in reforesting mountain landscapes using a social-ecological framework

    Get PDF
    Natural reforestation of European mountain landscapes raises major environmental and societal issues. With local stakeholders in the Pyrenees National Park area (France), we studied agricultural landscape colonisation by ash (Fraxinus excelsior) to enlighten its impacts on biodiversity and other landscape functions of importance for the valley socio-economics. The study comprised an integrated assessment of land-use and land-cover change (LUCC) since the 1950s, and a scenario analysis of alternative future policy. We combined knowledge and methods from landscape ecology, land change and agricultural sciences, and a set of coordinated field studies to capture interactions and feedback in the local landscape/land-use system. Our results elicited the hierarchically-nested relationships between social and ecological processes. Agricultural change played a preeminent role in the spatial and temporal patterns of LUCC. Landscape colonisation by ash at the parcel level of organisation was merely controlled by grassland management, and in fact depended on the farmer's land management at the whole-farm level. LUCC patterns at the landscape level depended to a great extent on interactions between farm household behaviours and the spatial arrangement of landholdings within the landscape mosaic. Our results stressed the need to represent the local SES function at a fine scale to adequately capture scenarios of change in landscape functions. These findings orientated our modelling choices in the building an agent-based model for LUCC simulation (SMASH - Spatialized Multi-Agent System of landscape colonization by ASH). We discuss our method and results with reference to topical issues in interdisciplinary research into the sustainability of multifunctional landscapes

    Actors and factors - bridging social science findings and urban land use change modeling

    Get PDF
    Recent uneven land use dynamics in urban areas resulting from demographic change, economic pressure and the cities’ mutual competition in a globalising world challenge both scientists and practitioners, among them social scientists, modellers and spatial planners. Processes of growth and decline specifically affect the urban environment, the requirements of the residents on social and natural resources. Social and environmental research is interested in a better understanding and ways of explaining the interactions between society and landscape in urban areas. And it is also needed for making life in cities attractive, secure and affordable within or despite of uneven dynamics.\ud The position paper upon “Actors and factors – bridging social science findings and urban land use change modeling” presents approaches and ideas on how social science findings on the interaction of the social system (actors) and the land use (factors) are taken up and formalised using modelling and gaming techniques. It should be understood as a first sketch compiling major challenges and proposing exemplary solutions in the field of interest
    corecore