
Spatial Data Management Challenges in the Simulation

Sciences

Thomas Heinis, Farhan Tauheed, Anastasia Ailamaki
Data-Intensive Applications and Systems Laboratory,

´

Ecole Polytechnique Fédérale de Lausanne, Switzerland

{thomas.heinis,farhan.tauheed,anastasia.ailamaki}@epfl.ch

ABSTRACT
Scientists in many disciplines have progressively been us-
ing simulations to better understand the natural systems
they study. Faster hardware, as well as increasingly pre-
cise instruments, allow the construction and simulation of
progressively advanced models of various systems.

Governed by algorithms and equations, the spatial mod-
els at the core of simulations are changed and updated at
every simulation step through spatial queries, implementing
massive updates. Therefore, the e�cient execution of these
numerous spatial queries is essential.

Two reasons render current spatial indexes inadequate for
simulation applications. First, to ensure quick access to
data, most of the spatial models in simulations are stored in
memory. Most spatial access methods, however, have been
optimized for use on disk and are not e�cient in memory.
Second, in every time step of a simulation, almost all spatial
elements change their position, challenging update mecha-
nisms for spatial indexes.

In this paper we discuss how these challenges create op-
portunities for exciting data management research.

1. INTRODUCTION
Many scientists today across di↵erent disciplines no longer

solely study a phenomena in vitro or in natura. Instead, to
better understand the phenomena, they simulate it in large-
scale computing clusters or supercomputers. Simulating the
phenomena allows them to develop a better understanding of
it by testing and refining their hypothesis through a cycle of
building a spatial model, simulating it, analyzing its output,
refining the model, and finally simulating it again.

Increasingly precise instruments, high-throughput anal-
ysis technology (e.g., shotgun proteomics), abundance of
computational power and an ever better understanding of
the phenomena, enables the development of increasingly de-
tailed spatial models. Neuroscientists involved in the Blue
Brain project (BBP) [19], for example, have started to simu-
late parts of the rat brain at the molecular level and will soon

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

move to the subcellular level (e.g., modeling the neurotrans-
mitter). Material scientists in the computational solid me-
chanics lab (LSMS) and the Swiss Super Computing Center
(CSCS) are currently building and simulating progressively
detailed models of material deformation and meteorological
phenomena. Similarly, other fine-grained models across vari-
ous disciplines are being developed, for example, the human
arterial tree [9] in computational fluid dynamics research,
earthquakes [1] in geology and protein synthesis [25] in com-
putational biology research.

During the simulation, the spatial models located in the
main memory of the simulation infrastructure are accessed
and updated using spatial queries for two crucial applica-
tions. First, spatial queries are needed to compute the model
at each simulation step, for example, in n-body simulations
in physical cosmology [5] the position of each celestial object
at time step ti+1 has to be computed based on the gravita-
tional field (and thus the locations) of its neighbors at time
step ti. Second, the running simulation needs to be analyzed
at runtime, for purposes of statistical analysis, visualization
etc., and consequently spatial queries need to be executed
at every time step to retrieve a subset of the model.

For both applications, updating the model and monitor-
ing the simulation, a vast number of spatial queries need to
be executed at every step of the simulation. Known spa-
tial indexes can significantly help to speed up queries on
the models, yet two factors render state-of-the-art indexes
inadequate:

Spatial Indexes In Main Memory: Spatial models
at the core of simulations are stored in the main memory
of the simulation infrastructure. Current spatial indexes,
however, have been optimized for use on disk and minimize
disk access because data transfer dominates query execution
time in disk-based indexes. In memory, however, the time
for data transfer is comparatively small and, to speed up
query execution, computation needs to be reduced.

Massive Changes: Numerous simulations change the
entire spatial model at every time step. Although the loca-
tion change of each element is minimal for most elements,
almost all of them change position. This rate and magnitude
of change challenges current spatial indexes’ update mecha-
nisms, which are designed for only small (position and num-
ber of elements) or predictable changes. New data structures
supporting e�cient large-scale updates need to be designed
for the simulation sciences.

Both factors require a redesign of spatial indexes for the
simulation sciences, therefore the remainder of this paper
discusses the research challenges of simulation scientists iden-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/147999355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

tified in our work. First, further background on simulation
applications is given and then the challenges are discussed
in detail by illustrating them with concrete examples. We
demonstrate the shortcomings of today’s solutions and we
sketch possible research directions. Although the two chal-
lenges are analysed separately, they are not mutually ex-
clusive and we will ultimately have to develop indexing ap-
proaches to address both challenges in unison.

2. SPATIAL DATA IN SIMULATIONS
Simulations have become a standard tool for the detailed

study of a natural phenomena by domain scientists. In the
following, we first give an overview of simulations and then
discuss the central role that spatial data and queries play.

2.1 Simulation Background
Computer simulations are typically used to study the be-

havior of systems so complex that they can no longer be
solved analytically. Given a model and an initial state, sim-
ulations calculate and approximate the subsequent states of
the model in discrete time steps (see Figure 1). The di↵er-
ence of state between two time steps is calculated based on
the two core parts of a model, namely a) the elements (each
of which has a state) and b) the interactions between ele-
ments. For example, in an n-body simulation from cosmol-
ogy the celestial bodies are the elements whose gravitational
fields are the interactions between them. The interactions
are typically modeled with di↵erential equations that can-
not be solved analytically and hence have to be numerically
approximated during simulation.

Analysis(
Queries(

Mul.tude(of(
Analysis(&(Update(

Queries(
.me(

MONITOR(SIMULATION(MONITOR(SIMULATION(

Time(step(

Figure 1: Timeline of a time-stepped simulation.

The state of a simulation is usually kept in the memory
of the simulation infrastructure because accessing the disk
is too slow. E�cient data structures required to access and
to query the state in memory for monitoring (visualization,
online validation etc.) and updating the model (computing
the state of the next time step) are consequently key. Given
the high number of queries and their repeated execution in
every time step, optimizing the execution time of the queries
is crucial to speed up the entire simulation. As Figure 1
shows, during the simulation phase analysis/update queries
are executed to update the model and during the monitoring
phase analysis queries are executed to monitor the progress
of the simulation.

2.2 Spatial Queries
In many simulations like n-body simulations in cosmol-

ogy, earthquake simulations and others the model at the
core is spatial, i.e., the elements of the models have spatial
attributes (a position). The thousands of queries used to
update and analyze the model at every step of the simula-
tion consequently are spatial queries executed on the model
stored in main memory. In the following we discuss the most
important spatial queries used in the context of simulations.

Range Queries: Executing spatial range queries on the
model during simulation is crucial for several applications:
e.g., for the local analysis of tissue density in neuroscience
models and the analysis of deforming alloy in material sci-
ences. The most important application that needs to execute
range queries is the in-situ visualization of the progressing
simulation. For visualizations, as well as analyses, thousands
of range queries need to be executed between two simulation
steps at locations that cannot be anticipated.

Nearest Neighbor Queries: Computing the nearest neigh-
bors of multiple points on the model is crucial in several use
cases. Material scientists, for example, need nearest neigh-
bor queries to simulate material deformation [2]: the posi-
tion of a vertex in the discretized material model at the next
simulation step is computed based on the force fields of its
nearest neighbors. Neuroscientists similarly need to deter-
mine the nearest neighboring neurons of a particular neuron
to simulate its deformation and to compute its shape (and
thus to build bio-realistic models).

Spatial Joins: In many simulations, intersection of the
elements in spatial models does not realistically reflect the
system modeled (celestial bodies, for example, cannot inter-
sect in reality). To detect intersections, the entire model
needs to be spatially joined with itself at every simulation
step. In other simulations, determining the proximity be-
tween elements (a distance or a spatial join) is an integral
part of the simulation result. Neuroscientists simulating the
co-growth of neurons, for example, need to perform a spa-
tial join to determine the location of synapses: wherever two
neurons are within a given distance of each other, they will
form a synapse to communicate with each other [17].

3. IN-MEMORY SPATIAL INDEXING
Simulation hardware, i.e., supercomputers, clusters, cloud

deployments, is becoming ever more powerful, both, in terms
of main memory capacity as well as CPU. The increasing
main memory in particular encourages scientists to build and
simulate bigger spatial models. With bigger spatial models,
however, their organization in memory is crucial for the ef-
ficient execution of spatial queries.

3.1 In-Memory Challenges
Most of today’s spatial indexes are optimized to retrieve

as little data as possible from the index. Doing so for disk-
based indexes is crucial because the vast majority of time is
spent on retrieving data from disk as an experiment shows.
In this experiment we index a dataset of 200 million spatial
elements with an R-Tree and execute 200 queries with a se-
lectivity of 5⇥ 10�4% at random locations. As the result in
Figure 2 shows, 96.7% of the total time is spent on reading
data from disk in case of the disk-based R-Tree. Past re-
search on disk-based spatial indexes has therefore primarily
focused on reducing the number of pages read from disk.

Executing the same experiment in memory, the execution
time drops from 2253 seconds on disk to a mere 40 seconds.
More importantly, however, is the shift of cost demonstrat-
ing the optimization potential: in memory, as little as 3.3%
of the overall time is spent on reading data while compu-
tations (intersection tests, following pointers etc.) take the
vast majority, i.e., 95.3% of the overall time. Clearly, re-
ducing the data read still helps to speed up query execu-
tion. The far bigger potential, however, lies in optimizing
the computation.

4.7

96.7

95.3

3.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R-Tree in Memory

R-Tree on Disk

Reading Data Computations

Figure 2: Query execution time breakdown of the

R-Tree in memory and on disk.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

R-Tree in Memory

Reading Data Intersection Tests Tree
Intersection Tests Elements Remaining Computation

Figure 3: Query execution breakdown of the R-Tree

in memory.

Breaking down the time spent on computations further
shows the proportion of time spent on intersection tests.
Intersection tests are necessary to (a) test if elements indeed
intersect with the query range and (b) to navigate through
the tree structure of the R-Tree. As Figure 3 shows, most of
the time (around 80%) is spent on performing intersection
tests. 55% of the time are spent on intersection tests in the
tree structure of the R-Tree.

The large share of intersection tests with inner nodes of
the tree demonstrates the overhead of using tree structures
to access the data. Overlap of inner nodes clearly leads to an
increase in the number of intersection tests, but even without
it, the overhead of intersection tests is considerable and this
small scale experiment (simulations use substantially bigger
datasets) shows the limitations of approaches that need tree
structures to find elements.

The share of intersection computations testing the inter-
section of single elements with the query, however, is also
considerable with 25% of the overall time. Clearly, the num-
ber of intersection tests needs to be minimized.

The exact experimental setup can be found in Section A.

3.2 State of the Art
Most spatial indexing approaches developed in the last

decades have been developed for disk. As a consequence,
all their data structures are aligned for the disk page size
and are designed to minimize the data read from disk. Ar-
guably the most seminal data structure developed for disk
is the R-Tree [10] which, by using a tree structure to access
the spatial data, supports the execution of a broad range of
spatial queries (range query, kNN query, spatial join etc.).

The R-Tree, however, also has inherent problems that con-
siderably degrade its performance, namely overlap of the
inner nodes of the tree structure and dead space [28]. Nu-
merous extensions (Priority R-Tree, R*-Tree, R+-Tree, etc.
see survey [8]) reduce the overlap and hence improve perfor-
mance, but the fundamental problem of overlap remains [28].

Because of its popularity, the R-Tree is one of the few
disk-based spatial indexes which has also been optimized for
memory. The resulting CR-Tree [16]) optimizes the R-Tree
for use in memory by making the nodes fit into a multiple
of the cache block through compression, pointer reduction
and quantization of the bounding boxes. Optimizing it for
memory, however, only speeds up query execution by a fac-
tor of two over the R-Tree as experiments [16] show because
the fundamental problem of overlap remains unaddressed.

Other spatial indexing approaches used in memory are
point access methods like the KD-Tree [4], the Quadtree [24]
and the Octree [14]. Supporting volumetric objects with
these indexes can be accomplished by replicating elements
which occupy several partitions on the leaf level. However,
by doing so, the index size is increased massively. Other
extensions avoid replication by increasing the size of the
partitions (e.g., loose Octree). Bigger partitions for space-
oriented approaches, however, introduce substantial over-
lap and therefore increase unnecessary child traversals (and
comparisons) similar to the R-Tree.

Several approaches have been conceived for joining spatial
datasets on disk [15]. Most of them can also be used in mem-
ory but will perform suboptimal because they are designed
to minimize disk access but not the number of comparisons
(the major bulk of work for in-memory spatial joins [21]).
Until recently only the nested loop join and the sweep line
were specifically designed for use in memory. Judging that
neither is e�cient, we designed TOUCH [21], which outper-
forms both as well as disk-based approaches used in memory.

3.3 Research Directions
To develop new in-memory spatial indexes for the simula-

tion sciences (and for spatial datasets in memory in general),
we have to rethink indexes and build on key insights drawn
from previous work and ideas developed in this paper.

First, using disk-based approaches to index and query spa-
tial data in memory leads to an ine�cient use of memory
caches and hence degraded performance. Indexes used in
memory must be optimized for memory hierarchies by mak-
ing the size of their nodes a multiple of the cache block
size [12]. Node sizes substantially smaller than used on disk
(on disk sizes 4KB or bigger are typically used) achieve good
performance (between 640Bytes and 1KB [31]). In this sense
the CR-Tree [16] is a step in the right direction. Optimizing
the size of the data structures, however, will not improve
performance considerably because the data transfer is only
a small fraction of the overall time.

Second, and most importantly, as the experiment in Fig-
ure 3 shows, a considerable share of the total time is spent on
traversing the tree. Hierarchically organized tree structures
needed to find elements should thus be avoided. Organizing
the data as a tree is only needed if the data is partitioned non
uniformly, i.e., using data-oriented partitioning (R-Tree) or
non-uniform space-oriented partitioning (Octree).

Third, data-oriented partitioning for the execution of range
queries in memory is unnecessary. Partitions resulting from
data-oriented partitioning can be very big (extend massively
in one or several dimensions) while still grouping spatially
neighboring elements. As Figure 4 shows, a range query in-
tersecting with such a partition may contain only few of the
partition’s elements, yet all elements need to be tested for
intersection [13], leading to unnecessary intersection tests.
This degrades performance particularly in memory where

intersection tests account for the majority of time.

Query

Figure 4: A range query intersecting with narrow

partitions (shaded) leads to unnecessary tests.

Data-oriented partitioning is an artifact of disk-based in-
dexes: by using non-uniform partitioning in all dimensions,
one can ensure that each partition (and also inner nodes)
fits on exactly one disk page. The latter ensures that disk
pages are almost entirely filled and no disk bandwidth is
wasted retrieving partially empty pages. In memory, how-
ever, there is no abstraction of a page size, only the much
smaller (typically 64Bytes) cache line that gives consider-
ably more flexibility (underfilling a cache line incurs a much
smaller penalty). Data-oriented partitioning in memory is
hence only useful to avoid replication of elements.

Fourth and finally, potential improvements like compres-
sion as proposed for the CR-Tree [16] will not significantly
improve performance: the data transfer is only a small frac-
tion of the overall time and reducing data size will not give
a major improvement of the total time. Also, the gain for
reading less data is unlikely to o↵set the additional overhead
required for decompression [13].

One direction to develop novel spatial indexes for main
memory may be to use a single uniform grid and therefore to
avoid the tree structure needed for access [26]. Choosing the
proper resolution, however, is di�cult: a too coarse grained
grid means that too many elements need to be tested for
intersection. This is a particular problem for kNN queries
where all elements of (potentially several) partitions need to
be tested to find the k nearest elements.

Clearly, the optimal resolution depends on the distribu-
tion of location and size of the spatial elements and an an-
alytical model needs to be developed to determine it for a
given dataset. The optimal resolution, however, also de-
pends on the size of the queries which cannot be known a
priori. A solution to the resolution challenge may thus be
to use several uniform grids each with a di↵erent resolution:
queries may be split and each part (or the whole query) is
executed on the grid with the best suited resolution.

A possible approach for kNN queries could be to use local-
ity sensitive hashing (LSH, e.g., [3]). LSH has traditionally
been used for similarity search in very high dimensions but
can potentially also be used for finding nearest neighbors in
low dimensions. Crucially, LSH avoids a tree structure to or-
ganize the data and instead uses several (spatial) hash func-
tions to index each spatial element. Di�cult to implement
e�ciently on disk, LSH’s hash buckets can also easily be
optimized for use in memory by making them cache-aware,
i.e., by aligning the hash buckets for a multiple of the cache
line.

Recent work [21] for the spatial join in memory consider-
ably reduces the number of comparisons needed and there-
fore speeds up the process. The proposed method, however,
depends on a costly data-oriented partitioning & indexing
step prior to the join. An approach based on a grid (similar
to PBSM [15]) optimized for memory may not necessarily
speed up the join, but will certainly speed up the prepro-

cessing/indexing and thus the overall join.

4. MASSIVE UPDATES
In many simulations the entire spatial model undergoes

massive changes in each step. The changes are massive in
that they a↵ect a vast majority of the elements, but most
elements only move minimally. In neural plasticity simula-
tions, for example, all elements change position in every step
of the simulation, yet each element only shifts minimally.

4.1 Massive Update Challenges
The majority of spatial indexes today support the execu-

tion of updates e�ciently. In case the entire dataset changes,
however, update mechanisms are no longer e�cient and it
is often cheaper to rebuild the entire index [27]. The rate
of change may challenge the use of indexes in this scenario
altogether. Depending on how many queries are executed,
rebuilding an index may no longer pay o↵ as the cost cannot
be amortized over enough queries and using no index, i.e., a
linear scan over the dataset, may be faster.

The changes in an neural plasticity simulation, for ex-
ample, are massive yet minimal as an experiment shows. In
each of the one thousand simulation steps in a sample run of
a neural simulation, all elements move, but only by 0.04µm
(in a universe with volume of 285µm3) on average with less
than 0.5% of elements moving more than 0.1µm. Updat-
ing all elements of this application in an R-Tree takes 130
seconds at every simulation step. Building the new R-Tree
index from scratch, on the other hand, only takes 48 seconds.
For this experiment updating only is faster than a rebuild
if less than 38% of the dataset change in a time step. The
experimental setup is described in Section A.

More e�cient update mechanisms particularly devised for
quick changing data (moving data) do not considerably im-
prove performance of the updates. One class of approaches
assumes predictability of the movement of the elements.
In simulations the movement patterns, however, are unpre-
dictable and this class of approaches cannot be used. Other
moving object indexes avoid single updates by either batch-
ing them or by indexing them with looser bounding boxes.
While these indexes indeed reduce maintenance overhead,
overhead is shifted to query execution: in case of batched
and bu↵ered updates, the bu↵er and the index have to be
searched for every query and in case of loose bounding boxes,
every element has to be checked to see if it is indeed in the
query. Completely rebuilding indexes quickly becomes more
e�cient [27] than these update mechanisms as well.

For executing range queries (or similar spatial queries)
the linear scan can be very fast, depending on the number
of queries asked and in case many query can be batched to-
gether. The spatial join, on the other hand, always depends
on an index or similar data structure as the naive method
is not linear in the number of elements in the datasets, but
quadratic (nested loop join). Maintaining a data structure
supporting the spatial join will thus almost always pay o↵.

4.2 State of the Art
Although the majority of past approaches have been pri-

marily designed for disk, they can also be used in memory
and we consequently discuss all approaches.

Update strategies have been devised for almost all spa-
tial indexes. For the R-Tree, for example, several strategies
have been devised (through reinsertion of elements like the

R*-Tree [8] or with a bottom up approach [26]). If, however,
a majority of the objects need to be updated, rebuilding or
bulkloading the index is an e�cient alternative to updates [7,
27]. E�cient bulkloading methods have been developed for
many spatial indexes like the Octree, the KD-Tree [4] or
memory optimized R-Trees [16]. Several bulkloading meth-
ods (see survey [8]) have been devised for the latter.

Update strategies to perform massive numbers of updates
for moving objects have also been devised [20]. A first class
assumes that moving objects have a predictable trajectory,
i.e., approximately constant speed and direction, and this
class thus only indexes the trajectory (STRIPES, TPR*-
Tree, TPR-Tree, see survey [20]). Updates are only needed
if speed or trajectory change. These approaches do not work
well for simulations because the movement of objects cannot
be predicted. The movement of objects is ultimately what
the simulation determines.

A second class does not assume predictability, but intro-
duces a grace window: instead of using a tight bounding
box, objects a packed in a looser grace window. With this,
the index does not have to be updated if a object only moves
in the grace window [18, 30], thereby reducing the number
of updates. Still updates are required frequently and, by in-
troducing an imprecision in the index structure, the burden
is shifted to the query execution where objects need to be
tested for intersection with the query [7, 27].

Bu↵ering the updates to reduce operations on the index [6]
similarly shifts the burden to query execution: when com-
puting the query result, bu↵er and index need to be checked,
thereby increasing the overhead.

Performing a complete linear scan over the dataset is the
most basic approach to compute the result of a range query.
While it has no memory overhead, query execution time will
not scale as it directly depends on the dataset size.

4.3 Research Directions
As we discussed previously, update mechanisms that need

more operations than there are elements are unlikely to out-
perform a simple linear scan. Key to any method to execute
massive updates e�ciently therefore is to avoid updating all
indexed elements.

A first research direction is to use indexes that predomi-
nantly depend on the dataset itself for query execution. The
dataset is updated by the simulation application anyway
and is always up to date. If an index uses the dataset di-
rectly, then it does not need to perform any updates. Similar
ideas have already been explored. DLS [22] uses an approxi-
mate index as well as the mesh connectivity to execute range
queries: the approximate index (which only needs to be up-
dated infrequently) is used to find a start point near the
query range and the mesh connectivity is used to a) find the
query range and b) to find all results in the range. DLS,
however, only works for convex meshes (without holes).

OCTOPUS [29] takes the DLS ideas into memory but also
supports concave meshes. To ensure that query execution
still retrieves the entire range query result in face of concave
meshes, OCTOPUS takes as start point several elements
on the surface. For datasets other than meshes, disk-based
FLAT [28] adds connectivity (neighborhood) information to
the dataset and then uses it to execute spatial queries (sim-
ilar to DLS or OCTOPUS). The same idea can potentially
also be used in memory.

A second direction is to exploit that the movements of

most elements are small. Although exploiting this charac-
teristic of the use case does not give impressive results with
R-Trees (QU-Trade, LUR-Tree), using grids will consider-
ably lower the overhead of updates. Clearly the small move-
ment means that only few elements switch grid cell in every
step, thereby requiring few updates to the data structure.

To perform the spatial join e�ciently on datasets with
massive changes, the join requires some form of index struc-
ture. Not using any index structure results in a nested loop
join with n2 comparisons. A data structure is clearly needed
to avoid unnecessary comparisons of objects that are far
apart from each other. The sweep line approach does not
ensure that only spatially close objects are compared [21].
Any other approach based on the R-Tree or similar index
(see survey [15]) su↵ers from update mechanisms that re-
quire substantially more operations than there are elements
in the dataset.

Using grids [26, 23] where objects are quickly assigned to
grid cells is an interesting research direction for the spatial
join as well. Only objects in grid cells need to be compared
with each other, thereby substantially reducing the compar-
isons. If, in addition, the size of the grid cells is chosen very
small, then pairs of elements do not need to be tested for
intersection: if the grid cell size is smaller than the small-
est element size, then objects in the same cell intersect by
definition. A grid cell size considerably smaller than the el-
ements, however, may also lead to excessive replication. In
this case, elements may not be assigned to all intersecting
cells, but elements in neighboring cells need to be compared
with each other to limit replication.

5. CONCLUSIONS
In this paper we identify two challenges that render to-

day’s spatial indexing approaches inadequate in the simula-
tion sciences. The gap between the current state of the art
and the need of the simulation scientists is already consid-
erable and will keep growing.

The ultimate goal in supporting the simulation sciences is
to develop a new class of spatial indexes that work e�ciently
in memory and can either be built easily and quickly or that
e�ciently support updates on a massive scale. Although
we presented the two challenges separately, the solutions to
them are not mutually exclusive at all. What is needed are
spatial indexes for memory that support large-scale updates.

The solution, i.e., reconciling approaches that tackle either
challenge, is a new point in the design space: a spatial index
that executes spatial queries and the spatial join faster than
without index, but at the same time is faster to update or
rebuild. Indexes in this new class are unlikely to execute
spatial queries faster than known spatial indexes, but their
build or update cost will be substantially smaller and hence
they will speed up the overall process (index building and
querying). The new indexes will ultimately trade o↵ query
execution time for substantially faster index build time.

As the discussion of research directions shows, an ap-
proach to address both challenges is likely to be based on
grids. As opposed to disk, grids are easy to implement e�-
ciently in memory. As we argued, they avoid a costly tree
structure and because they are based on space-oriented par-
titioning, they e↵ectively reduce the number of intersection
tests. At the same time, given the small positional changes
of spatial elements during simulation, only few updates are
needed to be performed, therefore also addressing the chal-

lenge of massive updates.
Clearly the simulation sciences face more challenges than

only the two we have identified. Many challenges center
around out-of-core model building, mining simulation re-
sults, optimizing data structures for new storage media (e.g.,
SSD) as well as challenges during simulation (e.g., in-situ
compression). The two challenges we discussed, however,
already o↵er exciting research opportunities in data man-
agement well beyond the examples we discussed. Tackling
these challenges will not only advance the state-of-the-art
in data management in general (other applications and do-
mains will benefit from e�cient in-memory indexes as well),
but will also help to advance simulation sciences.

APPENDIX
A. EXPERIMENTAL SETUP

The experiments are run on a Linux Ubuntu 2.6 machine
with 2 quad CPUs AMD Opteron, 64-bit @ 2700MHz, 4GB
RAM and 4 SAS disks (300GB each) striped to 1TB. We
use an available implementation of the STR R-Tree [11] and
set page and node size to 4K.

The dataset used contains 200 million spatial elements
(resulting in 9GB on disk) in a volume of 285µm3. The data
used is a neuroscience dataset representing 500’000 neurons
in space (each modeled with thousands of cylinders).

All experiments are run with an initially cold cache and
the cache is cleaned between any two queries. A more de-
tailed description of the dataset (structure) and the experi-
mental methodology can be found in [28, 29].

B. REFERENCES
[1] V. Akcelik, J. Bielak, G. Biros, et al. High Resolution

Forward And Inverse Earthquake Modeling on
Terascale Computers. Supercomputing ’03.

[2] G. Anciaux, S. B. Ramisetti, and J. F. Molinari. A
Finite Temperature Bridging Domain Method for
MD-FE Coupling and Application to a Contact
Problem. Computer Methods in Applied Mechanics
and Engineering, 205(0):204–212, 2012.

[3] A. Andoni and P. Indyk. Near-Optimal Hashing
Algorithms for Approximate Nearest Neighbor in High
Dimensions. Communications of the ACM, 51(1),
2008.

[4] J. L. Bentley. Multidimensional Binary Search Trees
Used for Associative Searching. Communications of
the ACM, 18(9), 1975.

[5] E. Bertschinger. Simulations of Structure Formation
in the Universe. Annual Review of Astronomy and
Astrophysics, 36(1):599–654, 1998.

[6] L. Biveinis, S. Šaltenis, and C. S. Jensen.
Main-memory Operation Bu↵ering for e�cient R-tree
Updates. In VLDB ’07.

[7] J. Dittrich, L. Blunschi, and M. A. Vaz Salles.
Indexing moving objects using short-lived throwaway
indexes. In SSTD ’09.

[8] V. Gaede and O. Guenther. Multidimensional Access
Methods. ACM Computing Surveys, 30(2), 1998.

[9] L. Grinberg, T. Anor, J. R. Madsen, A. Yakhot, and
G. E. Karniadakis. Large-scale Simulation of the
Human Arterial Tree. Clinical and Experimental
Pharmacology and Physiology, 36(2):194–205, 2009.

[10] A. Guttman. R-trees: a Dynamic Index Structure for
Spatial Searching. SIGMOD ’84.

[11] M. Hadjieleftheriou, May 2012.
http://www2.research.att.com/~marioh/spatialindex/.

[12] R. A. Hankins and J. M. Patel. E↵ect of Node Size on
the Performance of Cache-Conscious B+-trees.
SIGMETRICS ’03.

[13] S. Hwang, K. Kwon, S. Cha, and B. Lee. Performance
Evaluation of Main-Memory R-trees. In SSTD ’09.

[14] C. L. Jackins and S. L. Tanimoto. Oct-trees and Their
Use in Representing Three-dimensional Objects.
Computer Graphics and Image Processing, 14(3), 1980.

[15] E. H. Jacox and H. Samet. Spatial join techniques.
ACM TODS, 32(1):7, 2007.

[16] K. Kim and K. Kwon. Optimizing Multidimensional
Index Trees for Main Memory Access. SIGMOD ’01.

[17] J. Kozloski, K. Sfyrakis, S. Hill, F. Schürmann,
C. Peck, and H. Markram. Identifying, Tabulating,
and Analyzing Contacts Between Branched Neuron
Morphologies. IBM Journal of Research and
Development, 52(1/2):43–55, 2008.

[18] D. Kwon, S. Lee, and S. Lee. Indexing the Current
Positions of Moving Objects Using the Lazy Update
R-tree. In MDM ’02.

[19] H. Markram. The Blue Brain Project. Nature Reviews
Neuroscience, 7(2):153–160, 2006.

[20] M. F. Mokbel, T. M. Ghanem, and W. G. Aref.
Spatio-temporal Access Methods. IEEE Data
Engineering Bulletin, 2003.

[21] S. Nobari, F. Tauheed, T. Heinis, P. Karras,
S. Bressan, and A. Ailamaki. TOUCH: In-Memory
Spatial Join by Hierarchical Data-Oriented
Partitioning. In SIGMOD ’13.

[22] S. Papadomanolakis, A. Ailamaki, J. C. Lopez, T. Tu,
D. R. O’Hallaron, and G. Heber. E�cient Query
Processing on Unstructured Tetrahedral Meshes. In
SIGMOD ’06.

[23] J. M. Patel and D. J. DeWitt. Partition Based
Spatial-Merge Join. In SIGMOD ’96.

[24] H. Samet. The quadtree and related hierarchical data
structures. ACM Computing Surveys, 16(2), 1984.

[25] K. Y. Sanbonmatsu, S. Joseph, and C.-S. Tung.
Simulating movement of tRNA into the ribosome
during decoding. Proceedings of the National Academy
of Sciences, 102(44):15854–15859, 2005.

[26] D. Sidlauskas, S. Saltenis, C. W. Christiansen, J. M.
Johansen, and D. Saulys. Trees or grids?: Indexing
moving objects in main memory. In GIS ’09.

[27] B. Sowell, M. V. Salles, T. Cao, A. Demers, and
J. Gehrke. An Experimental Analysis of Iterated
Spatial Joins in Main Memory. In VLDB ’14.

[28] F. Tauheed, L. Biveinis, T. Heinis, F. Schürmann,
H. Markram, and A. Ailamaki. Accelerating range
queries for brain simulations. In ICDE ’12.

[29] F. Tauheed, T. Heinis, and A. Ailamaki. OCTOPUS:
E�cient Query Execution on Mesh Data. In ICDE ’14.

[30] K. Tzoumas, M. L. Yiu, and C. S. Jensen.
Workload-aware Indexing of Continuously Moving
Objects. In VLDB ’09.

[31] R. Zhang and M. Stradling. The HV-tree: a Memory
Hierarchy Aware Version Index. VLDB ’10.

