1,009 research outputs found

    The prospects of quantum computing in computational molecular biology

    Full text link
    Quantum computers can in principle solve certain problems exponentially more quickly than their classical counterparts. We have not yet reached the advent of useful quantum computation, but when we do, it will affect nearly all scientific disciplines. In this review, we examine how current quantum algorithms could revolutionize computational biology and bioinformatics. There are potential benefits across the entire field, from the ability to process vast amounts of information and run machine learning algorithms far more efficiently, to algorithms for quantum simulation that are poised to improve computational calculations in drug discovery, to quantum algorithms for optimization that may advance fields from protein structure prediction to network analysis. However, these exciting prospects are susceptible to "hype", and it is also important to recognize the caveats and challenges in this new technology. Our aim is to introduce the promise and limitations of emerging quantum computing technologies in the areas of computational molecular biology and bioinformatics.Comment: 23 pages, 3 figure

    Deployable Antenna for CubeSat

    Get PDF
    This project is a proof-of-concept ground model of a large deployable antenna designed for the small space requirements of CubeSats. This small deployment module is designed to fit a 2 m by 1 m reflective antenna inside a storage volume of with the dimensions 20 cm by 20 cm x 40 cm. The reflector will be deployed to a parabolic shape with the goal of modeling the reflector necessary for high frequency communication. Because this module is designed as a proof-of-concept for the deployable parabolic reflector specifically, no electrical components will be incorporated and will just focus on the deployment mechanism and will not be space grade. Because this module is designed as a first iteration, it has the potential to be built upon and improved by other groups in the future

    Privacy and Security Assessment of Biometric Template Protection

    Full text link

    Physics and Complexity

    Get PDF
    This paper is concerned with complex macroscopic behaviour arising in many-body systems through the combinations of competitive interactions and disorder, even with simple ingredients at the microscopic level. It attempts to indicate and illustrate the richness that has arisen, in conceptual understanding, in methodology and in application, across a large range of scientific disciplines, together with a hint of some of the further opportunities that remain to be tapped. In doing so it takes the perspective of physics and tries to show, albeit rather briefly, how physics has contributed and been stimulated.Comment: 20 pages. Commissioned for a special issue of Phil. Trans. Royal Soc. A to appear in 201

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    The Fifth NASA Symposium on VLSI Design

    Get PDF
    The fifth annual NASA Symposium on VLSI Design had 13 sessions including Radiation Effects, Architectures, Mixed Signal, Design Techniques, Fault Testing, Synthesis, Signal Processing, and other Featured Presentations. The symposium provides insights into developments in VLSI and digital systems which can be used to increase data systems performance. The presentations share insights into next generation advances that will serve as a basis for future VLSI design

    Simple universal models capture all classical spin physics

    Get PDF
    Spin models are used in many studies of complex systems---be it condensed matter physics, neural networks, or economics---as they exhibit rich macroscopic behaviour despite their microscopic simplicity. Here we prove that all the physics of every classical spin model is reproduced in the low-energy sector of certain `universal models'. This means that (i) the low energy spectrum of the universal model reproduces the entire spectrum of the original model to any desired precision, (ii) the corresponding spin configurations of the original model are also reproduced in the universal model, (iii) the partition function is approximated to any desired precision, and (iv) the overhead in terms of number of spins and interactions is at most polynomial. This holds for classical models with discrete or continuous degrees of freedom. We prove necessary and sufficient conditions for a spin model to be universal, and show that one of the simplest and most widely studied spin models, the 2D Ising model with fields, is universal.Comment: v1: 4 pages with 2 figures (main text) + 4 pages with 3 figures (supplementary info). v2: 12 pages with 3 figures (main text) + 35 pages with 6 figures (supplementary info) (all single column). v2 contains new results and major revisions (results for spin models with continuous degrees of freedom, explicit constructions, examples...). Close to published version. v3: minor typo correcte
    corecore