
 Deployable Antenna for CubeSat 

Final Design Review 

June 2, 2017 

Sponsor: Dr. Tomas Svitek 

Advisor: Professor Eileen Rossman 

 

  

 
 

 

 

 

 
 

Mack Lennon - mtlennon@calpoly.edu 

Caleb Barber - cabarber@calpoly.edu 

David Galvez - dmgalvez@calpoly.edu 

 

 

  



 

Statement of Disclaimer 
 

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment 

of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use 

of information in this report is done at the risk of the user. These risks may include catastrophic 

failure of the device or infringement of patent or copyright laws. California Polytechnic State 

University at San Luis Obispo and its staff cannot be held liable for any use or misuse of the 

project.



1 
 

 

Table of Contents 

Abstract…………………………………………………………………………………….....…...6 

Chapter 1. Introduction………………..………………………..…………………….….………..6 

 1.1 Sponsor Background and Needs………………………………………………………6 

 1.2 Problem Definition…………………………………………………………………….6 

 1.3 Objectives……………………………………………………………………………..6 

1.4 Project Management ……….……………………………………………………..…10 

Chapter 2. Background…………………………………………………....…………...………...11 

Chapter 3. Design Development ……………………………………………....…………...........16 

 3.1. Design Process………………………………………………………………………16 

 3.2 Concept Generation……………………………………………………………….....18 

 3.3 System Development……………………………………………………………..….22 

 3.4 Direction-Specific Deployment and Curvature Concept Development……………...25 

 3.5 Concept Evaluation and Selection…………………………………………………...29 

Chapter 4. Final Design……..…………………………………………………………….......…34 

 4.1 Design Overview………………………………………………………………….....34 

 4.2 Lengthwise Curvature Design……….…………………………………………….....35 

  4.2.1 Heat Treatment Design……….………………………………………..…..36 

  4.2.2 String Tensioner Design……………………………….………………..…38 

 4.3 Deployment Module……………………………..………………………………..…39 

 4.4 Design Assessment……………………………………………………………...…...43 

 4.5 Power Transmission and Motor Selection Assessment………..……………..….......45 

 4.6 Deployer Assessment………………………………………………………………...48 

 4.7 Deviation From Required Specifications………………………………………….....49 

Chapter 5. Product Realization……………………………………………………………...…...49 

 5.1 Manufacturing of Booms………………………………………………………...…..50 

 5.2 Manufacturing of Ribs…………………………………………………………...…..51 

 5.3 Manufacturing of Antenna Housing…………………………………………...…….53 

 5.4 Manufacturing of Various Deployer Housings………………………………...…….56 

 5.5 Manufacturing of Spool………………………………………………………...……58 

 5.6 Manufacturing of Shaft…………………………………………………………...….60 

 5.7 Manufacturing of Gears…………………………………………………………...…61 

 5.8 Mounting of Motors……………………………………………………………...…..63 

 5.9 Manufacturing of Mylar Reflector……………………………………………….......65 

 5.10 Components and Fasteners……………………………………………………..…..66 

 5.11 Assembly……………………………………………………………………………66 

 5.12 Final Prototype……………………………………………………………………...69 

 5.13 Cost Analysis ………………….…………………………………………..……….70 

 5.14 Maintenance and Repair…………………………………………………..………..71 



2 
 

 5.15 Safety Considerations ………………………………………………………..…….71 

 5.16 Resources and Timing………………………………………………………...…….71 

Chapter 6. Design Verification…..…………………………………………………………..…..72 

Chapter 7. Conclusions and Recommendations    …………………………………………...…..77 

References………………………………………………………………………………………..82 

Appendix A: QFD Diagram 

Appendix B.1: Planned Gantt Chart 

Appendix B.2: Actual Gantt Chart 

Appendix C: Design Safety Identification Checklist 

Appendix D: Design Verification Plan 

Appendix E: Materials Consulting Group Report 

Appendix F: BOM Including Cost Analysis, List of Vendors, and Contact Information 

Appendix G: Drawing Packet Including Vendor Supplied Component Specs and Data Sheets 

Appendix H: Detailed Supporting Analysis 

Appendix I: Operator’s Manual  

Appendix J: List of Edits from CDR to FDR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 
 

 

List of Figures 

Figure 1.  Boundary Sketch Showing Scope of the Project………………………………………7 

Figure 2. Radial Truss Support Structure Designed by Harris Corporation …………………….12 

Figure 3. Diagram of Deployable Telescoping Antenna….………………………………..........12 

Figure 4.  Synchronous Deployable Double Fold Beam and Planar Truss Structure……………13 

Figure 5.  Carousel Deployment Mechanism for Coilable Lattice Truss………………………..13 

Figure 6.  USC’s Aeneas Satellite Antenna, Circular Ribbed Mesh Design………………….…14 

Figure 7. Deployable Helical Antenna for Nanosatellite ………………………………………..16 

Figure 8. Design Process for Deployable Antenna…………………………………………...….18 

Figure 9. Brainwriting Example Sketches………………………………………………...……..19 

Figure 10. Building on Ideas During Brainstorming…………………………………………….20 

Figure 11. Developing the Shape of the Antenna………………………………………………..20 

Figure 12. Actual Size of a 2 m x 1 m Reflector Using Aluminum Foil………………………...21 

Figure 13. Hinged Boom Concept Model Folded and Deployed………………………………..21 

Figure 14. Expanding Truss……………………………………………………………………...22 

Figure 15. Telescoping Umbrella………………………………………………………………..23 

Figure 16. Tape Measure Rollout ……………………………………………………………… 23 

Figure 17. Scissor Lift Accordion………………………………………………………………..24 

Figure 18. “Blow-Out” Parachute………………………………………………………………..24 

Figure 19. Heat Treated Tape Measure Boom…………………………………………………...25 

Figure 20. Linear Boom, Ribbed Reflector……………………………………………………...26 

Figure 21. Cold Rolled Longitudinal Boom……………………………………………………..26 

Figure 22. Tensioned Springs and Cables………………………………………………………..27 

Figure 23. Preformed Fold-Out Ribs…………………………………………………………….27 

Figure 24. Spring Loaded Latitudinal Deployer………………………………………………....28 

Figure 25. Tape Measure Boom Latitudinal Deployer………………………………………......28 

Figure 26. Accordion Truss……………………………………………………………………...29 

Figure 27. Fully Deployed Reflector and Feed…………………………………………………..34 

Figure 28. Deployment Module Assembly…………………………………………………...….35 

Figure 29. Side-by-side Comparison of Final Design Variations………………………………..36 

Figure 30. CAD Model of the Boom Geometry………………………………………………....37 

Figure 31. CAD Model of the Deployed String Tensioner Design……………………………...38 

Figure 32. Exploded View of Module Housing Detailed Model.……………………………..…39 

Figure 33. CAD Model of Power Transmission Components.…………………………………..40 

Figure 34.  CAD Model of the Feed Deployment System…………………………………….....41 

Figure 35. CAD Model of the Mylar Reflector Embedded with Nitinol Ribs…………………..42 

Figure 36. CAD Model of the Lip Located at the Top of the Housing Exit………………….....43 

Figure 37. Static Test of Actual Tape Measure Deflection Using Coins as Distributed Load…..44 

Figure 38. MATLAB 3D Surface Plot of Overall Antenna Shape………………………………45 



4 
 

Figure 39. 26 RPM Mini Econ Gear Motor from ServoCity…………………………………….46 

Figure 40. CAD Model of the Boom Deployer Motor and Gear System………………………..47 

Figure 41. Deployer Casing…………………………………………………...............................48 

Figure 42. Testing Tape Measure Curvature Capabilities……………………………………….50 

Figure 43. Tape Measure Booms used for Vertical and Horizontal Deployment……………….51 

Figure 44. CAD Model of the Nitinol Rod Used as the Reflector Ribs…………………………52 

Figure 45. Assembled Mylar Reflector……………………………………………….………….52 

Figure 46. Mylar Collars………………………………………………………………………....53 

Figure 47. Manufacturing of Housing Plates….………………………………………………....54 

Figure 48. Exploded View of Storage Volume………………………………….……………….55 

Figure 49. Manufactured Housing and Stopper….……………………………………………....55 

Figure 50. Comparison of Deployer Housings…………………………………………………..56 

Figure 51. 3D Printed Deployer Housings….…………………………………………………....57 

Figure 52. Mounted Horizontal and Vertical Deployers…………………………………….......57 

Figure 53. Exploded CAD Model of the Deployer Casing and Spool…………………………...58 

Figure 54. Turning Spool on Manual Lathe…...………………………………………………....59 

Figure 55. Completed Spool…..………………………………………………………………....59 

Figure 56. 3D Polycarbonate Spool...…………………………………………………………....60 

Figure 57. Grinding of the Main Shaft...………………………………………………………....61 

Figure 58. Completed Main and Feed Shafts………………………………………………….....61 

Figure 59. Gear Rod Stock from McMaster-Carr………………………………………………..62 

Figure 60. Using Lathe to Drill………..………………………………………………………....62 

Figure 61. Completed Gears Mounted on Main Shaft and Motor….…………………………....63 

Figure 62. CAD Model of the Boom Deployer Motor Mount………………………………...…64 

Figure 63. CAD Model of the Feed Deployer Motor Mount…………………………………….64 

Figure 64. Completed Feed Motor Mount….…………………………………………………....65 

Figure 65. Rib and Boom position in Reflector………………………………………………….65 

Figure 66. Completed Nitinol Reflector………………………………………………………....66 

Figure 67. Completed Housing Assembly…………………………………………………….....67 

Figure 68. Fully-Extended Deployer Assembly………...…………………………………….....67 

Figure 69. Feed Deployer Assembly………………………………………………………….....68 

Figure 70. Power Transmission to Reflector Deployers...…………………………………….....68 

Figure 71. Final Manufactured Reflector and Deployer Prototype…..……………………….....69 

Figure 72. Final Prototype (Extended and Stowed)….……………………………………….....70 

Figure 73. Upside-Down Feed Deployment Test…….……………………………………….....73 

Figure 74. Initial Testing of Booms with String Tensioners………………………………….....73 

Figure 75. Side View of Folded Mylar Reflector….………………………………………….....74 

Figure 76. 3D Scanning the Reflector……………………………………………………..….....75 

Figure 77. Ideal vs. Actual Reflector Comparison…………………………………………........76 

 



5 
 

 

List of Tables 

Table 1. Engineering Specifications………………………………………………………………8 

Table 2. Pugh Matrix for Evaluating Boom Deployment Ideas……………………………...….30 

Table 3. Pugh Matrix for Deployment of Parabolic Curvature in Length Direction…………….31 

Table 4. Pugh Matrix for Deployment of Parabolic Curvature in Width Direction……………..31 

Table 5. Weighted Decision Matrix Evaluating Top Concepts………………………………….32 

Table 6. Summary of original requirements and testing results………………………………....77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



6 
 

 

Executive Summary 

 

This project is a proof-of-concept ground model of a large deployable antenna designed for the 

small space requirements of CubeSats. This small deployment module is designed to fit a 2 m by 

1 m reflective antenna inside a storage volume of with the dimensions 20 cm by 20 cm x 40 cm. 

The reflector will be deployed to a parabolic shape with the goal of modeling the reflector 

necessary for high frequency communication. Because this module is designed as a proof-of-

concept for the deployable parabolic reflector specifically, no electrical components will be 

incorporated and will just focus on the deployment mechanism and will not be space grade. 

Because this module is designed as a first iteration, it has the potential to be built upon and 

improved by other groups in the future.  

 

 

Chapter 1: Introduction 

 

1.1 Sponsor Background and Needs 

 

Stellar Exploration, Inc., is a small business focused on creating innovative low-cost aerospace 

and space exploration projects. As the demand for communications and surveillance satellites 

increases and the complexity of these devices requires larger structures, it is desirable to launch 

these products in smaller volume units to reduce transportation costs. In an effort to enter the 

niche aerospace market of low-cost space radar and surveillance technology, Stellar Exploration, 

Inc., needs the ability to deploy large, accurate antennas from small CubeSat volumes.  

 

1.2 Problem Definition 

 

Competitors have successfully deployed antennas from CubeSats, but the transportation package 

volume has limited the size of the antenna. Our challenge is to develop a mechanism that can be 

packaged in a CubeSat and successfully deploy a larger antenna than those in the current market 

without losing accuracy or range. Completion of our project will be a joint effort between our 

team, Stellar Exploration, Inc., our sponsor, Dr. Tomas Svitek, and our project advisor, Professor 

Rossman. Our goal is to have a fully-functioning prototype to test by May 2017.  

 

1.3  Objectives 

 

The overall goal of this project is to design the deployment of an impressively large parabolic 

antenna from a small CubeSat, and to provide Stellar Exploration, Inc., with a tested prototype 

which the company can then use to continue to test and develop for future implementation. The 

prototype will serve as a proof-of-concept for the antenna deployment but is not intended to go 

into space.  
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The prototype delivered by our team will be a ground model aiming to show the feasibility of a 

technique for deploying a parabolic antenna from a CubeSat, on the order of a few meters long 

and capable of communicating in the S-band frequency range. The prototype will not be required 

to be able to send and receive signals itself, but rather have the appropriate shape to do so. 

 

 As seen in the boundary sketch below, the scope of our project only includes the deployment 

module, consisting of the antenna reflector, supporting booms, antenna feed mount, and the 

housing for this unit. None of the electronics beyond any motors or actuators used are part of the 

scope of this project. The feed itself is also not in the scope, only the mount and input for the 

feed. 

 

 
Figure 1. Boundary sketch showing scope of the project. The antenna deployment unit of the 

CubeSat is circled and enlarged to show the details of fully-deployed antenna. Image of antenna 

provided by Stellar Exploration, Inc. 

 

 

In order to ensure that the prototype our team produces meets the customer’s requirements as 

best as possible, the “Quality Function Deployment” method, shown in Appendix A, was used to 

create a “House of Quality.” This tool matches each customer need with an engineering 

specification suited to meet that need, and then weighs each need to compare its relative 

importance. The diagram also compares the team’s goals for the final product against existing 

ideas from other competitors. Upon completing the “House of Quality” and examining the 

importance of and relationships between all requirements, a set of engineering specifications was 

developed and can be seen in the Table 1 below. The table provides clear definitions of the 

targets and will be used to determine how well the team’s design matches up with the customer 

requirements. The “Risk” column displays the level of risk associated with being able to meet 
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each requirement, with (H) indicating a high risk, (M) a medium risk, and (L) a low risk. The 

compliance column indicates how the design specification will be verified, with (A) for analysis, 

(T) for test, (S) for similarity to existing designs, and (I) for inspection. 

 

Table 1. Engineering Specifications 

Spec. # Parameter 

Description 

Requirement Tolerance Risk Compliance 

1 Size (one side) 2m x 1m (LxW) Min. M S, I 

2 Tolerance of 

Parabolic Reflector 

Shape* 

λ/20 

(0.5cm for a 

3GHz signal) 

Max. H A, T, S, I 

3 Deployment Power 

Consumption 

10 W Max. L A, T 

4 Stored Volume* 20 x 20 x 40 cm Max. H A, T, I 

5 Communication 

Capability* 

S-band (3 GHz) ± 1 GHz M A, T, I 

6 Type of Suppliers & 

Materials* 

0 customization Max. L I 

7 Weight 50 lbs Max. L T, I  

8 Resistance to Forces 

& Vibrations* 

50G acceleration Min. M A , T 

9 Operating 

Temperature Range 

20°C +40°C 

-80°C 

M A, T 

10 Budget / Cost $3000 Max. L I 

* Denotes a requirement that has since been relaxed or adjusted in some way due to the overall complexity of the 

project, which became more apparent in detailed design. See Chapter 4 Section 7 “Deviation from Required 

Specifications” for details. 

 

Each engineering specification is important to the success of the project. The size of the antenna, 

2 m x 1 m is meant to be for one side of the antenna. Figure 7 shows both sides of the antenna for 

a total of 4 m x 1 m of reflector area. We are only responsible for designing one side because the 

opposite side is the exact same. The tolerance of the parabolic reflector shape determines the 

accuracy of the signal that the antenna can receive. For many satellites and CubeSats, power 

consumption is very important, so the power consumption of our antenna has been limited to 

10W. The storage volume is the available volume allowed for the entire antenna system to fit in 

when stored. Communication capability is the types of signals the antenna will be able to pick 
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up. S-band is a stretch goal because of the tight tolerance required to achieve a good S-band 

satellite, yet it remains a goal due to the vast amount of applications that it can be used for. 

Ideally, this project would use exclusively commercial off the shelf components, which is the 

reason for the goal of zero customization. Because CubeSat launches are not dependent on 

weight, and instead depend on volume, the specification of weight has been given a large value 

of 50 lbs. There are many forces that the antenna must endure during launch, so it is important to 

make sure that it can resist these forces and still function correctly. The operating temperature 

range has been set at room temperature. We need to make sure that the antenna functions at room 

temperature for the ground model test, but we also need to analyze what happens at temperature 

up to + 60°C and down to - 60°C. The budget given to us by our sponsor is $3000. 

 

The team listed the tolerance of the parabolic shape of the reflector as well as the antenna’s 

stored volume as high risk requirements. The tolerance on the shape of the reflector means that, 

looking at the reflector in one direction at a time (length and width), the orthogonal distance 

between a point on the ideal parabolic curve and its corresponding point on the actual reflector 

curve must be within that tolerance. The shape tolerance of λ/20 for a target frequency of 3GHz 

is 0.5cm, which is a small tolerance for such a large reflector, and currently the team is not fully 

confident of how accurate of a shape it can produce. The team will continually assess the 

attainability of this goal as we strive to meet it. The stored volume was marked as high risk 

because of the difficult challenge presented in fitting a 2m x 1m reflector into 20 x 20 x 40cm of 

space.  

 

To verify that our final design meets the specifications put forth in the above table, the following 

tests and/or evaluations will be performed. 

● The size of the reflector will simply be measured along its width and length. 

● The tolerance of the parabolic shape, as well as the feed mount position, will be 

determined using the parabolic equation and an evaluation of the actual curvature, most 

likely via a 3-D scanning rig. 

● The power consumed during deployment will be calculated using the technical 

specifications of the datasheet for the motors/actuators used, and also measured 

electrically with a power meter. 

● The stored volume will simply be measured along the length, width, and height. 

● The communication capabilities of the antenna will be predicted by achieved size, shape, 

and shape tolerance of the reflector. 

● The team will review whether or not any custom parts have to be used. 

● The prototype will be weighed with a standard household scale. 

● The resistance to forces and vibrations will be calculated from the geometry and material 

properties with a stress analysis. If possible, a shake table may be used to test the 

prototype. 
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● The prototype will be designed (based on heat transfer analysis and material properties) 

for 20°C or room temperature. The behavior of the prototype will then be analyzed for 

other temperatures. 

● The team will keep track of all expenses and check the total against the $3000 limit. 

 

1.4  Project Management 

 

Several roles have been established in order to delegate responsibilities for each team member. 

In doing so we make sure that all responsibilities do not fall on one person, and that all team 

member have their fair share of duties.  

 

David Galvez will be the team communications officer. This position requires facilitating all 

contact between the team, the sponsor, and the advisor. Additional responsibilities include 

scheduling meeting with the project sponsor and enforcing deadlines imposed by the advisor 

and/or sponsor. 

 

Caleb Barber will act as the team secretary. The purpose of this role is to maintain the 

information repository for the team, i.e. team binder, Google Docs, references. Also, Caleb is in 

charge of the maintenance of important documents. These documents can include but are not 

limited to: parts drawings, sketches, and reports.  

 

Mack Lennon is tasked with the role of team treasurer. This position puts him in charge of all 

financial responsibility. In the unlikely chance that the team must travel, the treasurer will 

maintain the team travel budget. In addition, once the purchase of materials becomes necessary, 

Mack will maintain the budget for anything purchased as well as obtain and file all receipts 

associated with materials or travel. Mack will also be responsible for filing any paperwork 

regarding the team's finances.  

 

In addition to these administrative duties, each team member will be primarily responsible as the 

lead for certain technical aspects of the design. David, the analysis lead, is responsible for 

reviewing and approving on any analysis done to avoid miscalculation and error that are 

potentially detrimental to the project. Caleb, the CAD lead, is responsible for inspecting and 

approving all Solidworks models or drawing to make sure that no drawing errors are made, the 

BOM is up to date and correct, and that the design is functioning correctly. Mack, the 

manufacturing lead, is responsible for maintaining and overseeing the manufacturability of the 

design and the build phase of the project. It is important to make sure all parts of the design are 

possible and within our reach to be either purchased or fabricated in on-campus machine shops. 

 

Although we each have our own designated roles within the senior project team, all major 

decisions and design ideas shall be generated and completed as a group. All members were 

active in the design process by developing a long list of potential ideas.  Together, a Pugh matrix 
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and decision matrix were created and used to narrow our ideas down to a final design. 

Furthermore, throughout the course of this project, specific deliverables will be provided for the 

sponsor and advisor. There many tasks that must be completed before the final product comes to 

fruition. At this point, the ideation phase has been completed and detail design and analysis will 

begin. A list of tasks that need to be completed, and when they will be completed, can be seen in 

the Gantt chart in Appendix B. These tasks are essential to the success of this project and, unless 

unforeseen circumstances occur, they will be completed on schedule. Further design analysis and 

project solidification will lead to the Critical Design Report (CDR) due on Feb. 7, 2017.  Parts 

will need to be ordered and manufacturing will begin after the CDR. A project update report and 

a project hardware safety demo will take place on March 16, 2017 and May 2, 2017 respectively.  

Following these will be project testing and finally the Final Design Report (FDR) and Senior 

Design Project Expo will be due/take place on June 2, 2017.  

 

 

Chapter 2: Background 

 

In 1999, Professor Jordi Puig-Suari at California Polytechnic State University (Cal Poly) and 

Professor Bob Twiggs at Stanford University developed the specifications for the first CubeSats. 

A standard CubeSat unit, 1U, is 10 cm x 10 cm x 10 cm with a mass less than 1.33 kg. In many 

cases, actual CubeSats are multiples of 1U. Since the emergence of CubeSats, Cal Poly has 

played a pivotal role in developing standards and codes for academic development of CubeSats, 

and the popularity of these small satellites has continued to grow [1]. Although the emergence of 

the CubeSat has been relatively new, scientists and engineers have developed several antenna 

deployment mechanisms for satellites since the beginning of spaceflight. The examination of 

technology used in these larger, older antennas is valuable when developing technology for 

smaller satellites such as CubeSats.  

 

An industry search initiated in 1969 explored several concepts for antenna deployment designs 

that would allow for highly efficient communication and reflector shape reliability. Starkey [2] 

explored three different antenna designs which included an antenna flex-rib design, an 

expandable-truss antenna design, and a radial rib antenna design. The antenna flex-rib design 

was folded by wrapping the carpenter-tape-shaped ribs and the mesh circumferentially around 

the hub. The extendable-truss design utilized many triangular, deep-truss modules that were 

hinged and fastened together with spider joints. Starkey determined that these two designs would 

require extensive developmental effort to satisfy outer-planet requirements, so he focused his 

analysis on the radial rib antenna design. Starkey analyzed the Jet Propulsion Laboratory (JPL) 

radial rib antenna-reflector that used aluminum ribs and he determined that the structure was 

feasible for outer planet communication. Since this study, many companies and organizations 

have expanded on the technology available in the radial-rib structures. Figure 2 shows a 1999 

design by Harris Corporation [3] that illustrates the general contour of the radial-rib structure. 
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Figure 2. Radial Truss Support Structure Designed by Harris Corporation (US6219009 B1) [3]. 

 

Under the direction of NASA in 1979, Leavy et al. developed a telescoping antenna deployment 

mechanism for use with spacecraft. Figure 3 shows the diagram of the telescoping antenna. The 

mechanism used a series of telescoping tubes which were nested one within the other when the 

antenna was in a retracted, stowed position. A dual motor driven cable, which started in the 

wound position on a drum at the lower end of the antenna, drove the pulleys which were attached 

to successively large tubes of the antenna until it was fully extended. The ability of the tubes to 

collapse into each other allowed the antenna to be deployed from a relatively small package. [4] 

Since the development of the telescoping antenna, rare progress has been made in this field as 

most space-oriented companies have preferred circular reflectors rather than cylindrical 

antennas.  

 
Figure 3. Diagram of Deployable Telescoping Antenna (US4176360 A)  [4]. 

 

As briefly mentioned earlier, foldable truss structures are often used to deploy space antennas. 

Depending on the exact design of the trusses, the joints can either be multiple degree of freedom 

joints or simple hinges requiring a single degree of freedom. Figure 4 shows a synchronous 

deployable double fold beam and planar truss structure designed by Rhodes et al. under the 

direction of NASA. This figure illustrates the basic design of most collapsible truss structures 
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used in space applications. Rhodes et al. note that foldable truss structures are often used for 

large antennas to avoid complex deployment mechanisms [5]. 

 

 
Figure 4. Synchronous Deployable Double Fold Beam and Planar Truss Structure [5]. 

 

A branch off the planar truss structure is the lattice truss that can be coiled. AEC-Able 

Engineering Company, Inc. (ABLE) developed what is known as the carousel deployment which 

uses a motor to drive a turntable at the base of a structure which uncoils and extends the mast. 

This deployment mechanism is shown below in Figure 5.  Warden et al. discusses the feasibility 

of this design which could potentially decrease the overall package size of a truss structure [6].  

 
Figure 5. Carousel Deployment Mechanism for Coilable Lattice Truss (US5016418 A) [6]. 

 

A few other designs have been considered that neglect conventional deployment techniques. 

Researchers at Massachusetts Institute of Technology (MIT) explored an inflatable antenna 

technique from their design that uses powder that turns into gas to deploy an antenna from a 

CubeSat [7]. These unconventional methods inspire out-of-the-box thinking that can also yield 

feasible deployable antenna designs. 
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Other schools and organizations have attempted to deploy antennas from CubeSats. A team at 

University of Southern California (USC) worked on the Aeneas nanosatellite, which had an 

antenna with a circular ribbed mesh. The antenna has been functioning well in the S-band range 

for several years now; however, the dish is quite small (0.5 m diameter) and as such does not 

have an impressive size (>2m x 1m) [8]. The details of these specifications will be discussed at 

the end of this section. 

 

 
Figure 6. USC’s Aeneas Satellite Antenna, Circular Ribbed Mesh Design [8].  

 

Northrop Grumman’s AstroMesh family of satellites boast large deployments (anywhere from 3-

50m), but the packaged volume is substantial (on the order of a few meters), and is too large for 

most CubeSats [9]. The ISIS (Innovative Solutions in Space) deployable dipole antenna system 

is small (~0.5-1m) but packs into a small volume (> 1U). It has the advantage of using little 

power and being composed of only commercial off-the-shelf (COTS) components [10]. High-

Performance Space Structure Systems use a similar design to Northrop Grumman, which is a 

circular truss that expands to a very large size (5-20m) and holds the reflector mesh like a 

trampoline. As with Northrop Grumman, however, its storage volume is too big for the CubeSat 

class of satellites (> 6U) [11]. 

 

Modern antenna deployment techniques use elastically deformable booms to extend and 

accurately support antenna reflectors. These types of booms are capable of being stored around a 

spool and as the booms unroll, they stiffen, extend, and ultimately support large structures. In 

1971, NASA published a paper on tubular spacecraft booms that are extendible and reel-stored. 

These booms assume tubular shapes on deployment [12]. Mechanisms utilizing this technology 

have advanced since then which can be seen in the innovative escapement-based mechanism for 

micro-antenna boom deployment developed by the Polish BRITE-PL [13]. Alternates to the 

tubular shaped booms are found in the triangular rollable and collapsible (TRAC) booms which 

were developed by Murphey et al. under the direction of the U.S. Air Force Research 

Laboratory. These booms resemble measuring tape in their shape and rollability but are much 



15 
 

stronger due to the carbon fiber reinforced polymer that composes their structure. [14] The 

TRAC booms appear to be one of the most advanced options for supporting large antenna 

reflectors and rolling them in a small CubeSat volume. 

 

In addition to requiring effective deployment mechanisms, CubeSat antennas aim to operate at 

target radio frequencies. In order for an antenna to effectively detect a given frequency, the size 

of the antenna must be much larger than the wavelength of the radio waves captured. In the case 

of an antenna reflector, which is used in satellite dishes and space parabolic reflectors, the shape 

directs the signal to a feed that ultimately captures the signal. 

 

 The size of the parabolic reflector is directly related to the gain of the antenna, which is a 

measure of how powerful the antenna receives and transmits a signal. The tolerance of these 

parabolic/dish shapes is especially important when attempting to capture high frequency signals 

since the wavelengths are much shorter and more susceptible to noise or distortion if the reflector 

shape is incorrect. This sensitivity to surface tolerance is due to the superposition of waves that 

are reflected from the antenna to the focal point of the parabola, which is where the feed is 

located.  

 

A phase difference between two signals of λ/2 (where λ is the wavelength of the signal) results in 

destructive interference since the peak of one wave negates the trough of the other wave. A 

phase difference results when one signal travels further than another due to distortions of the 

parabolic shape.  

 

By minimizing variations between a reflector and a true parabolic curve, we maximize the 

constructive interference by reducing the phase delay so that the feed receives a clear signal. A 

rule of thumb for antenna reflectors is to keep the tolerance below λ/20. In general, the higher the 

target frequency, the more precise the tolerance must be on the parabolic shape that reflects the 

signals to the feed.   

 

Common signal designations, with their associated frequency ranges, used in satellite 

communications are UHF (0.3 to 1 GHz), L-Band (1 to 2 GHz), S-Band (2 to 4 GHz), C-Band (4 

to 8 GHz) and X-Band (8 to 12 GHz). Most CubeSats launched by academic institutions have 

been only capable of UHF and L-Band communications. CubeSat antennas are limited by the 

size of the refector they can deploy and the tolerance of the reflector shape they are able to 

achieve upon deployment. 

 

Conducting a thorough patent search allowed us to collect some useful information. The purpose 

of this patent search was not only for idea generation purposes, but also to make sure we are not 

treading on someone else’s ideas. Many of the concepts and products found in the patent search 

are antennas used in much larger “full-scale” satellite applications as opposed to CubeSat 

applications.  

https://en.wikipedia.org/wiki/Wavelength
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There were a couple ideas found in our patent search that are specifically designed for CubeSat 

applications. The first is the deployable helical antenna for nano-satellites shown below in Figure 

7.  

 

Figure 7. Deployable Helical Antenna for Nanosatellite (EP2693563 B1). 

 

Many known satellites make use of helical antennas. This antenna is especially good for fitting 

into small spaces, but is quite small and does not achieve a very high antenna gain. 

 

An additional patent was found using tape measure booms (US8770522 B1). This idea is one 

that we have explored deeply because of its many applications. These antennas are constructed 

by using storable tubular extendible member (STEM) structures. These members or “booms” are 

generally made from spring steel or carbon fiber reinforced plastic. This idea seemed very 

promising for us to recreate and improve. This patented invention is designed so that the 

extendible structures or roll out linearly and unfurl the antenna reflector in an unconstrained, flat 

fashion. However, a parabolic shape, rather than a linear “flat” shape, allows for better antenna 

gain and more accurate signals.  

 

 

Chapter 3: Design Development 

 

3.1  Design Process 

 

In order to properly start the design process, the problem was understood and defined by our 

team. Existing solutions to the aforementioned problem were researched to avoid “reinventing 

the wheel.” This research consisted of figuring out why the problem needs a solution, how the 

problem has been handled before, and technical research involving what is needed in order to 

create a proper solution.  
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Once the preliminary research was done, then the customer requirements were established. These 

requirements were confirmed by the project sponsor during the initial meeting with the team. 

These customer requirements were used to develop engineering specifications. To prepare the 

specification list, we used the QFD method as shown in Appendix A. The QFD method includes 

the “House of Quality”, which is a matrix used for defining and analyzing the relationships 

between customer requirements and engineering specifications. This matrix was used to 

determine the importance of each of the requirements/specifications and how the competition 

compares to the what is feasible for our project. 

 

When all the engineering specifications were prioritized, the design process continued with 

ideation and brainstorming possible solutions. Ideation began with the generation of as many 

ideas and concepts as possible without judgment, which promoted creativity and solutions never 

thought possible. Many of these ideas and concepts are shown in the concept generation section. 

Once enough ideas had been presented, the best solutions were narrowed down to several general 

designs and then compared using basic analysis. Next, we determined the best possible design 

that not only solved the problem but was the most viable, efficient, and innovative product. 

 

Extensive analysis and evaluation was performed once a final concept was selected. This 

assessment included but was not limited to: stress analysis, material selection, and parabola and 

focal point definition. Many issues are sure to arise causing the need for iteration, but once a 

final design is determined and analyzed, we will move forward with the manufacturing of a 

functioning prototype.  

 

Prototyping inevitably leads to issues and new iterations. Obtaining all the necessary parts and 

materials is the next step. Some components may need to be modified or machined. Any 

modifications on iterations will be reflected into our final design. Also, reanalyzing components 

that have changed will also be necessary. A final product will be deemed finished when all 

possible analysis is complete, testing is done, and a final, functioning prototype is created. These 

steps have been simplified and shown in Figure 8 below. 
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Figure 8. Design Process for Deployable Antenna. 

 

  
3.2  Concept Generation 

 

Several methods of ideation and concept development were utilized to generate possible 

solutions to the problem presented. Ideation is the process of generating different ideas for the 

overall scope of the project as well as specific functions. The methods used include: function 

identification, brainwriting, brainstorming, SCAMPER, and concept modeling. Some of the 

more promising concepts generated are described in more detail below.  

 

Brainwriting is a form of ideation where each member writes down as many possible ideas or 

sketches as they possibly can. These ideas were then shared and built upon by each team member 

to help create even more ideas. This process goes on for several “rounds” which provides a 

sufficient amount ideas. Using the brainwriting technique, our team developed the concepts for 

the double boom roller and linked plate for achieving a parabolically shaped reflector. Sketches 

for these ideas are shown in Figure 9. The double roller is very similar to a single tape measure 

boom, but instead has two booms rolled together inside that, when extending, split into two 

different directions. This double-spooling minimizes the space needed and allows for a larger 

reflector. However, it was thought that getting each boom to split into different directions and 

maintain the correct shape would prove to be a difficult task. The linked plate concept is 

essentially a stack of linked plates that are hinged and extend around into a circular and parabolic 

shape. This idea was disregarded because the actuation needed to accomplish this would be 

highly complex.  
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Figure 9. Brainwriting Example Sketches. 

 

Brainstorming was used to build upon these initial brainwriting ideas to produces newer or more 

well-thought-out concepts. Our group discussed the feasibility, the functions, and the changes in 

the concepts we originally produced in brainwriting. These new concepts were more realistic but 

no bad judgment was imposed on any idea.  

 

All ideas were open to discussion, modification, or addition. For example, the accordion truss 

shown below in Figure 10 is a concept that uses material similar to the helical antenna for nano-

satellites shown in Figure 6. The expandable truss is attached to a boom deployer and expands as 

it is pulled out of storage. The parabolic reflector is mounted at strategic points on the truss to 

ensure that it comes out as a parabolic shape. 
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Figure 10. Building on Ideas During Brainstorming. 

 

 

Another ideation process we used was brainwriting but focusing on a specific function, in which 

the group picked one function of the project and expanded on as many possible ideas as we 

could. The function development for shape of the reflector is shown below in Figure 11.  

 

 

Figure 11.  Developing the Shape of the Antenna. 

 

 

In addition to sketching on paper or on a whiteboard, our team also built various concept models 

which allowed us to visualize our ideas and prove that some ideas are not physically possible. 

We also used concept modeling to give us an idea as to the size of reflector needed and how 

much space we had to work with. Figure 12 shows the goal for actual size of reflector, 2 m x 1 

m, demonstrated with aluminum foil. 
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Figure 12. Actual Size of a 2 m x 1 m Reflector Using Aluminum Foil. 

 

Other concept models were creating using household material such as popsicle sticks, 

construction paper, and tape. The concept model below in Figure 13 shows the stored volume 

and the deployed hinged boom system and folding reflector. This model was not very rigid and 

had very complicated actuation. 

 

 
 

Figure 13. Hinged Boom Concept Model Folded and Deployed. 

 

After exploring solutions during our ideation sessions, we gathered what we thought were the 

concepts and functions with the most potential. These concepts shown and described below were 

used in the idea selection processes, as described in detail in the concept evaluation section.  

 

We split the generated concepts into groups based on their function. The first group shown 

below, is a system level group showing concepts that display exactly how the reflector is going 

to be expanded out. 
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3.3  System Development 

 

In order to develop our ideas on a full-system level, we generated various concepts based on the 

knowledge we gained through background research and benchmarking. After making a decision 

on the system level concept, our group developed ideas for the individual components that are 

crucial to the design. The expanding truss idea, shown below in Figure 14, is one that has been 

previously used by aerospace corporations such as Northrop Grumman. 

 

 

Figure 14. Expanding Truss. 

 

This structure utilizes an expanding cage of two-force members that can be expanded from a 

small diameter to a very large diameter. The idea was used in a previous senior project and 

proved to be quite complicated with many small, high-precision parts. 

 

 The telescoping umbrella concept shown above is very much like an umbrella in that it uses a 

collar and hinged supports to expand out a circular umbrella surface. For this application, the 

umbrella “handle” would be a telescoping boom that deploys away from the CubeSat and then 

allows for the umbrella to open up by actuating a collar to move further out along the boom and 

push the hinged supports. This concept also has many small precise parts that are hinged and fold 

on themselves just as a regular umbrella does. It seems challenging to actuate a collar sliding 

over a telescoped boom. 
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Figure 15. Telescoping Umbrella. 

 

One of the more popular and most used systems is the tape measure deployer method shown 

below in Figure 16. This concept uses motorized rolls of boom material, usually mild steel or 

carbon reinforced plastic, that unrolls into a rigid boom. 

 

 

Figure 16. Tape Measure “Rollout”. 

 

This concept is exemplified by a tape measure being rolled out in a linear fashion. The reflector 

material would either be bunched up in front of these rolls or rolled inside of them. Many groups 

have used this concept for structures such as solar sails and flat antennas, but not for parabolic 

antennas. The benefits of this concept are its simplicity and lack of many small intricate 

supports. This idea would likely use multiple rolls of boom material to help form the parabolic 

shaper of the reflector.  
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Another concept developed through our ideations sessions was the scissor-lift accordion shown 

below in Figure 17. This concept utilizes scissor lift supports that extend out from each side of 

the CubeSat. The scissor-lifts can collapse can expand fairly easily. 

 

 
Figure 17. Scissor Lift Accordion. 

 

The reflector would be folded “accordion style” and attached to the scissor-lifts in a way that the 

reflector expands as the accordion does. The scissor-lift also requires many small precise 

supports that are hinged and folded on top of each other in intricate ways. 

 

One of the more interesting ideas was the parachute idea shown in Figure 18 below.  On Earth, a 

parachute is packed into a small space and shot out when a person is falling. The air fills the 

parachute giving it a specific shape that allows for the person to fall safely. 

 
Figure 18. “Blow-Out” Parachute. 
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This concept has the parachute repurposed as an antenna reflector. The reflector is bunched up 

into a small space and shot out. Then compressed gas is blown into the reflector to make it more 

rigid and in the parabolic shape desired. There are various problems associated with sending 

compressed gas into space, so this concept may not be useful at all.  

 

The system-level concepts were collected and evaluated in a process (detailed further in the 

Concept Evaluation and Selection section) that led the team to choose tape measure-style boom 

deployment.  After the system-level concept that we wanted to use was chosen, we were able to 

focus on generating ideas for the specific functions that the antenna needs to accomplish, the 

main one being that the reflector needs to be parabolic in two directions. We will call those 

directions the longitudinal and latitudinal directions. Longitudinal is the direction perpendicular 

to the face of the CubeSat and latitudinal is the direction parallel to the face of the CubeSat. We 

focused on various concepts in order to achieve the parabolic shape we need in the longitudinal 

directions first. 

 

  

 

 

3.4   Direction-Specific Deployment and Curvature Concept Development  

 

The first way to achieve a parabolic shape in the longitudinal direction is to heat treat the mild 

steel or carbon fiber reinforced plastic booms to a point where they are able to be naturally 

parabolic-shaped, but still be able to be rolled inside the deployer without any issues. This 

concept is shown below in Figure 19. This will take a lot of materials research as well as a large 

enough and hot enough oven to heat treat a 2 m long boom. 

 

  
Figure 19. Heat Treated Tape Measure Boom. 

 

 

The next concept for achieving a parabolic shape in the longitudinal direction, shown below in 

Figure 20, is similar to the previous one but instead of heat treating the booms, smaller, more 
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flexible ribs would be embedded in the reflector to allow it to be rigid in the correct shape, but 

also still be rolled or bunched into the allotted storage space. The ribbed reflector could be 

mounted on tape measure booms, but these booms don't have to be curved. 

 

 
Figure 20. Linear Boom, Ribbed Reflector. 

 

Cold-rolling the boom, shown below in Figure 21, in the longitudinal direction is a different 

method to form the boom but accomplishes the same task as heat treating. The boom would still 

naturally be parabolic but ideally still be able to be rolled up like a tape measure. 

 

 

Figure 21. Cold Rolled Longitudinal Boom. 

 

Our final concept of achieving a parabolic shape in the longitudinal direction is through the use 

of tensioned cables or string that, as the boom is rolled out, pull the boom upwards into the 

correct shape. This concept is shown below in Figure 22. 
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Figure 22. Tensioned Springs and Cables. 

 

These cables would be cut to a specific length and attached in strategic positions that pull up as 

the linear tape measure boom is rolled out. This idea has great potential because it has no need 

for heat treating or cold rolling. 

 

In addition to being parabolically shaped in the longitudinal direction, the reflector must also be 

parabolic in the latitudinal direction to be able to direct the signal to a specific focus point. Some 

concept generated for this are shown below. 

 

The first concept to be further evaluated for achieving parabolic shape in the latitudinal direction 

is the preformed fold out ribs concept shown below in Figure 23. Since the reflector has to be 1 

m wide and the available storage space is at max 40 cm, the reflector must be able to expand in 

the latitudinal direction. 

 

 

Figure 23. Preformed Fold-Out Ribs. 

 

These preformed ribs would line the reflector material to make it rigid and parabolic and could 

be folded or rolled back on top of each other for a more compact storage. 

 

Figure 24 and 25 both show latitudinal deployers that are slightly different but accomplish the 

same goal. These deployers would be stored 40 cm away from each other but would be able to be 

extended to the 1 m width that we need. Figure 24 shows a spring loaded deployer that allows for 

for the reflector material to be stretched via a large spring to the correct width. Similarly, Figure 
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25 shows the same concept, but instead of a spring-loaded extension, it uses addition tape 

measure deployers to push out the reflector material to the correct shape and width. 

 

 

Figure 24. Spring Loaded Latitudinal Deployer. 

 

 

 

Figure 25. Tape Measure Boom Latitudinal Deployer. 

 

 

Finally, the last concept evaluated is one that was previously described below in Figure 26 and is 

also very similar to the deployable helical antenna. The accordion truss is an expandable and 

collapsible truss that uses a tape measure-like mast to draw out the structure. The reflector mesh 

is fixed in strategic places on that truss structure, which is made of thin cables or wires, to give it 

a parabolic shape in both the longitudinal and latitudinal directions. This design could allow for 

very accurate surface definition, but would require a lot of cabling. Each of the concepts and 

functions above are evaluated and narrowed down in the Concept Evaluation and Selection 

section below.  
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Figure 26. Accordion Truss. 

 

 

 

3.5  Concept Evaluation and Selection 

 

While our team came up with a number of interesting and creative design ideas, a lead concept 

had to be chosen so that the team could move forward on the project. Several of the more far-

fetched ideas were eliminated out of a brief observation that, for one reason or another, they 

would not work. Collecting the remaining possible concepts, the team used a Pugh-style matrix 

to narrow down the system level concepts. This matrix can be seen in Table 2 below.  

 

A Pugh matrix is a design tool used for comparing function-level ideas with the intent of 

generating new ideas by suggesting a best idea, and then attempting to incorporate the 

advantages from other ideas to fill in the selected idea’s negatives. Pugh matrices compare each 

function idea as better or worse than the idea chosen to be the datum, across each design criteria 

category. The following matrix started out as a Pugh matrix evaluating how well each idea could 

fulfill the function of deploying the booms of the antenna structure with the given criteria. 

Eventually, it became the basis for our initial decisions regarding our main system level concepts 

because the team realized that, due to the scope of the project, each system level idea still left 

room for several variations on how that design was to be carried out. Due to time constraints, the 

team had to move forward with an overall system concept to then develop and evaluate 

implementation ideas. As such, the above Pugh matrix became something of a decision matrix. A 

decision matrix is a tool used primarily for final concept selection, and ranks each idea 

numerically for each criterion. Each criterion is given a weight, so that a weighted total score can 

be produced for each idea, and the strongest concept should have the highest score. A true 

decision matrix was used later to select the final concept for the project. 
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Table 2. Pugh Matrix for Evaluating Boom Deployment Ideas (used for making comparisons 

between system-level concepts). 

 
 

In this initial matrix, the Expanding Truss idea scored well for deploying to a large size and 

achieving an accurate parabolic shape because we saw these properties demonstrated in the 

Northrop Grumman Astromesh products. However, this idea scored poorly compared to the Tape 

Measure “Rollout” for storage volume and simplicity. Our team only found successful 

implementations of this design for much larger-scale satellites and knew it would be difficult to 

scale down the design for our needs. The Telescoping Umbrella idea was a popular one at first 

but it was decided that it required too many separate movements that would be difficult to 

achieve, requiring a collar that slides over a telescopic boom to push the folded ribs out. The 

Scissor-Lift/Accordion idea had would likely result in too much wrinkling of the reflector mesh 

and showed no real advantages over the Rollout design. The Blow-Out Parachute idea seemed to 

very simple; however, the team thought the complications of bringing a fluid (some compressed 

gas) into space for the sake of deployment would negate that apparent simplicity. The results of 

this decision matrix, the precedence for using tape measure-style booms for similar purposes 

found in our research, as well as input from Stellar Exploration, Inc., gave the team confidence 

that the Tape Measure “Rollout” idea was the direction to pursue.  
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Having decided to develop a tape measure-style deployment, the team then examined different 

concepts for achieving the deployment module’s two main functions: deploying an antenna with 

parabolic curvature 2m in the length direction, and deploying an antenna with parabolic 

curvature 1m in the width direction. The Pugh matrices for each are shown in Table 3 and 4 

below. 

 

Table 3. Pugh Matrix for Deployment of Parabolic Curvature in Length Direction (2m). 

 
 

 

 

Table 4.  Pugh Matrix for Deployment of Parabolic Curvature in Width Direction (1m). 

 
 

The Pugh matrix for lengthwise deployment used the idea of heat-treating the tape measure 

booms to unroll into a parabolic shape as the datum. Using several lengthwise ribs (which would 

probably end up being small preformed booms or support wires) was thought to be easy to roll 

up with the tape measure booms but would not be as effective at achieving the desired shape and 
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might be difficult to implement. Using rollers to pre-form the booms was thought to be similar to 

using heat treatment, except that it might roll into the deployer better since the preforming 

technique involves rolling. The string tensioners concept seemed very attractive for its utter 

simplicity but it seemed like it would be a challenge to achieve the tight tolerance required on the 

parabolic shape and may require a lot of strings to do so. 

 

The Pugh matrix for widthwise deployment used the idea of embedding flexible support ribs into 

the reflector material that fold out as the datum. The pop-out deployers concept, involving the 

use of either spring-loaded tracks or two, stiffer tape measure booms that push the main 

deployers out to a 1m width, ranked similarly to the unfolding ribs, except for being somewhat 

more complicated since it would require a second form of actuation. The accordion truss idea 

would excel at defining a very accurate parabolic shape but had the challenge of attaching the 

reflector to the supporting structure at so many locations and also requiring a lot of support 

strings/wires that would have to be stowed in the module and then pull out to the proper width. 

From this matrix, the fold out ribs looked like the most attractive idea. 

 

 

Table 5. Weighted Decision Matrix Evaluating Top Concepts. 

 
 

The team then developed a final weighted decision matrix (Table 2) to evaluate and compare the 

top four concepts combining ideas for both lengthwise and widthwise deployment. The first 

concept was to pre-shape the booms to be naturally parabolic (using either heat treatment, cold 

rolling, or some combination of the two) and then use flexible support ribs that fold out as the 

booms deploy. The second concept kept the idea of using the fold-out ribs but instead of pre-

shaping the booms, they would be pulled into shape by strings. The third concept used the string 

tensioners with deployers that push out from the sides of the CubeSat (using either a spring-

loaded mechanism or stiffer booms to do so). The final concept was the accordion truss idea 
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described earlier, which uses a central boom to pull the entire material into shape in both 

directions using lots of tensioning strings/cables.  

 

The criteria were weighted according to their relative importance as determined by the team 

using engineering judgment, research, and input from Stellar Exploration, Inc. Using the decision 

matrix as a tool, the team decided that it would intend on implementing the idea to heat treat the 

booms to be pre-curved, but that if upon further investigation it becomes apparent that this 

technique has too many problems (such as the steel cannot actually be rolled up well after heat 

treatment, it loses its curve shape, or is beyond our ability/access to utilize), the string tensioners 

would then be used as a backup. In either case, fold-out ribs would be used to achieve the 

widthwise deployment. For all concepts, including the top concept, it was decided that the 

reflector material would be attached to the booms with sleeves that are fixed to the material and 

slide over the booms. The sleeve on the end of the boom would be fixed to both the material and 

the boom so that the material would slide out with the boom. 
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Chapter 4:  Final Design 

 

4.1   Design Overview 

 

The designs chosen as the leading concepts involve the use of two tape measure-style booms that 

are driven by motorized spools to uncoil and deploy the length of the reflector, along with 

flexible cross-ribs that are embedded into the reflector mesh and deploy the width of the reflector 

as the booms push the antenna out from the deployment module. The fully deployed system is 

shown below in Figure 27.  

 
Figure 27. Fully Deployed Reflector and Feed. 

 

 These features and their driving mechanisms must be initially stored in the 20 cm x 20 cm x 40 

cm module housing which is illustrated below in Figure 28. 
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Figure 28. Deployment Module Assembly 

 

4.2   Lengthwise Curvature Designs 

 

After the critical design phase, our final design originally had two variations which we were 

considering pursuing. These two distinct options only differed in the method for achieving the 

lengthwise curvature of the booms. The designs for the deployment module housing, the ribs and 

reflector arrangement, the motor and shaft specifications, and the feed deployer were all exactly 

the same between the two options. The preferred option for achieving lengthwise curvature was 

to heat-treat the booms such that they uncoil into the desired parabolic curvature. It was thought 

that using a heat-treatment process to pre-shape the booms could be a convenient method for 

achieving a highly accurate shape. However, the success of this method was not guaranteed, 

given that in all of our benchmarking and conversations with experts, we could not find a 

precedent for using heat-treatment to achieve the properties we were looking for (i.e. the ability 

to coil up and then uncoil and still retain the preset curvature), nor did anyone tell us that it was 

impossible. Our backup method for achieving the parabolic shape along the boom was to fix the 

end of each boom to an anchor point on the housing with some sort of cable that would be cut to 

a length such that when the boom is fully extended it would be constrained by the cable and 

tensioned into a curved shape. While a seemingly simple solution, our team was unsure of how 

accurate of a shape could be achieved with this method. Therefore, the heat-treatment option was 

pursued first. Unfortunately, due to an issue with vendor communication, this method was 

eventually dropped and the string-tensioner option was applied to the final prototype. The 

following two sub-sections detail our team’s pursuit of both methods for the lengthwise 
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curvature. The difference between the two variations of our design can be seen below in Figure 

28. 

 

 

 

 

 

 

 
 

Figure 29. Side-by-side Comparison of Final Design Variations in Their Stowed and Unfolded 

Configurations 

 

4.2.1  Heat Treatment Design 

 

Our first and more preferred method for obtaining the lengthwise parabolic shape of the booms 

was to heat treat steel into the parabolic shape so that it would maintain the shape after being 

rolled in the spool and then deployed. We designed the heat treated booms to have both the 

required parabolic curve and an axial curve to add stiffness to the length. Figure 30 shows the 

geometry of the booms with both curves.  
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Figure 30. CAD Model of the Boom Geometry. 

 

Having little to no expertise in the field of heat treatment, we sought assistance from the 

Materials Engineering Consulting Group at Cal Poly, where a materials engineering graduate 

student, David Otsu, agreed to help us. After describing our project and design specifications, he 

researched viable materials that could be potential candidates. His full report, shown in 

Appendix E, provided us with a good starting point for materials to evaluate and vendors to 

purchase them from. We used this data and reached out to companies that would be willing to 

provide us with the materials and options to treat those materials. Unfortunately, we came across 

an unexpected number of obstacles when attempting to find companies or facilities capable of 

helping us. Our initial design centered around heat treating 0.010 inch 1074/1075 spring steel 

since its untreated form is very elastic and coilable. Unfortunately, 1074/1075 spring steel 

requires oil quenching after heat treating due to the instability of the carbon in the steel, which 

would burn off if not oil-quenched. The burnout of carbon would cause the spring steel to lose its 

elasticity and would ultimately make it useless to us. We contacted several heat treatment 

facilities throughout California, but none of them had oil quench heat treatment facilities large 

enough to fit two 2-meter long spring steel strips. This is mostly because most applications of 

spring steel require that it spring back to a position that is relatively small in volume which 

requires the steel gets heat treated in that small volume position. Our project calls for the 

opposite of the typical spring steel treatment: we want the booms to spring back to the long 

parabolic shape from a temporarily small storage volume, which would require that it gets heat 

treated in the long shape, and we found no facilities capable of supporting that. 

 

We discovered that 17-7 stainless steel can be precipitation hardened in large furnaces and does 

not necessarily require oil quenching. 17-7 stainless steel has high strength and elasticity, and 

can be easily formed into complex shapes. This material was our best heat treatment option since 

many heat treatment facilities have furnaces large enough to shape the 17-7 steel. One company 

in particular, Burbank Steel Treating, Inc., offered to help us attempt to parabolically shape the 
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steel and test if it could roll up in a spool and still maintain its shape afterwards. They offered to 

perform a few iterations of different heat treatment methods to see if we could accomplish our 

design specifications. However, some unfortunate miscommunication occurred between our 

team and Burbank Steel, and eventually we learned that they only had facilities to heat-treat 

objects under 4 feet long, which was not long enough to meet our needs. Due to the lack of time 

and resources to pursue another heat-treatment specialist, our team decided that it was time to 

abandon the heat-treatment idea for our project and move on to our backup method of using 

string tensioners. 

 

4.2.2 String Tensioner Design 

  

The string tensioner design that was ultimately implemented utilizes the natural tension caused 

by the motor pushing the booms against a fishing line that is tied to anchor points on the top of 

the module housing. The fishing line is cut to a length of around 2.02 meters which pulls the tip 

of the boom upward as it gets deployed outward. The model of the deployed booms with the 

strings tensioning the boom tips is shows below in Figure 31. It was thought that this method 

would not work with axially curved booms, as the metal would want to fold rather than curve, so 

we designed the booms for the string tensioner design as flat booms rolled around the spool. 

However, the flat 1074/1075 spring steel strips we attempted to use would uncoil out and push 

against the deployer casing walls so much that the motors could not deploy them. So, the choice 

was made to use actual tape measure for the booms. Because we knew that the tape measure 

booms would snap under tension, they were flipped upside down such that the axial curvature 

opens downward, resulting in a fairly good combination of stiffness and flexibility to where they 

do not snap as easily when tensioned. 

 

 

Figure 31. CAD Model of the Deployed String Tensioner Design. 
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4.3  Deployment Module 

 

This section details the design of the module housing, the shaft and motor specifications, the feed 

deployment, and the ribs and reflector arrangement. 

 

The module housing, shown below in Figure 32, consists of four aluminum 6061 plates fastened 

together with several M4 screws. The bottom plate has several holes used for the attachment of 

the motor, deployer casings, and feed support. The top plate has a slot to allow for the exit of the 

tape measure used to support the feed. There are also holes on the top plate to allow for the 

attachment of the constant-force retractable reel used to support the feed tape measure. 

 

 
Figure 32. Exploded View of Module Housing Detailed Model. 

 

We designed the deployment mechanism with a steel 12 mm shaft diameter based on the torque 

requirement calculation seen in Appendix H. A simple DC motor drives the shaft. The selected 

motor is the 26 rpm Mini Econ gear motor from ServoCity which has fairly high torque 

capability for its size, as well as a low speed, which is desirable to ensure the deployment occurs 

smoothly. This DC motor is has a power rating of 6V - 18V which can be supplied through a 

battery pack with an on/off switch. This motor contains a 4mm shaft that will drive the 12 mm 

main shaft with a 1:1 gear ratio. These gears are made from a high-load metal gear rod stock 

with a 20° pressure angle found on McMaster-Carr. The gears are cut to a face width of .5 

inches, an outer diameter of 1 inch, and an inner diameter corresponding to the shaft they are 

located on. The use of English units for these gears is because the stock chosen is in English 

units. The gears are mounted to their respective shafts using small set screws with a size of M5 

6mm long. The power transmission components are shown below in Figure 33.  
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Figure 33. CAD Model of Power Transmission Components. 

 

The feed deployment mechanism sits on top of the feed support which also houses the motor and 

gears. A separate motor is used to drive the feed deployment mechanism. The torque requirement 

for this motor is shown in Appendix H. We selected the same motor used for the deployment of 

the reflector, the 26 rpm Mini Econ Gear motor, for this application because of its high torque 

output and low rpm. The feed itself will be modeled with a 100-gram cylindrical mass of 

aluminum. This cylinder will not count towards our allocated 20 cm x 20 cm x 40 cm volume 

and will be a component that rests on top of the housing when “stowed.” Due to the one-sided 

stiffness of a tape measure caused by its axial curvature, we will install a constant-force 

retractable reel to tension the tip of the tape measure and keep it from buckling in its weak 

direction during and after deployment. This retractable reel will also stay outside of the housing 

and does not contribute towards our allocated volume. This retractable reel applies a constant 0.5 

lb force to help stiffen the feed boom. Although this dramatic buckling of the feed boom would 

not actually occur in a zero-gravity space environment, the reel is necessary to balance the 

weight of the cylindrical mass during our ground test. During deployment, the tape measure will 

slide through a slot located on the top plate of the housing while pushing the cylindrical mass 

upwards to its proper position. The solid model of the feed deployment system is illustrated in 

Figure 34. 

 

   Boom 
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Figure 34. CAD Model of the Feed Deployment System. 

 

For the reflector itself, Mylar was chosen as the material to be used in order to mimic common 

antenna reflector designs. The ribs deploy in the widthwise direction, perpendicular to the 

lengthwise booms, and are responsible for the widthwise parabolic shape. Since the target size of 

the widthwise curvature is 1 m and the housing module has a maximum width of approximately 

40 cm, in order for the reflector to be stored in the housing before deployment, it must be stowed 

in a tri-fold manner. The booms are separated by 34 cm and the Nitinol ribs are folded around 

the booms and over themselves making the reflector have three sections. The largest section in 

the middle will be 34 cm, as defined by the distance between the booms, and the outer sections 

will be 33 cm each. As discussed in section 7.2 and detailed in Appendix H, the exact curvature 

of each rib would gradually flatten out as its location lies further from the module housing since 

the rib’s vertex moves further away from the focal point. However, this would require 

customization for every rib which is not feasible for our prototype. Therefore, with 

acknowledgement from Stellar Exploration, Inc, we are relaxing the exact parabolic tolerance in 

the widthwise direction and using the same parabolic curvature for every rib. In order for the 

length of the reflector to fit in the housing module, we are also folding it along its length, after 

being tri-folded in the widthwise direction. We designed the spacing of the ribs to have 12 

segments of Mylar so that the segment length can fit in the module opening, and these segments 

would fold over each other in an accordion-style fold. The Mylar is embedded with 13 ribs 

spaced out evenly throughout its length by placing the ribs against the Mylar and gluing separate 

strips of Mylar over the ribs to keep them in place. 2 mm diameter Nitinol rods are used for the 
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ribs since they are capable of bending through very small radii, and can maintain their elasticity 

and shape after large deformations. After our team obtained small samples of Nitinol wire, we 

were confident in its ability to perform as elastic ribs. Figure 35 below shows a visual 

representation of the Mylar reflector embedded with the Nitinol rods.  

 

 

Figure 35. CAD Model of the Mylar Reflector Embedded with Nitinol Ribs. 

 

Two Mylar pockets are placed at the far end of the reflector for each boom to fit in. These 

pockets serve as the primary attachment points between the reflector and the booms. As the 

booms begin to unroll during deployment, the booms push on the Mylar pockets and begin the 

unfolding process of the reflector. As this occurs, the Nitinol in the Mylar reflector will unfold 

one segment at a time. The booms will run through Mylar collars attached to the reflectors to 

ensure that the reflector pulls out into shape during deployment. To help restrain the reflector 

from popping out of the housing while it is being stowed, the top plate of the housing has a 

curved lip at the exit that will keep the segments of reflector inside until the booms deploy. A 

side view of the lip at the housing exit is shown in Figure 36. The red circle in the figure 

indicates the location of the lip with respect to the rest of the module components. 
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Figure 36. CAD Model of the Lip Located at the Top of the Housing Exit. 

 

 

 

4.4   Design Assessment 

 

We performed several calculations regarding stress, deflection, and geometric consistencies to 

ensure feasibility of our final designs. The most probable mode of failure lies in either excessive 

stress or deflection of the tape measure boom when supporting the reflector material in a 1G 

acceleration field. We simplified the analysis of a curved boom by modeling it as a cantilever 

beam under a distributed load. Using Mylar as a common material for antenna reflectors and 

assuming a common thickness of the Mylar to be 50.8 micrometers (2 mil), we determined the 

distributed load to be about 0.36 N/m for each boom. Under this distributed load, the maximum 

stress at the fixed end of the cantilever beam is approximately 2.85 GPa, which would yield a 

straight rectangular boom, but would be safe for an axially curved boom with a stronger area 

moment of inertia. The exact materials used for tape measures vary by manufacturer, but the 

most common materials used are a combination of steel, fiberglass, and plastic. As a feasible 

approximation, we used the properties of stainless steel for further analysis, but also considered 

the effects of varying properties for the sake of thoroughness. Considering the modulus of 

elasticity of stainless steel, we determined the maximum deflection of the boom to be 8 mm, and 

the maximum deflections of less stiff materials such as reinforced plastic approached 2 cm.  

 

Understanding that the accuracy of the mathematical analysis is dependent on the accuracy of the 

physical properties considered, we tested the actual response of a measuring tape under a 

simulated load to validate our results. We simulated the Mylar material load by extending a 
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measuring tape 2 meters out and distributing 1.4 N of quarters along the length. This load is 

approximately twice the load that we would expect from the weight of the Mylar, but we doubled 

the load to ensure a reasonable factor of safety. Although the measuring tape deflected more than 

the predicted 1.2 cm, it did not yield under the load. This test validated our mathematical 

analysis and allowed us to further pursue the tape measure design idea. The analysis for this test 

is shown in Appendix H. It is important to account for the predicted deflection in order to ensure 

that the parabolic reflector meets the required tolerance. It is also worth considering that the tape 

measures will deflect differently during our 1G test on Earth than when it actually deploys in 

space. This analysis will need to be thorough in the final design. 

 

 

Figure 37. Static Test of Actual Tape Measure Deflection Using Coins as Distributed Load. 

 

It is important to note that the stress and deflection analysis was performed for straight booms. 

Our design will utilize curved booms which will certainly change the results of stress and 

deflection. There is also the added benefit that heat treating the booms will increase their 

stiffness values. 

 

A crucial aspect to antenna reflector design is ensuring the ability for the reflector to effectively 

direct incoming signals to the feed. The ability of our reflector to do this relies heavily on its 

accordance with the target 3D paraboloid shape. We mathematically mapped the 3D parabolic 

shape and created a surface plot of the effective shape using MATLAB. Appendix H shows the 

derivation of the 3D parabolic definition and Figure 38 shows the 3D plot of the entire antenna. 

As mentioned previously, although we have defined the exact parabolic shape that the reflector 

should follow, we are using a constant rib shape for manufacturing purposes which will result in 

an inexact paraboloid shape. These differences are noted and the accuracy of the final prototype 

will be compared to the modified shape.  
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Figure 38. MATLAB 3D Surface Plot of Overall Antenna Shape.                                     

                                        

4. 5  Power Transmission and Motor Selection Assessment 

 

In order to drive the deployer mechanisms, we selected appropriate motors that will overcome 

the resistance in the deployers due to the unfolding of the reflector and the deployment of the 

feed. For our purposes, a high torque, low speed motor was selected based on the torque 

generated from unrolling a tape measure with or without added weight.  

In order to find the resistance to rotational motion of the tape measure, the force to lift the 150 g 

feed vertically while attached to the feed boom was measured. Although the target mass of the 

feed will be 100 g, we analyzed the torque for 150 g to give a factor of safety. Additionally, the 

force to unroll a tape measure horizontally was measured and then doubled for both of the 

reflector deployers. These forces were found fastening a spring with a calibrated spring constant 

to the end of the tape measure and pulling while measuring the deflection of the spring. The 

spring constant was found by hanging known masses off of the spring and measuring the 

deflection to find the spring constant k. Using the spring deflection equation, the force required 

to pull two tape measures out horizontally, and one tape measure with added feed mass 

vertically, was found. This force was used to find the resistance to rotational motion for each 

case which is the torque need to overcome this resistance. Knowing the torque needed and the 

relative rotational speed needed of the motor, we were able to calculate the required motor 

power. The power required is approximately is less than 1/10th horsepower for each case. The 

stall torque for the motors we expect need to be above 4.54 kgfcm for the horizontal deployers 

and 3.98 kgfcm for the vertical deployment of the feed. A note of advice from our sponsor was to 

quadruple the estimated torque needed by your motors as a safety precaution. Luckily, we were 
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able find low speed, high torque motors easily. The motor we chose is from Servocity, and runs 

at a speed of 26 rpm which is slow enough for our needs and has a maximum stall torque of 46.8 

kgfcm, which is well above our estimated torque needed, even when quadrupled. This motor will 

be used for both the horizontal deployment of the reflector and the vertical deployment of the 

feed. The motor has a power requirement of 6 -18 V which can easily be achieved with the use of 

batteries and will be controlled by an on/off switch located on the battery pack. Calculations and 

supporting evidence is located in Appendix H. 

 

 
Figure 39. 26 RPM Mini Econ Gear Motor from Servocity. 

 

Knowing the motor specifications, we needed to figure out how to transmit the power from the 

motor to the shaft located between the two deployers. We initially considering using a dual shaft 

motor that would be mounted directly between the two deployers. However, dual shaft motors 

that have the required maximum stall torque needed were far too large to make fit into our 

storage volume. So a smaller single shaft motor using two gears with a 1:1 gear ratio would help 

maintain our compact space requirements, and will allow us to mount our motor off center of the 

shaft. The motor placement for the vertical feed deployment is a much simpler task because there 

is enough space for the motor to be mounted in line the deployer and directly power the deployer 

without any gearing.  

 

As for the power transmission to the horizontal deployment of the reflector, shaft sizes must be 

determined in order to size the gears. The minimum diameter of the shaft was found using the 

known torque, speed, and power that the motor is generating. These calculations can be seen in 

Appendix H.  The minimum shaft diameter was found to be 2.1 mm. The selected motor has a 

shaft size of 4 mm so we can expect that not to have any deflection. The shaft between the two 

deployers was chosen to be 12 mm. This was chosen because it is less than the inner diameter of 

the spool located inside the deployers, it is large enough to fit a keyway into and drive the 

deployers, and it is above the calculated minimum diameter. This shaft is also a standard size to 

make it easy to fit bearings and gears.  
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Knowing both the size of the shaft located on the motor as well as the size of the shaft driving 

the deployers, we were able to size gears accordingly. Because the diameter of the motor is 

approximately 1 in or 12 mm, we needed to size the gears  to not interfere with the motor 

housing or any other components. So, gears with a pitch diameter of 1 in were chosen because 

they do not interfere with the motor housing. In order to ensure that the selected gears would be 

strong enough, calculations were done in Appendix H. These calculations show that when using 

steel gears, the maximum allowable stress for our case is almost 6000 psi. This value is well over 

anything that this gear will see and in fact has a safety factor of over 1000. This solidified our 

gear selection with a 32-tooth steel gear with a diametral pitch of 1 in and a face width of 0.5 in. 

Because we need multiple of the same gear, but with different inner diameters we decided to 

select a 1 ft rod of gear stock so the inner diameter can easily be machined and we will have 

enough stock for many gears in the case of damage, incorrect machining, or any other problem 

that we may occur. McMaster-Carr sells this stock in English units only; which is why these gear 

calculations were done with English units as opposed to metric. These gears will be fastened 

onto the corresponding shafts using set screws. Figure 40 below shows the CAD model of the 

boom deployer motor and gear system. 

 

 

Figure 40. CAD Model of the Boom Deployer Motor and Gear System 

 

As stated earlier, power transmission to the feed deployer is much simpler. The motor is going to 

be mounted directly next to the feed deployer and power it via a 4 mm to 12 mm shaft coupler. 

This shaft coupler is a standard size also found at Servocity. The motor shaft drives the coupler, 

which drives the deployer shaft, which drives the spool inside the deployer via a keyway in the 

12 mm shaft. Because this motor is driving less load more simply than the reflector deployer 

transmission, it can be assumed that the strength of these shafts and components will suffice. 
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4.6 Deployer Assessment 

 

 

Figure 41. Deployer Casing 

 

The deployer casing size was determined by a simple tape roll diameter calculation provided by 

www.giangrandi.ch. The calculation determines what the outer diameter a roll of tape material 

will be if you input the length and thickness of the stretched-out configuration of that same 

material. This calculation showed us that the booms, with a thickness of 0.010 in and length of 

2.15 m, can theoretically be rolled into a small diameter of 4.9 cm. We chose to nearly double 

this estimate, however, because the calculation was intended for tape-like materials, which are 

much more elastic than the steel we will be using. To ensure that the booms can indeed be coiled 

onto the spool, we designed the outer diameter of the spool casing to be 8 cm, and assumed an 

inner diameter of 2cm.  

 

The bearings from McMaster-Carr were selected primarily for the size compatibility. Since our 

shaft is not subject to high torque or a large number of cycles, we determined that we do not need 

extensive calculations to prove the yield strength or fatigue resistance of the bearings. The 

relatively mild conditions that our power transmission system resides in allowed us to have 

freedom in the type of bearings we chose. Because of the low speed and torque required of our 

power transmission, we do not expect any significant amount of stress or wear on our bearings. 

 

Similar to the bearings, we selected the fasteners for our design completely based on size and 

compatibility with the thin components we are using. Since the aluminum plates used for the 

housing vary in thickness from 0.5 cm to 1.5 cm, the fastener size that was most suitable for all 

applications was the metric size of 4 mm. This corresponds to the ISO metric M4 standard 

fastener which is what we are using for most of our fastener. Since our deployment module 

prototype is not subject to any excessive static or dynamic loads, there is no need to perform 

extensive analysis on the structural integrity of the fasteners. However, the design of the actual 
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model that will be sent to space should consider the dynamic loads of the rocket launch to ensure 

that the fasteners and structures will not fail. 

 

4.7  Deviation from Required Specifications 

 

In order to move forward with less emphasis on theoretical design and more emphasis on a 

physical prototype, we have relaxed a few required specifications that we were originally 

constrained by. The first relaxed specification, which we have already mentioned, involves a 

deviation from the exact three-dimensional paraboloid shape. This is due to the higher cost and 

larger lead time of forming individualized parabolic shapes for the ribs. In theory, each rib would 

be a different parabolic shape and a subsequent iteration of this design should include exact rib 

parabolas. As it stands, the non-standard nature of parabolic booms and Nitinol wires require 

custom ordering. Thus, we have also relaxed the requirement that we would only use 

commercial, off-the-shelf parts. Also, the original storage volume specification of all 

components fitting inside a 20 cm x 20 cm x 40 cm box has been relaxed since both the feed 

cylinder and the constant-force reel will be located on top of our housing. Another constraint that 

we relaxed is the requirement that our prototype withstand a simulated rocket launch load with 

either a 50g static load or shaker table test. We do not find it reasonable to focus too much on the 

structural integrity of our design as we wish to focus our attention on obtaining the parabolic 

reflector shape. Our primary objective is to obtain the λ/20 tolerance of 0.5 cm, but our ability to 

accomplish this is completely dependent on the success of our heat treatment or string tensioning 

designs.  We want to emphasize that we have designed our module to have the opportunity to 

succeed, we just need to perform several trials during the building phase.  

 

Chapter 5: Product Realization 

 

After completing the detailed design phase is complete and agreeing upon a final design and 

parts list, we have completed manufacturing and testing. Our team has composed a detailed list 

of the parts used, the suppliers for the stock parts or the commercial off-the-shelf products used, 

as well as an analysis of the costs that have occurred. Many of the less complex parts have been 

manufactured at the Cal Poly machine shops; however, certain parts needed more specialty 

attention. A Design Safety Identification Checklist, shown in Appendix C, has been completed to 

ensure the safety of all the team members as well as those present during project demonstration. 

A detailed plan for how each component has been manufactured is presented in this section. 

Timing for each manufacturing phase is outlined in the Gantt Chart in Appendix B. A drawing 

packet has been included in Appendix G that shows a wide range of drawings from exploded 

assembly views to individual dimensioned part drawings. 
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5.1  Manufacturing of Booms 

 

As mentioned above, certain parts such as the tape measure booms were going to be formed 

using heat treatment or cold working methods. Heat treatment consists of pinning or molding the 

boom material and then heating it up in a large oven until the boom’s natural shape is the correct 

parabolic shape previously determined through analysis. For our 2 m long booms, we have 

selected 17-7 stainless steel strips that would have been performed by Burbank Steel Treating 

Inc. These booms will be approximately 2.15 m long and have an axial bend similar to that of a 

tape measure. They will also be curved parabolically fitting the shape discussed in earlier 

sections.  The benefit to Using 17-7 stainless steel strips is that when heat treating, there is no 

need for an oil quench and no loss of carbon content in the steel, which allows it to maintain its 

elasticity. These 17-7 steel strips will be purchased from Precision Steel Warehouse, Inc. and 

will sent directly to our contact at Burbank Steel Treating Inc. The lead time and estimate of the 

timing of this exchange is outlined in the Gantt Chart in Appendix B. However due to the 

extended lead time and a potential cost of thousands of dollars, we chose to go with our back up 

plan of using string tensioners to get our parabolic deployment. 

 

Since this version of our project does not require heat treatment, there was no need for the axial 

bend in the boom. This allows for the flat boom to be pulled up by our fishing line tensioners. 

The material used for this boom was going to be 1045 spring steel purchased from McMaster-

Carr and would not be sent to Burbank Steel Treating, Inc. for heat treatment. The fishing line 

tensioners will be fixed to the endpoint of the boom through a hole. What was actually used was 

tape measure material cut from a 35 foot Dewalt tape measure. This tape measure is installed 

with the axial bend facing down so the boom is fairly rigid, can be pulled parabolically by 

tensioners, and can still be rolled up.  

 

This method has been tested and seen in Figure 42 below. The tensioner pulls on the upside 

down tape measure material until it is curved to a parabolic shape. 

 

 

 
Figure 42. Testing tape measure curvature capabilities. 
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Both booms are fixed to our spool at one end using two M2 x 0.4 mm screws. The holes for 

which were made using a drill press located at the Cal Poly Machine Shops.  

 

The feed boom, rather than be parabolically shaped, needed to be perfectly shaped and rounded 

axially for stiffness. It is made of the same tape measure material as the horizontal booms. It has 

the same holes drilled in for attachment to the spool but will also have holes for attachment of 

the feed at the opposite end. These booms can be seen in Figure 43 below. 

 

 
Figure 43. Tape measure booms used for vertical and horizontal deployment. 

 

 

5.2   Manufacturing of Ribs 

 

The material chosen for the ribs of the ribbed reflector are nitinol rods because of its elasticity. 

Because this material is very difficult to work with, our ribs will be purchased pre-formed from 

Fort Wayne Metals in Fort Wayne, IN. They will heat treat the nitinol to make sure its natural 

resting position is the parabolic shape that we require. While ideally, these ribs would be perfect 

shape and have the correct focal point, that would require each individual rib to have a different 

focal length and therefore a different shape. This is because as the ribs go up the lengthwise 

parabolic booms, the distance they are away from the focal point changes. For the purposes of 

our prototype and our limited budget requirements, we ordered and received 25 ribs that are all 

the same shape. We also expected these ribs to have a long lead time, possibly more than a 

month. So they were ordered right away. The correct shape for the extended nitinol ribs  is 

shown below in Figure 44. 
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Figure 44. CAD Model of the Nitinol Rod Used as the Reflector Ribs. 

 

Unfortunately, Fort Wayne could not produce 1 meter long ribs and could only send us a 

maximum length of 24 inches. So because of this, our team embedded two ribs, side-by-side to 

reach the full length of the reflector. The actual ribs purchased are shown below in Figure 44. 

 

 As mentioned in earlier sections, these ribs were embedded in the Mylar reflector material by 

taping and sandwiching the ribs onto the Mylar reflector. 

 

The entire reflector will be mounted to the lengthwise booms once all the ribs are fully 

embedded. This can be seen below in Figure 45. 

 

 
Figure 45. Assembled Mylar reflector. 

 

The mounts consist of small Mylar collars glued onto the reflector. This allows for the booms to 

slide in and out of the reflector. These collars can be seen in Figure 46 below.  
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Figure 46. Mylar Collars 

 

This assembly did not need the use of any technical equipment was done in a place large enough 

for the entire unfolded reflector to be spread. 

 

5.3  Manufacturing of Antenna Housing 

 

The manufacturing of the antenna housing was one of the first things we assembled. This helped 

us get an understanding of our space requirements and allow us to adjust as we completed the 

other sub-assemblies.  

 

The storage volume consists of five, 10 mm thick 6061 aluminum stock plates cut to the correct 

dimensions as seen in the drawing list in Appendix G. Only five sides are closed with the front of 

the storage volume being open for the deployment of the reflector. The dimensions of this 

storage volume is 20 cm x 20 cm x 40 cm as required by our engineering specifications. The 

stock aluminum were purchased from Metals Depot and were cut and assembled in the Cal Poly 

machine shops using a vertical band saw shown in Figure 47 below.  
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Figure 47.  Manufacturing of housing plates. 

 

The antenna housing needed various holes in it for mounting positions of other components so 

those holes will be drilled by our team using a drill press. The storage volume was bolted 

together using M4 x 0.7 mm sized fasteners. This antenna housing assembly is shown below in 

Figure 48. A slot will be cut in the top plate of the storage volume where the feed deployer can 

pass through.  
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Figure 48. Exploded View of Storage Volume 

 

The storage volume also contains a 3D printed stopper to help contain the folded reflector. It was 

3D printed by our sponsor, Stellar Exploration, Inc. The polycarbonate plastic stopper will be 

mounted to the storage volume using size M4 x 0.7 mm fasteners. We expect the storage volume 

to take up to 2 weeks including the 3D printed stopper. It was decided to make the side plates of 

the housing out of 3/16th thick clear acrylic sheet as to be able to see the internal components. 

The full Housing including the 3D printed stopper can be seen below in Figure 49. 

 

 
Figure 49. Manufactured housing and stopper 
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5.4  Manufacturing of Various Deployer Housings 

  

The deployer housings, because of their complicated shape and complex slot, was rapidly 

prototyped via 3D printing. Stellar Exploration Inc., was our main point of contact for access to 

the 3D printers. The material used in these 3D printer is polycarbonate plastic and was strong 

enough for our purposes. These printers took about to a day or two each, and was given a total of 

a week to be finished. The difficulty with using other manufacturing methods for this part is that 

each deployer housing is slightly different because of space constraints.  Also, the curved 

parabolic slot on the front of the deployers would be almost impossible to cut using other tools. 

This is why 3D printing is the best choice. 

 

 
 

Figure 50. Side-by-side Comparison of Reflector Deployer Housing and Feed Deployer Housing 

 

The reflector deployers are mounted using holes located on the flanges of the deployers and will 

be fastened to the storage volume using M4 x 0.7 mm bolts and nuts into the corresponding 

position. The deployers are mounted to the very back of the storage volume to increase the 

amount of space inside for the folded reflector. The feed deployer is mounted to the motor and 

power transmission housing using the same screws. The completed 3D printed deployer housings 

are shown below in Figure 51. In order to accommodate our change in boom material the front 

slots of the deployer housings were opened up using a Dremel. 
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Figure 51. 3D printed deployer housings 

 

The fully assembled deployers inside the housing can be seen in Figure 52 below. This shows 

both horizontal deployers and the vertical feed deployer mounted inside the housing. 

 

 

Figure 52. Mounted horizontal and vertical deployers. 
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5.5   Manufacturing of Spool 

 

The horizontal deployer spools were made of a 6061 aluminum 40 mm cylindrical stock. In order 

to make this stock our spool, we used the Cal Poly Machine Shops. All members of our group 

are yellow tag certified which allows us to use lathes. The aluminum stock pieces were turned 

down to the outside diameter of 80 mm and then turned down in the middle to 20 mm create the 

spool. The center of the spool contains a 12 mm hole drilled out with a keyway allowing for the 

shaft to turn the spool when the motor is on. Both spools for each horizontal deployer were cut 

from the same piece of 40 mm, 1 ft long cylindrical stock which is found on McMaster-Carr. The 

spool also contains small M2 x 0.4 mm sized threaded holes on its inner diameter for the booms 

to be bolted to. An exploded model of the deployer spool is shown below in Figure 53. 

 

 

 

Figure 53. Exploded CAD Model of the Deployer Casing and Spool. 

 

This part turned out to be much more difficult than we expected and required the help of the Cal 

Poly Machine shop techs to operate the CNC lathe to turn down the inner diameter and out 

flanges of the spool. Figure 54 below shows the spool being turned down on a manual lathe prior 

to being turned in the CNC lathe. 
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Figure 54. Turning spool on a manual lathe 

 

The following figure shows the finished aluminum 6061 spool after being turned on the CNC 

lathe.  

 

 
Figure 55. Completed Spool 

 

For the vertical feed deployer spool, we decided to try a 3D printed spool printed by Stellar 

Exploration Inc. Because the vertical feed deployer requires less torque overall, the 3D printed 



60 
 

spool is fine for the vertical feed deployment. The 3D printed spool can be seen in Figure 56 

below. 

 

 

 
Figure 56. 3D Polycarbonate spool 

 

5.6   Manufacturing of Shafts  

 

 The shaft is a very simple design. It is made from a small 12 mm diameter steel rotary shaft 

found on McMaster-Carr. The shaft comes keyed which allows for us to mount and power our 

gears and spools. The material is a 1045 carbon steel used for rotary purposes. This shaft will not 

take very much time to manufacture because all that need to be done to it is cut to right length 

and mount gears, spools, and bearings to it. Because McMaster is so fast and reliable we do not 

expect a long lead time for any of the parts ordered from them. Once the shaft is obtained we can 

expect to have the shaft within a day. Many of these parts will be made in conjunction with one 

another or made by different people. This is outlined in the manufacturing schedule in the Gantt 

Chart in Appendix B.  

 

After cutting the shaft in the chop saw, the rough edges had to be ground down the make sure the 

shafts could fit into our bearings. One shaft is the larger main shaft which is approximately 40 

cm long and the small shaft is to transmit power to the feed deployer and is approximately 8 cm 

long. Each shaft as a key in it that is 4 mm that allows for power transmission to the spools. The 

figure below shows the grinding down of the shaft edges. 
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Figure 57. Grinding of the main shaft. 

 

The completed main shaft and feed shaft can be seen below in Figure 58. Each shaft is made 

from 1045 steel to guarantee there is now way for bending or torsion to occur. 

 

 
Figure 58.  Completed main and feed shaft.  

 

5.7   Manufacturing of Gears 

 

The gears were from a high-load metal gear rod stock with a 20 degree pressure angle, a pitch of 

32, with 32 teeth. The pitch diameter of this gear stock is 1 inch. This stock was1 ft long and 

provided us with enough material for multiple sets of our gears.  
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The gears will be cut to allow for a face width of 0.5 inches and a small set screw, size M5 6 mm 

long drilled directly into the gear. This differs from our design because there is now now 

smoothed out section for the set screw. The smooth rounded sections for the set screw were 

going to be turned and smoothed out using a lathe before cutting the gear off the stock. However, 

with the advice of the shop techs, we just drilled and tapped the hole for the set screw directly 

into the teeth of the gear. The set screw allows for a rigid attachment of the gear to the shaft. 

Figure 59 below shows the gear rod stock we plan to purchase from McMaster-Carr. 

 

 

 

  
Figure 59. Gear Rod Stock from McMaster-Carr. 

 

The two gears we need for our design will be the exact same except for the inside diameter 

which will either be 12 mm for the deployer shaft or 4 mm for the motor shaft. They contain the 

same parameters and set screw location. In Figure 60 below, gears shaft is mounted in the lathe 

with a center-hole about to be drilled into it. 

 

 

 
Figure 60. Using lathe to drill concentric 12 mm hole into gear shaft. 
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The long stock allows for us to have an abundance of extra gear material to account for mistakes 

and for us to make multiple sets. But we were able to cut, drill, and tap 2 gears within 1 day of 

manufacturing. Figure 61 below shows the completed gears used.  

 

 

 
Figure 61. Completed gears mounted on main shaft and motor. 

 

5.8   Mounting of Motors 

 

The motors used are the 26 rpm Mini Econ motors purchased from ServoCity which required 

motor mounts to help attach them to the module housing. The mount is connected to the motor 

and then using the extra threaded holes on the motor mount, will be mounted to an aluminum 

6061 angled motor mount that we manufactured in the Cal Poly machine shops using an end 

mill. The end mill was used because the angled mount has only flat surfaces perfect for milling.  

The assembly for the boom deployer motor mount is shown below in Figure 62. 

 

 



64 
 

 
Figure 62. CAD Model of the Boom Deployer Motor Mount. 

 

The completed motor mount can be seen in the previous section in Figure 61. It can be seen that 

the bottom plate is welded on. This was performed with the help of the Cal Poly Shop techs. 

Although because of the small nature of the motor mount and our inexperience with welding 

equipment, it was decided that for the feed motor mount below, we bolted the bottom plate onto 

the mount to avoid the unsightly nature of the welding job. 

 

 

The motor for the feed deployer will be mounted in a similar fashion with an angled aluminum 

mount but instead is fastened to the power transmission housing. The power transmission 

housing will be manufactured using the same type of aluminum as the motor mounts using an 

end mill. The power transmission housing is then mounted to the back of the storage volume 

using threaded holes and M4 x 0.7 mm fasteners. The feed motor, shown below in Figure 63 is 

connected to the feed deployer via a 4mm to 12mm shaft coupler purchased from ServoCity.  

 

 
Figure 63. CAD Model of the Feed Deployer Motor Mount. 
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The timing for this mount assembly took an estimated 2 weeks to get fully assembled due to the 

high demand of the end mills. The completed feed motor mount can be seen in Figure 64 below. 

 

 

 

Figure 64. Completed feed motor mount 

 

5.9   Manufacturing of Mylar Reflector 

The Mylar reflector was purchased from Amazon due to the fast lead time and low cost. The 

Mylar sheet needed to be 2 m x 1m and is approximately 2 mils thick. Extra Mylar and tape was 

used to create the strips needed for embedding the ribs and for if the Mylar gets damaged. The 

sleeves needed for the booms were made from extra mylar attached to the bottom of the Mylar 

using tape. 

 

 

 

Figure 65. Rib and Boom position in Reflector 

 

Construction of the Mylar reflector heavily depended on the lead time of the nitinol ribs, which 

arrived on May 23, 2017.  Once the ribs were obtained, the construction of the Mylar reflector 
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took less than a day. The completed reflector containing nitinol ribs is shown below in Figure 66. 

This reflector is not being tensioned in the lengthwise direction. 

 

 
Figure 66. Completed nitinol reflector. 

 

It can be seen from the image above that the horizontal curvature is slight even with the additions 

of the nitinol rods. While the curvature is very slight in the design. The weight of the reflector is 

weighing down the rods slightly.  

 

 

5.10  Components and Fasteners 

 

All the fasteners mentioned above will be purchased from McMaster-Carr and doubled in case 

they are lost or broken. The bearing for the deployers will also be purchased from McMaster-

Carr. The bearings will be press fit onto the shaft in their correct location on the deployers.  

 

5.11  Assembly  

 

The antenna housing was the first to be assembled. This gave us a good idea of how much space 

we had to work with as well as all the mounting points need to put all the components together. 

The housing assembly including a 3d printed polycarbonate stopper, printed by Stellar 

Exploration, Inc. as well as the newly included acrylic side walls, is shown below in Figure 67. 
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Figure 67. Completed housing assembly. 

 

The reflector deployer assembly consists of the two horizontal reflector deployers, their spools, 

and their booms. The deployers and fully extended and tensioned booms can be seen in Figure 

68. 

 

 

 
Figure 68.  Fully extended deployer assembly with acylic plexiglass side walls and tape measure 

material booms. 

 

The feed deployer assembly is put together and mounted to the top of the power transmission 

housing. This can be seen below in Figure 69 below. 

 



68 
 

 

 
Figure 69. Feed deployer assembly. 

 

The power transmission includes the main shaft, the main motor mount and motor, the gears, and 

the bearings used. This power transmission is used to drive the two main horizontal reflector 

deployers. The power transmission is covered by the power transmission housing which is mad 

of aluminum 6061 angle purchased from Mcmaster-Carr. The main motor is powered by a 

variable voltage power supply that is wired to the motor and connected to the wall outlet.The 

power transmission assembly, minus the housing, can be seen in Figure 70 below. 

 

 

 
Figure 70.  Power transmission to reflector deployers. 

 

The reflector assembly containing the Mylar reflector material, the nitinol ribs, the boom collars 

and string tensioners and the fully manufactured prototype can be seen below in Figure 71.  
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Figure 71. Final manufactured reflector and deployer prototype. 

 

5.12 Final Prototype  

 

The final prototype differs from the planned design in ways that have been mentioned above and 

in some additional ways. The first way it differs is the use of acrylic side plates  

 Instead of additional aluminum side plates. This was recommended by our sponsor and was 

intended to help see what was going on inside the module. This proved to be very beneficial in 

troubleshooting various problems. 

 

Another way that the final prototype differs from the planned design is the use up upside-down 

tape measure material booms as opposed to heat-treated booms or flat spring steel booms. We 

noticed during testing that the tape measure material acts much more favorable when rolling up 

and deploying than spring steel does. It can also be pulled into a parabolic shape with tensioners 

much more easily than spring steel. Because of this change, the exit slots in the deployer casing 

needed to be widened.  

 

When tensioning the horizontal booms, the tensioning points need to be in line with the booms as 

opposed to mounted in the middle using the eyebolt. So screws were mounted to the back of the 

module that alow the string tensioners to be tied around and remain in line with the booms. 

These changes can be seen in Figure 71 above. 

 

Also, when considering how to power our motors, we thought it would be beneficial to use a 

variable voltage power supply that plugs into a wall outlet. This was to determine what voltage 

works best for our deployment module. The voltages range from13.5 V, to 18 V, and up to 30 V. 
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We tried up to 18 V but noticed we were breaking more motors at that high voltage and decided 

to keep it at 13.5 V. 

Another difference is the amount of ribs used. When trying to maximize space we noticed that 

having the reflector folded as tightly as we could only allows for five ribs as opposed to the 

thirteen ribs we designed for. The ribs we received are also much shorter than design for, 24 

inches rather than a meter, so they had to be doubled up. Doubling the ribs per fold would mean 

we would not have enough ribs if we decided to use 13 full length ribs. 

 

Finally, when considering our feed deployment mechanism, we felt a constant force reel would 

help stabilize our feed boom but, it hindered it instead. So our prototype is unable to deploy 

right-side up. However, after removing the constant force reel, and deploying the feed upside-

down (simulating no gravitational effects), the feed boom deploys straight down to its full length 

of 2 meters. The full prototype extended, and stowed can be see below in Figure 72. 

 

 

 
Figure 72. Final Prototype (Extended and Stowed) 

 

 

5.13  Cost Analysis 

 

We performed a comprehensive cost analysis shown in Appendix F. The cost has been broken 

down by each sub-assembly for estimates for each manufacturing phase.  

 

The antenna housing and all the stock components used to assemble it costs $155.91. The 

reflector deployer assembly will cost approximately $134.36. was a much higher estimate when 

considering heat treated booms, but has since drastically decreased in price from our use of 

booms made from tape measure material. The power transmission costs $281.97. The feed 

deployer will cost $58.57 and the reflector assembly will cost $821.95. This large price point is 

due to the custom ribs ordered from Fort Wayne Steel in order to shape our reflector.  Additional 
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fasteners, motors, manufacturing supplies, and simple components such as the microfilament 

fishing line and power supplies cost $174.92. 

 

When including the cost of shipping to be approximately $93.82, we can estimate our total cost 

to be $1,627.85. This meets our engineering specification of being less than $3000. 

 

5.14 Maintenance and Repair 

 

There is little to no need for maintenance and repair of our prototype since our components will 

not undergo any large loads or excessive lifetime cycles. However, there have been a few cases 

of overexerting our motor and having to replace them. The motors are quite inexpensive so they 

are easy to replace. The only aspect of the design that we have repeatedly adjusted is the folding 

and storage of the Mylar reflector as well as after deployment since it will experience the most 

drastic movements from storage to deployment. In that sense, the reflector is most prone to 

fatigue and possible tear; thus, the Mylar will need to be replaced and the Nitinol rods and 

sleeves will need to be reinstalled accordingly. Since the cost of Mylar is relatively inexpensive 

and can be purchased in bulk quantities, maintenance and repair costs are low. Nitinol, our most 

expensive component is also our strongest and most resilient so it is doubtful that these will ever 

need replacing.  

 

 

5.15  Safety Considerations 

 

The main safety concern associated with our deployment module lies with the rotary motion of 

the gears and shaft. Possible safety hazards include getting body parts or hair caught in the 

rotating objects which can cause injury. To mitigate this safety hazard and limit potential 

interference with the reflector, we designed an inner housing to prevent accidental access to the 

rotating gears and shaft. Our project includes the use of highly elastic materials, such as stainless 

steel and Nitinol, which are prone to violent movements after being deflected and released. This 

causes the potential hazard of accidentally hitting people. To mitigate this risk, we will wear 

safety glasses when handling highly elastic objects. Another safety concern lies in the 

manufacturing and machining of our components. As we are responsible for the prototype to be 

built, it is impossible to completely avoid this risk. To limit the risk of injury, we will abide by 

all the rules set forth by the Cal Poly machine shop and always wear personal protective 

equipment (PPE) when operating machinery.  

 

 

5.16  Resources and Timing 

 A list of resources is presented in Appendix F. This document is a list of all the supplier we will 

use over the course of the manufacturing of our deployable antenna. It also contains shop 

resources and personnel that are required for the completion of our project. 
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An additional schedule is located in the Gantt Chart in Appendix B that details our time 

estimates for each manufacturing phase. These phases include: ordering of long lead parts, 

storage volume assembly, reflector deployer assemblies, power transmission assembly, feed 

deployer assembly, reflector assembly, and full antenna deployer assembly. These phases may 

overlap in order to create a finished product by May 2017 and be ready for testing. 

 

It should be noted that delays are very likely and that these time estimates are just a guide for us 

to maintain focus.  

 

 

Chapter 6: Design Verification 

 

The testing of our built prototype quantified how close our prototype met the original 

engineering specifications. While a deployable antenna for a CubeSat may be intended for space, 

our prototype was not, and we measured performance based on Earth’s 1G gravity and at room 

temperature. This should be kept in mind when analyzing the results and assessing the 

effectiveness of our prototype. It is also worth noting that we originally planned to run tests such 

as a shake table test to simulate launch loads and temperature tests to simulate low-earth orbit 

temperatures. As mentioned previously, the shake table test and temperature tests were omitted 

since it was decided that we should focus on achieving a successful deployment rather than 

preparing for an actual launch. 

 

One of the key components to a successful satellite, aside from the reflector, is the feed that the 

reflector bounces signals towards. Although we were not responsible for building a working 

feed, we still needed to simulate the mass of the feed by using a steel cylinder. Our original goal 

for the feed was to successfully be able to deploy the mass 2-meters in length straight up, and we 

attempted to accomplish this by using a constant force reel to balance the weight of our cylinder. 

When we tested this method, it proved to be successful up to about half of a meter. After half of 

a meter, the feed boom twisted and eventually buckled due to the constant force reel pulling the 

boom down in one direction. One possible solution to this would be to use more constant force 

reels to balance the load, but this seemed unnecessary since this would only solve the issue of 

deploying the feed in 1G, and would not be useful in actual space applications. Understanding 

that the original intent of the reel was to offset the effect of gravity, we performed another test by 

deploying the feed upside down, and the feed struggled to deploy with the constant force reel and 

deployed flawlessly without it. This confirmed our suspicions that gravity would have an 

enormous impact on our ability to deploy the feed from our prototype. This test can be seen in 

Figure 73 below. 
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Figure 73. Upside-down feed deployment test 

 

We performed a number of tests to assess the ability of our prototype to deploy a curved shape 

for the parabolic reflector. We began by perfecting the deployment of straight booms before we 

added the strings to tension the booms into a curved shape. Figure 74 below shows the initial 

testing of our booms and string tensioners. In these tests, we had the booms initially start in their 

deployer housing, then turned them on to see them unwind into their shape. It took a lot of fine 

tuning of the strings before we decided by inspection that the deployed curvature was acceptable 

to add the Mylar reflector.  

 

 
Figure 74. Initial testing of the booms with string tensioners. 
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After we successfully achieved an acceptable curvature with just the booms and strings, we 

added the Mylar reflector to the ribs. Since our order for the Nitinol that we used for the ribs took 

so long, we initially installed the Mylar reflector without ribs, and fastened them to the booms 

with several collars as detailed earlier in this report. This allowed us to test if our theoretical zig-

zag folding method for the reflector would actually succeed. Figure 75 below shows that we 

were successfully able to fold the Mylar as originally planned which validated that our planned 

folding method would be effective.  

 

 
Figure 75. Side view of folded Mylar reflector stored in housing.  

 

We then tested the deployed shape of the reflector with metal wire rather than the Nitinol ribs, 

which initially gave the reflector an imperfect look, but still managed to simulate a similar load 

and stiffness to the actual ribs. This proved that the booms would be able to sustain the weight of 

the Mylar and the ribs in a 1G environment. 

 

When we finally received the shipment for the Nitinol, we embedded them into the Mylar, and 

performed the deployed shape test again. This time, the shape was much more visually appealing 

and there looked to be potential for the geometry to be close to the theoretically exact shape. 

Finally, we attempted to run a full deployment by initially folding the reflector along with the 

embedded Nitinol ribs from the deployed position into the main housing. When it was fully 

stored in the housing, we attempted to run the deployment by starting the motors. Unfortunately, 

after several different attempts, the motors were unable to push the reflector out of the housing 

since the ribs expanded in the storage volume and created too much friction to exit as planned. 

We initially supplied the motors with 13.5 V, but after that failed a few times, we supplied the 

motor with 18 V. After several iterations of this, the motors finally burned out. Although the 

deployed shape proved to be parabolic as designed, the final tests of the entire prototype 
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deployment ended up being a failure, and the recommendations to improve this for future 

designs are detailed in the next section. 

 

 
Figure 76. 3-D scanning the reflector (spray painted black) to assess shape. 

 

One of the highest risk engineering specifications was the parabolic tolerance of the reflector at 

its fully deployed position. This also had one of the most vulnerabilities towards skewness from 

Earth’s gravity (aside from the feed), which would not be an issue if our prototype was in space. 

In order for the antenna feed to receive S-band communication signals, the reflector must be 

within 0.5 cm of the ideal shape at all points on the reflector. For us to measure the accuracy of 

the shape, our team used Cal Poly Innovation Sandbox’s Microsoft Xbox Kinect to take a three-

dimensional scan of our prototype. The three-dimensional scan was taken as a .stl file and we 

hoped to convert this to a .sldprt file in SolidWorks, for further analysis. However, the 3D scan 

was too fuzzy and we were not able to repair the scans we took enough since they had too many 

faces to import to SolidWorks. Instead, we used a measuring tape to measure the vertical height 

at 12 difference locations along our deployed reflector. From there, we compared it to the ideal 

meshed geometry which revealed heights at 5 cm intervals and exported these node locations to 

MATLAB. Our MATLAB code, shown in Appendix H.2, compares the measured points to the 

theoretical points and outputs an rms (root-mean-square) error using the calculation taken from 

www.navipedia.net: 

 

 
where i is the index for each nodal location corresponding to a fixed location, n is the total 

number of nodes measured, and ΔUi is the difference in vertical height from the ideal shape to 

the shape of our prototype at location i. This value is subject to the accuracy and precision of our 
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tape measure value, which is why we only take into account nodes spaced 5 cm apart. Any more 

nodes would not necessarily yield a more accurate rms error. 

 

We determined the rms error to be 15.2 cm which indicates that we were far from our original 

goal of 0.5 cm. We had expected a large error since we struggled obtaining the proper curvature 

throughout the project. A more qualitative assessment of the accuracy of our deployed reflector 

is shown below in Figure 77 where we placed the ideal shape next to the 3D scanned model. The 

inaccuracy is clear in this images. 

 

 
 

 
Figure 77. Ideal Parabolic Reflector overlaid with the 3D scanned reflector. 

 

In order to assess if our prototype met the weight requirements, we weighed the prototype on a 

typical bathroom scale. We measured the weight of our prototype to be 19 lbs. which was 

successfully under our maximum weight requirement of 50 lbs. 
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To determine how much power our prototype used during deployment, we used a digital 

multimeter and measured the power supplied to the motors. We measured the power 

consumption of the deployment to be 10.8 W which was under our maximum power requirement 

of 10 W.  

 

Each test is described in more detail in the Design Verification Plan (DVP) in Appendix D and 

summarized in the table below. 

 

Table 6. Summary of original requirements and testing results. 

Parameter Requirement Result 

Reflector Size 2 m x 1 m (L x W) Pass: Size very close to goal 

Shape Tolerance λ/20 (0.5 cm for 3 GHz signal) Fail: Crinkled reflector, non-ideal 

curvature, approximations made 

Storage Volume 20 cm x 20 cm x 40 cm Pass: neglected feed 

Weight 50 lbs Pass: 19 lbs 

Power Requirement 10 W Fail: 10.8 W 

Budget $3000 Pass: $1627.85 

 

 

 

Chapter 7: Conclusions and Recommendations 

 

The design and manufacture of a small unit which can deploy a large parabolic reflector is no 

simple task, and our team has an increased appreciation for why this has never been done before. 

Among the more challenging aspects of the problem are achieving the complicated curvature 

(and doing so accurately), deploying in two directions (both with their own curvatures), 

packaging the reflector into the small housing, and (in our case) enabling the prototype to work 

in a standard Earth gravity environment. To summarize the main points of our prototype’s 

results, the small storage volume requirement was met with the exception of a couple small items 

and the small amount of reflector that sticks out, the fully-deployed half-antenna size is slightly 

under the stated goal of 2m x 1m but still within reach of the target, and the reflector curvature is 

well out of the specified tolerance goal and has many wrinkles, yet still follows a general 

parabolic shape. Most unfortunately, the prototype cannot actually deploy the antenna as 

intended. The feed can be successfully deployed only when oriented upside-down, and because 

the reflector is so bunched in the housing and the ribs press so firmly against the walls, there is 

too much resistance for the selected motor to be able to push out the booms and deploy the 

reflector in the length direction. 

 

A number of manufacturing errors contributed to the issues experienced with the final prototype. 

One of the major issues during testing was that the two reflector booms would not deploy evenly 

and were never quite in the same position. We realized that this discrepancy occurred because of 
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the way the spools were machined. One spool had the boom attachment point on the same side as 

the keyway, while on the other spool the attachment point was placed on the opposite side from 

its keyway. The result was that the booms were always 180° out of phase, since their keyways 

had to be aligned due to their sharing the same shaft. One boom was always slightly behind the 

other, leading to a somewhat uneven deployment. When the tensioners were applied, one boom 

would pull back into the deployer a little bit instead of tensioning the boom upward as intended, 

making the reflector slightly lopsided. Correctly machining the two spools to match each other 

would mitigate this issue.  

 

During a discussion late into the detailed design phase, it was suggested that the side plates of the 

housing be made of plexiglass instead of aluminum so that one could see the internal 

components of the prototype. This idea was adopted without thinking to change any of the other 

housing plates, namely the top plate, to plexiglass. The plexiglass side plates developed some 

cracks under the weight of the 10cm thick top plate. In hindsight, we realized that aluminum was 

definitely not needed for the top plate for our purposes, so if a similar prototype were to be 

developed, that plate could also be made of plexiglass. However, for prototypes and eventual 

products intended to endure launch loads and space conditions, aluminum is definitely 

recommended over plexiglass for the sake of strength and structural integrity of the housing. 

  

Another problem which perplexed our team for several days involved the tape measure being 

used for the booms. After performing some initial deployer testing, it was observed that the tape 

measure had been cut to a length of 2m, while it actually needed to be around 2.15m, since the 

boom must reach a length of 2m after being curved. New tape measure strips were cut to this 

length from the same tape measure as the first ones. After installing the new booms into the 

deployers and attempting more deployment tests, the observed behavior was significantly worse 

in that the tape measure would get bunched up in the reflector and struggled to actually extend, 

and when they did it was with very jerky, discontinuous motions. Eventually we discovered that 

the axial curvature of the tape measure steel actually changes slightly along its length, and that 

this difference in curvature led to the different boom behaviors observed. The longer booms, 

which were cut from segments that were further in to the coil of tape measure, were found to be 

less curved and more flattened out, thus being wider and more easily jammed at the deployer 

exits. To avoid this problem (assuming actual tape measures are still to be used in further 

prototype iterations), the booms should be cut close to the free end of different tape measures of 

the same type. Unfortunately, our team did not have time to get a fresh tape measure and cut new 

booms, so the original booms were used and thus the prototype’s reflector is a little bit smaller 

than the stated goal of 2m when curved.  

 

Although Fort Wayne Metals was found to be the vendor who could supply us with the parabolic 

Nitinol ribs within the time and monetary constraints of our project, the longest Nitinol wires 

they could produce were 2ft, and the design calls for ribs that stretch the entire width of the 
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reflector (1m). Because Fort Wayne Metals required a minimum purchase of 25 ribs and we only 

used 5, extra ribs were used to place two ribs side by side at each fold in the reflector so that the 

combined ribs reached across the entire width. While this gave the reflector better structural 

integrity and was certainly better than letting the unsupported edges of the Mylar sag, placing the 

two ribs side by side inevitably changes the curvature they provide. While the difference was not 

noticeable visually, this factor should be considered for future iterations. Our team recommends 

that another vendor or process be selected that can produce full-sized 1m ribs. 

 

During the completion and testing of our final prototype, several design problems detrimental to 

the prototype’s performance became apparent. Perhaps the most critical design flaw was in 

underestimating the amount of resistance the motor experiences from the bunched-up reflector 

and the friction resulting from the ribs pressing strongly against the interior of the housing. This 

effect was very difficult to predict before actually constructing the prototype and observing its 

behavior. The structure that the ribs provide to the reflector prevented it from folding in clean 

accordion-style folds as we had hoped, developing many wrinkles in the Mylar. One way to look 

at this problem is to say that the friction from the reflector is too great and needs to be 

minimized; another way is to say that the motor underperforms and needs to be replaced with a 

larger motor with higher torque capabilities to overcome the friction and bunching, since at 18V 

and under stall conditions, the gears in the gear box of the motors use grind up and break. 

 

The other significant design problem was the deployer design. Although the booms were 

successfully deployed without the ribbed reflector, throughout all deployment testing it was clear 

that the deployers were not ideal as the booms would jam and come out in jumps rather than one 

continuous, smooth motion. One factor of the poor deployer design was that it was originally 

designed for housing a heat-treated 17-7 steel boom, which we anticipated would require a larger 

coil diameter. Because heat-treatment was abandoned and actual tape measure was used for the 

prototype’s booms, the outer coil diameter was much smaller than expected, and the boom had 

room to uncoil partially inside the deployer housing. The casing being too big led to jamming 

and irregular boom deployment. In general, there was a lot of friction between the tape measure 

and the deployer casing, especially at the exits, which had to be widened significantly. In 

hindsight, our team has decided that the main issue with the deployers is the driving method. 

Using the motor to directly drive the spool such that it pushes the boom out almost unavoidably 

results in some uncoiling in the casing as well as jamming as the edges of the tape measure get 

pressed against the exit geometry. Direct spool-drive seems more suited to pulling the booms in 

than pushing them out.  

 

Another problem is that although the tape measure reflector booms were oriented upside-down to 

prevent them from snapping under the influence of the reflector’s weight and the tension from 

the fishing line, one of the booms repeatedly snapped when placed under the tension required to 

lift the ends of the reflector to the necessary height. A likely reason for this is because this boom 
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developed a slight kink in it, making it more susceptible to snapping, something which is 

possible to occur with these tape measure booms in this design. 

 

With the current design, there is no place for the fishing line tensioners to coil or rest when the 

reflector is stowed inside the housing. The fishing line is simply tucked in with the bunches of 

the Mylar reflector and dangle around the top plate, which could lead to tangling. 

 

A final design issue involves the feed deployment. As discussed earlier, the single tape measure 

boom and constant-tension cable were not sufficient to lift the feed mass to the full 2m height. It 

was suggested instead that since the feed’s weight would not cause the observed buckling in 

space, that the test be performed upside-down. However, if it were desired to perform a straight 

up test in a standard gravity environment, more tensioning cables would be needed to balance the 

feed boom. 

 

While the prototype certainly has a number of issues, our team believes that the overall design of 

our project is viable for achieving the stated goals, and with further development could be used 

to create a real, working CubeSat parabolic antenna deployer. 

 

Several positive findings were made based on our final prototype. The Mylar used for the 

reflector is much tougher than expected and never showed signs of tearing, suggesting it as a 

good candidate for further iterations. Nitinol was also found to be a good material selection, as it 

allowed the ribs to undergo extreme bending yet still behave elastically and return to its original 

curvature when no longer constrained. Although the ribs pressing against the housing walls when 

in the stowed position prevented the motor from being able to deploy the reflector, the ribs did 

perform their role in deploying the reflector in the width direction when the reflector was pulled 

manually to unravel in the length direction. String tensioners were shown to be effective at 

achieving a curvature that mimics a parabola. The folding and unfolding techniques employed 

are plausible. Finally, all the booms were successfully deployed. 

 

Given all of the problems and successes observed, our team decided upon several 

recommendations for Stellar Exploration, Inc, and any future teams attempting to improve this 

design and develop further iterations on the prototype. The first recommendation would be to 

continue to pursue the option to heat treat steel booms such that they can coil up and then uncoil 

into the desired parabolic curvature. Our team was unable to fully investigate this possibility due 

to lack of time, miscommunication with the heat treatment specialist we were in contact with, 

and little pre-existing knowledge of heat treatment processes. Although we struggled to find 

specialists who were willing and able to take on the job, it still seems like a possible solution 

which would avoid the complications of tensioning techniques and likely yield a more accurate 

curvature. If heat treatment is eventually decided to be impossible or otherwise impractical, then 

more research and testing should be conducted with string tensioning. Our design limited us to 
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only tensioning the booms at the ends, but it’s possible that alterations on the design could allow 

for several tensioning points which may provide more control and adjustability over the 

curvature. We suspect a large amount of testing would need to be conducted to fine tune the 

tensioners to yield the best shape, as the problem is very difficult to solve analytically. Another 

suggestion regarding the tensioners would be to include stepper motors and a microcontroller, 

which could be used to adjust the tensioners and booms to achieve the desired shape and even 

produce several different shapes for different antenna needs. A highly necessary change would 

be to improve the deployer design to reduce friction and jamming of the boom inside the casing. 

We recommend using a tighter-fitting casing so that the coil is not free to expand and bunch up, 

and also to change the driving method from being spool-driven to driving a roller or pair of 

rollers at the deployer exit to pull the boom off the spool, as this pulling action will likely be 

much more successful than the pushing action of the motorized spool. Also, future teams 

working on this project should search for a vendor who can supply Nitinol ribs of the full 1m 

long length to avoid having to double them up. A smaller diameter of Nitinol could also probably 

be used to strike a better balance between being rigid enough to support the reflector but also not 

press so hard against the housing module walls when stowed. More ribs could be embedded 

along the reflector to improve the overall shape, but this will affect the way the reflector must be 

folded and stowed. In the long run, the deployers, drive mechanism, and the rest of the 

deployment unit ought to be scaled down to fit two more reflector deployers, another motor, and 

another ribbed reflector into the housing for deploying the other side of the antenna. The entire 

project eventually would need to be scaled down further to match actual, practical CubeSat 

volumes. Finally, the project should undergo another level of design and zero-gravity testing to 

meet the challenging conditions of space and to survive the launch loads and vibrations 

associated with rocket travel. 

 

Although our prototype suffered a number of issues, we believe we have demonstrated that this 

style of deployment could work to successfully deploy a parabolic antenna reflector from a 

CubeSat. We hope that we have provided Stellar Exploration, Inc with a useful prototype and 

plenty of key research, data, and suggestions for the future of this project. Working on this 

project has been a very beneficial and challenging learning experience for our team, and we are 

all grateful for the opportunity. We wish future teams working on this project the best of luck! 
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Appendix A: QFD Diagram 

 

 
 

 



 

 

Appendix B.1: Planned Gantt Chart 
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Appendix B.2: Actual Gantt Chart 
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Appendix C: Design Safety Hazard Identification Checklist 

 
 

 

 

 

 

 

 

 

 

 



 

Description of Hazard Planned Corrective Action Planned 

Date 
Actual 

Date 

Operation of this 

design includes the 

rolling of tape 

measure booms and 

rolling and unrolling 

of reflector material 

Tape measure boom deployer will be 
enclosed in housing to make sure nothing 
 gets tangled inside the roller. During 
operation the operator must not interfere 
with the unfurling of the reflector to make sure 

nothing gets caught or jammed in the rollers. 

3/3/2017  5/2/17 

Because the project is 

relatively small 
in size, it may be 

subject to falling 
off table or other high 

places. 

In order to prevent the project from falling, 
causing damage, or injuring someone, we will 
refrain from placing the project in high places 
as well as make sure it is properly mounted 
during use. 

3/3/2017  4/30/17 

The reflector is quite 

large and 
cumbersome. When 

deployed it 
could take up a lot of 

space. 

When the project is in use, we make sure we 
have adequate space so the deployment will 
not bump, run into, or knock over anything 
in its path. 

3/3/2017  5/23/17 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix D: Design Verification Plan 

 

 
 



 

 

Appendix E: Materials Consulting Group Report 
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Statement of Scope and Intent 

The purpose of this initial report is to provide technical data sheets and vendor information for 

low cost, prototyping-friendly boom and rib materials for the Stellar Exploration Deployable 

Antenna. Although the final assembly is intended to launch into low earth orbit (LEO), the 

following space-related design criteria were not accounted for in this materials selection 

process, as the scope of this senior project is to demonstrate the feasibility of their deployable 

design. 

 Minimized mass (cost-per-pound savings) 

 Typical service temperature of LEO (-170C - 120C) 

 Atomic oxygen bombardment 

 Ultraviolet ray exposure 

 

Design Objective 

With the current design, the booms and ribs are required to deploy from a dimensionally 

constrained stowed position. This necessitates a material rated for high elasticity. Consider a 

beam of thickness t, bent elastically to a radius R. The surface strain of this beam is 

 

𝜀 =  
𝑡

2𝑅
 

 

and the maximum stress is 

 

𝜎 ≥ 𝐸
𝑡

2𝑅
 

 

This stress must not exceed the yield strength, modulus of rupture, endurance limit, or fracture 

strength (whichever is least), represented as 𝜎𝑓. The minimum radius to which the beam can 

bend without damage is  

 

𝑅 ≤
𝑡

2
[

𝐸

𝜎𝑓
] 

 

 

Thus, assuming no other significant load constraints, the design objective is to maximize the 

material property index 

 

𝑀1 =
𝜎𝑓

𝐸
 

 

  



 

Design Constraints 

In addition to design objective, the following constraints were identified: 

Minimum 50 GPa Young’s Modulus - A minimum amount of stiffness is required to 

feasibly test the prototype under Earth’s gravity. 50 GPa was selected arbitrarily to facilitate 

the selection process. 

Minimum 8% Elongation at Break – A minimum Elongation at break is specified to 

remove materials that, despite maximizing the material property index, are unable to deflect 

considerably without brittle fracture. 

Availability – Proprietary and highly specialized alloys were not included in this selection 

effort. 

 

Using CES EduPack 2016, five alloys and their associated vendors were identified for the 

booms and ribs. Technical data sheets for each of these alloys are found at the end of this 

report. 

 

 
Figure 1. Ashby Chart visualizing the Material Property Index being maximized. 

 

 

  



 

Vendor Information 

When ordering material, it is necessary to ask for the supplier’s recommended heat treatment 

and post-processing for maximum elasticity, as the heat treatments identified (if any) in this 

report are general guidelines only. 

304L Stainless 

http://smt.sandvik.com/en/products/strip-steel/strip-products/spring-steel/#tab-materials 

AISI 1340 

http://www.specialsteel-jy.com/1340H.html 

AISI 4150 

http://www.bluebladesteel.com/content.cfm/Materials/Alloy-Steel/category_id/102/page_id/149 

Nitinol 

http://www.memry.com/products-services/material 

http://www.samaterials.com/37-nitinol 

Ti 6-2-4-6 

https://www.ulbrich.com/ti-6-2-4-2-s/ 

 

Addendum - Dimensional Considerations 

Note that with the current design, up to 2 meters in length of material is required for the boons. It 

may be difficult to find vendors that will supply material in the correct condition and dimensions. 

Please consider this manufacturing feasibility consideration when working towards the final 

design. 

 

Addendum – Initial Prototyping 

It is expected that the specialty materials listed in this report will have a considerable lead time 

and cost. For this reason, it is suggested that common products available in bulk forms be used 

for initial prototyping efforts. McMaster-Carr has torsional springs and constant-force springs 

which can be used for this purpose: 

http://smt.sandvik.com/en/products/strip-steel/strip-products/spring-steel/#tab-materials
http://www.specialsteel-jy.com/1340H.html
http://www.bluebladesteel.com/content.cfm/Materials/Alloy-Steel/category_id/102/page_id/149
http://www.memry.com/products-services/material
http://www.samaterials.com/37-nitinol
https://www.ulbrich.com/ti-6-2-4-2-s/


 

https://www.mcmaster.com/#torsion-springs/=15rvxg2 

https://www.mcmaster.com/#constant-force-springs/=15rvxmv 

  

https://www.mcmaster.com/#torsion-springs/=15rvxg2
https://www.mcmaster.com/#constant-force-springs/=15rvxmv


 

Stainless steel, austenitic, AISI 304, 1/2 hard 
General information 
Designation 
AISI 304, wrought 
Condition Solution annealed; 1/2 hard 
UNS number S30400 
US name ASTM WP304, ASTM TP304, ASTM 

S30403, ASTM S30400, ASTM MT304, 
ASTM F304, AMS 5697, AMS 5567, 
AMS 5566, AMS 5565, AMS 5564, AMS 
5563, ~ASTM S30453 

EN name X5CrNi18-10, LW20 
EN number ~1.4948, ~1.4301 
ISO name X5CrNi18-9E, X5CrNi18-9, 

~X5CrNiN19-9, ~X5CrNiN18-8 
GB (Chinese) name ML0Cr18Ni9, 0Cr18Ni9(-R), 0Cr18Ni9(-

Q), 0Cr18Ni9(-L), 0Cr18Ni9, 
~0Cr19Ni9N(-R), ~0Cr19Ni9N(-Q), 
~0Cr19Ni9N(-L), ~0Cr19Ni9N 

JIS (Japanese) name SUS304, SUSF304, SUS304-WSB, 
SUS304-WSA, SUS304TPY, 
SUS304TPD, SUS304TP, SUS304TKC, 
SUS304TKA, SUS304TBS, SUS304TB, 
SUS304FB, SUS304-CSP, SUS304N1-
WPB, SUS304N1-WPA, SUS304 TF, 
SDP4, ~SUS304L, ~SCS13AA-CF 

Tradenames 
STAINLESS STEEL GRADE 304, Aalco (UK); 304 STAINLESS STEEL, AK Steel (USA); STAINLESS 
STEEL 304, Vegas Fastener (USA); 304 STAINLESS STEEL, Electronic Alloys (UK); 304L STAINLESS 
STEEL, Electronic Alloys (UK); STAINLESS STEEL GRADE 304L, Aalco (UK);  304L STAINLESS 
STEEL, AK Steel (USA); 
Typical uses 
Architectural applications; beer barrels; brewing; cafeteria equipment; cookware; cryogenic plant; food 
and dairy-processing equipment; heat-exchanger tubes and supports; pressure vessels; process plant 
parts. 

Composition overview 
Compositional summary 
Fe66-74 / Cr18-20 / Ni8-11 (impurities: Mn<2, Si<1, C<0.08, P<0.045, S<0.03) 
Material family Metal (ferrous) 
Base material Fe (Iron) 

Composition detail (metals, ceramics and glasses) 
C (carbon)  0 - 0.08 % 
Cr (chromium)  18 - 20 % 
Fe (iron) * 65.8 - 74 % 
Mn (manganese)  0 - 2 % 
Ni (nickel)  8 - 11 % 
P (phosphorus)  0 - 0.045 % 
S (sulfur)  0 - 0.03 % 
Si (silicon)  0 - 1 % 

Price 
Price * 1.63 - 1.78 USD/lb 

Physical properties 
Density  0.284 - 0.291 lb/in^3 

  



 

Mechanical properties 
Young's modulus  27.6 - 29.4 10^6 psi 
Yield strength (elastic limit)  100 - 116 ksi 
Tensile strength  149 - 325 ksi 
Elongation * 5 - 20 % strain 
Compressive strength * 100 - 116 ksi 
Flexural modulus * 27.6 - 29.4 10^6 psi 
Flexural strength (modulus of rupture)  100 - 116 ksi 
Shear modulus  10.7 - 11.7 10^6 psi 
Bulk modulus  19.4 - 21.9 10^6 psi 
Poisson's ratio  0.265 - 0.275  
Shape factor  31  
Hardness - Vickers * 350 - 570 HV 
Hardness - Rockwell B * 109 - 120  
Hardness - Rockwell C * 36 - 54  
Hardness - Brinell * 48.7 - 78.8 ksi 
Fatigue strength at 10^7 cycles * 63.2 - 109 ksi 
Fatigue strength model (stress range) * 41.5 - 167 ksi 
Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles 

_ 

Mechanical loss coefficient (tan delta) * 3.1e-4 - 5e-4  

Impact & fracture properties 
Fracture toughness * 71.9 - 190 ksi.in^0.5 

Thermal properties 
Melting point  2.55e3 - 2.64e3 °F 
Maximum service temperature  1.38e3 - 1.7e3 °F 
Minimum service temperature  -328   °F 
Thermal conductivity  8.09 - 9.82BTU.ft/hr.ft^2.°F 
Specific heat capacity  0.117 - 0.127 BTU/lb.°F 
Thermal expansion coefficient  8.89 - 10 µstrain/°F 
Latent heat of fusion * 112 - 123 BTU/lb 

Electrical properties 
Electrical resistivity  65 - 77 µohm.cm 
Galvanic potential * -0.15 - -0.07 V 

  



 

Magnetic properties 
Magnetic type Non-magnetic 

Optical properties 
Transparency Opaque 

Bio-data 
Food contact Yes 

Restricted substances risk indicators 
RoHS (EU) compliant grades? False 

Processing properties 
Metal casting Unsuitable 
Metal cold forming Excellent 
Metal hot forming Acceptable 
Metal press forming Excellent 
Metal deep drawing Excellent 
Machinability - speed  85 - 100 sfm 
Weldability - MIG Excellent 
Weldability - plasma Excellent 
Weldability - SAW Excellent 
Weldability - TIG Excellent 
Brazeability Fair 
Carbon equivalency  0.733 - 1.03  

Durability 
Water (fresh) Excellent 
Water (salt) Excellent 
Weak acids Excellent 
Strong acids Acceptable 
Weak alkalis Excellent 
Strong alkalis Excellent 
Organic solvents Excellent 
Oxidation at 500C Excellent 
UV radiation (sunlight) Excellent 
Galling resistance (adhesive wear) Limited use 

Notes 
Aluminum bronze is the most suitable mating material to minimize galling. 

Flammability Non-flammable 

Corrosion resistance of metals 
Pitting resistance equivalent number (PREN)  18 - 20  
Pitting and crevice corrosion Low (<20) 
Stress corrosion cracking Moderate 
Intergranular (weld line) corrosion Restricted 
Inorganic acids Moderate 
Organic acids Moderate 
Alkalis Moderate 
Humidity / water Excellent 
Sea water Moderate 
Sour oil and gas Moderate 

Primary production energy, CO2 and water 
Embodied energy, primary production  2.73e4 - 3.01e4 BTU/lb 

Sources 
56.7 MJ/kg (Hammond and Jones, 2008); 76.6 MJ/kg (Ecoinvent v2.2) 

CO2 footprint, primary production  4.31 - 4.76 lb/lb 
Sources 

4.53 kg/kg (Ecoinvent v2.2) 

NOx creation * 0.0293 - 0.0324 lb/lb 
SOx creation * 0.0501 - 0.0554 lb/lb 



 

Water usage * 3.82e3 - 4.24e3 in^3/lb 

Processing energy, CO2 footprint & water 
Rough rolling, forging energy * 2.67e3 - 2.95e3 BTU/lb 
Rough rolling, forging CO2 * 0.465 - 0.514 lb/lb 
Rough rolling, forging water * 116 - 174 in^3/lb 
Extrusion, foil rolling energy * 5.21e3 - 5.76e3 BTU/lb 
Extrusion, foil rolling CO2 * 0.909 - 1 lb/lb 
Extrusion, foil rolling water * 186 - 280 in^3/lb 
Wire drawing energy * 1.92e4 - 2.12e4 BTU/lb 
Wire drawing CO2 * 3.35 - 3.7 lb/lb 
Wire drawing water * 466 - 699 in^3/lb 
Metal powder forming energy * 1.63e4 - 1.79e4 BTU/lb 
Metal powder forming CO2 * 3.02 - 3.34 lb/lb 
Metal powder forming water * 1.14e3 - 1.71e3 in^3/lb 
Vaporization energy * 4.67e6 - 5.16e6 BTU/lb 
Vaporization CO2 * 815 - 900 lb/lb 
Vaporization water * 1.25e5 - 1.88e5 in^3/lb 
Coarse machining energy (per unit wt removed) * 586 - 647 BTU/lb 
Coarse machining CO2 (per unit wt removed) * 0.102 - 0.113 lb/lb 
Fine machining energy (per unit wt removed) * 4.02e3 - 4.44e3 BTU/lb 
Fine machining CO2 (per unit wt removed) * 0.701 - 0.775 lb/lb 
Grinding energy (per unit wt removed) * 7.83e3 - 8.66e3 BTU/lb 
Grinding CO2 (per unit wt removed) * 1.37 - 1.51 lb/lb 
Non-conventional machining energy (per unit wt removed) * 4.67e4 - 5.16e4 BTU/lb 
Non-conventional machining CO2 (per unit wt removed) * 8.15 - 9 lb/lb 

Recycling and end of life 
Recycle False 
Embodied energy, recycling * 6.06e3 - 6.66e3 BTU/lb 
CO2 footprint, recycling * 1.1 - 1.22 lb/lb 
Recycle fraction in current supply  35.5 - 39.3 % 
Downcycle False 
Combust for energy recovery Combust for energy recovery 
Landfill False 
Biodegrade Biodegrade 
Possible substitutes for principal component 
Iron is the least expensive and most widely used metal. In most applications, iron and steel compete 
either with less expensive nonmetallic materials or with more expensive materials having a property 
advantage. Iron  and steel compete with lighter materials, such as aluminum and plastics, in the motor 
vehicle industry; aluminum,concrete, and  wood in construction; and aluminum, glass, paper, and plastics 
in containers. 

Geo-economic data for principal component 
Principal component Iron 
Typical exploited ore grade  45.1 - 49.9 % 
Minimum economic ore grade  25 - 70 % 
Abundance in Earth's crust  4.1e4 - 6.3e4 ppm 
Abundance in seawater  0.0025 - 0.003 ppm 
Annual world production, principal component  2.26e9   ton/yr 
Reserves, principal component  1.57e11   l. ton 
Main mining areas (metric tonnes per year) 
Australia, 530e6 
Brazil, 389e6 
Canada, 40e6 
China, 1.32e9 
India, 150e3 
Iran, 37e3 



 

Kazakhstan, 25e6 
Russia, 102e6 
South Africa, 67e6 
Sweden, 26e6 
Ukraine, 80e6 
United States of America, 52e6 
Venezuela, 30e6 
Other countries, 88e6 

Eco-indicators for principal component 
Eco-indicator 95  413 millipoints/lb 
Eco-indicator 99  192 millipoints/lb 

Notes 
Keywords 
RDN 260, Roldan S.A. (SPAIN); RDN 240, Roldan S.A. (SPAIN); RDN 210, Roldan S.A. (SPAIN); RDN 
340, Roldan S.A. (SPAIN); YOONSTEEL S2, Yoonsteel (Malaysia) Sdn. Bhd (MALAYSIA); ARGESTE 
4306 LA/LF/SB/VC, Stahlwerk Ergste Westig GmbH (GERMANY); STAINWELD 308-15, Lincoln Electric 
Co. (USA); STAINWELD 308-16, Lincoln Electric Co. (USA); EASTERN STAINLESS TYPE 347, Eastern 
Stainless Corp. (USA); PROJECT 70 STAINLESS TYPE 347, Carpenter Technology Corp. (USA); 
EASTERN STAINLESS TYPE 304L, Eastern Stainless Corp. (USA); PROJECT 7000 STAINLESS TYPE 
304L, Carpenter Technology Corp. (USA); PROJECT 70 STAINLESS TYPE 304L, Carpenter Technology 
Corp. (USA); SPARTAN REDHEUGH 347S31, Spartan Redheugh Ltd (UK); 
Standards with similar compositions 
The following information is taken from ASM AlloyFinder 3 - see link to References table for further 
information. 
ONORM M3120 X5CrNi18105 (Austria) 
EN 10088/3(95) 1.4301 (Europe) 
EN 10088/3(95) X5CrNi18-10 (Europe) 
BDS 6738(72) 0Ch18N10 (Bulgaria) 
GB 1220(92) 0Cr18Ni9 (China) 
GB 1221(92) 0Cr18Ni9 (China) 
GB 13296(91) 0Cr18Ni9 (China) 
GB 4232(93) ML0Cr18Ni9 (China) 
GB 4237(92) 0Cr18Ni9 (China) 
GB 4238(92) 0Cr18Ni9 (China) 
GB 4239(91) 0Cr18Ni9 (China) 
GB 4240(93) 0Cr18Ni9(-L,-Q,-R) (China) 
CSN 417240 17240 (Czech Republic) 
SFS 700 X4CrNi189 (Finland) 
SFS 725(86) X4CrNi189 (Finland) 
AFNOR NFA35573 Z6CN18.09 (France) 
AFNOR NFA35574 Z6CN18.09 (France) 
AFNOR NFA35577 Z6CN18.09 (France) 
AFNOR NFA36209 Z5CN18.09 (France) 
AFNOR NFA36607 Z5CN18.09 (France) 
DIN 17440(96) WNr 1.4301 (Germany) 
DIN 17441(97) WNr 1.4301 (Germany) 
DIN EN 10088(95) WNr 1.4301 (Germany) 
DIN EN 10088(95) X5CrNi18-10 (Germany) 
MSZ 4360(87) KO33 (Hungary) 
MSZ 4360(87) X8CrNi1810 (Hungary) 
MSZ 4398(86) KO33 (Hungary) 
IS 1570/5(85) X04Cr19Ni9 (India) 
IS 6527 04Cr18Ni10 (India) 
IS 6528 04Cr18Ni10 (India) 
IS 6529 04Cr18Ni10 (India) 



 

IS 6603 04Cr18Ni10 (India) 
IS 6911 04Cr18Ni10 (India) 
UNI 6901(71) X5CrNi1810 (Italy) 
UNI 6904(71) X5CrNi1810 (Italy) 
UNI 7500(75) X5CrNi1810 (Italy) 
JIS G3214(91) SUSF304 (Japan) 
JIS G4303(91) SUS304 (Japan) 
JIS G4303(91) SUS304J3 (Japan) 
JIS G4304(91) SUS304 (Japan) 
JIS G4305(91) SUS304 (Japan) 
JIS G4305(91) SUS304J1 (Japan) 
JIS G4305(91) SUS304J2 (Japan) 
JIS G4306 SUS304 (Japan) 
JIS G4307 SUS304 (Japan) 
JIS G4308 SUS304J3 (Japan) 
JIS G4308(98) SUS304 (Japan) 
JIS G4309 SUS304 (Japan) 
JIS G4309 SUS304J3 (Japan) 
JIS G4313(96) SUS304-CSP (Japan) 
JIS G4315 SUS304 (Japan) 
JIS G4315 SUS304J3 (Japan) 
DGN B-218 TP304 (Mexico) 
DGN B-224 TP304 (Mexico) 
DGN B-83 304 (Mexico) 
NMX-B-171(91) MT304 (Mexico) 
NMX-B-176(91) TP304 (Mexico) 
NMX-B-186-SCFI(94) TP304 (Mexico) 
NMX-B-196(68) TP304 (Mexico) 
NS 14350 14350 (Norway) 
AS 1449(94) 304 (NSW Australia) 
AS 2837(86) 304 (NSW Australia) 
CSA G110.3 304 (ON Canada) 
CSA G110.6 304 (ON Canada) 
CSA G110.9 304 (ON Canada) 
PNH86020 0H18N9 (Poland) 
STAS 3583(87) 5NiCr180 (Romania) 
GOST O8Ch18N10 (Russian Federation) 
GOST 5632(61) 0KH18N10 (Russian Federation) 
GOST 5632(72) 08Ch18N10 (Russian Federation) 
UNE 36016(75) F.3504 (Spain) 
UNE 36016(75) X6CrNi19-10 (Spain) 
UNE 36016/1(89) E-304 (Spain) 
UNE 36016/1(89) F.3504 (Spain) 
UNE 36087(78) F.3541 (Spain) 
UNE 36087(78) F.3551 (Spain) 
UNE 36087(78) X5CrNi18-10 (Spain) 
UNE 36087(78) X5CrNi18-11 (Spain) 
SS 142332 2332 (Sweden) 
SS 142333 2333 (Sweden) 
ISO 4954(93) X5CrNi189E (International) 
ISO 683-13(74) 11 (International) 
BS 1449/2(83) 304S15 (United Kingdom) 
BS 1449/2(83) 304S16 (United Kingdom) 
BS 1449/2(83) 304S31 (United Kingdom) 
BS 1501/3(73) 304S15 (United Kingdom) 
BS 1501/3(73) 304S29 (United Kingdom) 



 

BS 1501/3(90) 304S31 (United Kingdom) 
BS 1501/3(90) 304S51 (United Kingdom) 
BS 1501/3(90) 304S61 (United Kingdom) 
BS 1502 304S31 (United Kingdom) 
BS 1503(89) 304S31 (United Kingdom) 
BS 1506(90) 304S31 (United Kingdom) 
BS 1554(90) 304S15 (United Kingdom) 
BS 1554(90) 304S31 (United Kingdom) 
BS 3059/2(90) 304S51 (United Kingdom) 
BS 3605 304S18 (United Kingdom) 
BS 3605 304S25 (United Kingdom) 
BS 3605/1(91) 304S31 (United Kingdom) 
BS 3605/1(91) 304S51 (United Kingdom) 
BS 3606(78) 304S22 (United Kingdom) 
BS 3606(78) 304S25 (United Kingdom) 
BS 3606(92) 304S31 (United Kingdom) 
BS 970/1(96) 304S15 (United Kingdom) 
BS 970/1(96) 304S31 (United Kingdom) 
AMS 5501  (USA) 
AMS 5513  (USA) 
AMS 5560H(92)  (USA) 
AMS 5563  (USA) 
AMS 5564  (USA) 
AMS 5565  (USA) 
AMS 5566  (USA) 
AMS 5567  (USA) 
AMS 5639  (USA) 
AMS 5697  (USA) 
AMS 5857(90)  (USA) 
AMS 5868(93)  (USA) 
AMS 7228  (USA) 
AMS 7245  (USA) 
ASME SA182 304 (USA) 
ASME SA213 304 (USA) 
ASME SA240 304 (USA) 
ASME SA249 304 (USA) 
ASME SA312 304 (USA) 
ASME SA358 304 (USA) 
ASME SA376 304 (USA) 
ASME SA403 304 (USA) 
ASME SA409 304 (USA) 
ASME SA430 304 (USA) 
ASME SA479 304 (USA) 
ASME SA688 304 (USA) 
ASTM A167(96) 304 (USA) 
ASTM A182 304 (USA) 
ASTM A182/A182M(98) F304 (USA) 
ASTM A193/A193M(98) 304 (USA) 
ASTM A193/A193M(98) B8 (USA) 
ASTM A193/A193M(98) B8A (USA) 
ASTM A194 304 (USA) 
ASTM A194/A194M(98) 8 (USA) 
ASTM A194/A194M(98) 8A (USA) 
ASTM A213 304 (USA) 
ASTM A213/A213M(95) TP304 (USA) 
ASTM A240/A240M(98) S30400 (USA) 



 

ASTM A249/249M(96) TP304 (USA) 
ASTM A269 304 (USA) 
ASTM A270(95) 304 (USA) 
ASTM A271(96) 304 (USA) 
ASTM A276(98) 304 (USA) 
ASTM A312/A312M(95) 304 (USA) 
ASTM A313/A313M(95) 304 (USA) 
ASTM A314 304 (USA) 
ASTM A320 304 (USA) 
ASTM A336/A336M(98) F304 (USA) 
ASTM A358/A358M(95) 304 (USA) 
ASTM A368(95) 304 (USA) 
ASTM A376 304 (USA) 
ASTM A409 304 (USA) 
ASTM A430 304 (USA) 
ASTM A473 304 (USA) 
ASTM A479 304 (USA) 
ASTM A492 304 (USA) 
ASTM A493 304 (USA) 
ASTM A511(96) MT304 (USA) 
ASTM A554(94) MT304 (USA) 
ASTM A580/A580M(98) 304 (USA) 
ASTM A632(90) TP304 (USA) 
ASTM A666(96) 304 (USA) 
ASTM A688/A688M(96) TP304 (USA) 
ASTM A793(96) 304 (USA) 
ASTM A813/A813M(95) TP304 (USA) 
ASTM A814/A814M(96) TP304 (USA) 
ASTM A851(96) TP304 (USA) 
ASTM A908(95) 304 (USA) 
ASTM A943/A943M(95) TP304 (USA) 
ASTM A965/965M(97) F304 (USA) 
ASTM A988(98) S30400 (USA) 
MIL-S-23195(A)(65) 304 (USA) 
MIL-S-23196 304 (USA) 
MIL-S-27419(USAF)(68) 304 (USA) 
MIL-S-5059D(90) 304 (USA) 
MIL-T-8504B(98) 304 (USA) 
MIL-T-8506A 304 (USA) 
SAE J405(98) S30400 (USA) 
SAE J467(68) 304 (USA) 
 AISI 304 (USA) 
COPANT 513 TP304 (Venezuela) 
COPANT R195 TP 304 (Venezuela) 
 

Links 
ProcessUniverse 
Producers 
Reference 
Shape 
Values marked * are estimates. 
No warranty is given for the accuracy of this data 

  



 

Carbon steel, AISI 1340, tempered at 205°C & oil quenched 
General information 
Designation 
AISI 1340 
Condition Tempered at 205°C & oil quenched 
UNS number G13400, ~H13400 
EN name BS S 156, BS S 157, 38Mn6 
EN number 1.1127 
Typical uses 
General construction; general mechanical engineering; automotive; tools; axles; gears; springs. 

Composition overview 
Compositional summary 
Fe97-98 / Mn1.6-1.9 / C0.38-0.43 / Si0.15-0.35 (impurities: S<0.04, P<0.035) 
Material family Metal (ferrous) 
Base material Fe (Iron) 

Composition detail (metals, ceramics and glasses) 
C (carbon)  0.38 - 0.43 % 
Fe (iron) * 97.2 - 97.9 % 
Mn (manganese)  1.6 - 1.9 % 
P (phosphorus)  0 - 0.035 % 
S (sulfur)  0 - 0.04 % 
Si (silicon)  0.15 - 0.35 % 

Price 
Price * 0.263 - 0.268 USD/lb 

Physical properties 
Density  0.282 - 0.285 lb/in^3 

Mechanical properties 
Young's modulus  29 - 31.2 10^6 psi 
Yield strength (elastic limit)  207 - 255 ksi 
Tensile strength  236 - 289 ksi 
Elongation  8 - 14 % strain 
Compressive strength * 207 - 255 ksi 
Flexural modulus * 29 - 31.2 10^6 psi 
Flexural strength (modulus of rupture)  207 - 255 ksi 
Shear modulus  11.2 - 12.2 10^6 psi 
Bulk modulus  22.5 - 25.4 10^6 psi 
Poisson's ratio  0.285 - 0.295  
Shape factor  15  
Hardness - Vickers  455 - 555 HV 
Fatigue strength at 10^7 cycles * 87.2 - 101 ksi 
Fatigue strength model (stress range) * 76.2 - 115 ksi 
Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles 



 

_ 

Mechanical loss coefficient (tan delta) * 2.2e-4 - 2.8e-4  

Impact & fracture properties 
Fracture toughness * 10.9 - 24.6 ksi.in^0.5 

Thermal properties 
Melting point  2.61e3 - 2.74e3 °F 
Maximum service temperature * 329 - 383 °F 
Minimum service temperature  32   °F 
Thermal conductivity * 26 - 31.8BTU.ft/hr.ft^2.°F 
Specific heat capacity * 0.105 - 0.124 BTU/lb.°F 
Thermal expansion coefficient * 6.11 - 7.22 µstrain/°F 
Latent heat of fusion * 116 - 118 BTU/lb 

Electrical properties 
Electrical resistivity * 15 - 22 µohm.cm 
Galvanic potential * -0.52 - -0.44 V 

Magnetic properties 
Magnetic type Magnetic 

Optical properties 
Transparency Opaque 

Bio-data 
Food contact Yes 

Restricted substances risk indicators 
RoHS (EU) compliant grades? False 

Processing properties 
Metal casting Unsuitable 
Metal cold forming Acceptable 
Metal hot forming Acceptable 
Metal press forming Acceptable 
Metal deep drawing Limited use 
Carbon equivalency  0.647 - 0.747  

Durability 
Water (fresh) Acceptable 
Water (salt) Limited use 
Weak acids Limited use 
Strong acids Unacceptable 



 

Weak alkalis Acceptable 
Strong alkalis Limited use 
Organic solvents Excellent 
Oxidation at 500C Acceptable 
UV radiation (sunlight) Excellent 
Galling resistance (adhesive wear) Acceptable 

Notes 
Aluminum bronze is the most suitable mating material to minimize galling. 

Flammability Non-flammable 

Primary production energy, CO2 and water 
Embodied energy, primary production  1.32e4 - 1.46e4 BTU/lb 

Sources 
19.4 MJ/kg (Dhingra, Overly, Davis, 1999); 23 MJ/kg (Norgate, Jahanshahi, Rankin, 2007); 27.9 MJ/kg 
(Ecoinvent v2.2); 29.2 MJ/kg (Hammond and Jones, 2008); 32.8 MJ/kg (Hammond and Jones, 2008); 34.7 
MJ/kg (Hammond and Jones, 2008); 35.4 MJ/kg (Hammond and Jones, 2008); 37.2 MJ/kg (Sullivan and 
Gaines, 2010); 38 MJ/kg (Hammond and Jones, 2008); 45.4 MJ/kg (Hammond and Jones, 2008) 

CO2 footprint, primary production  2.26 - 2.49 lb/lb 
Sources 

0.396 kg/kg (Voet, van der and Oers, van, 2003); 1.75 kg/kg (Ecoinvent v2.2); 1.81 kg/kg (Voet, van der and 
Oers, van, 2003); 2.23 kg/kg (Voet, van der and Oers, van, 2003); 2.3 kg/kg (Norgate, Jahanshahi, Rankin, 
2007); 2.74 kg/kg (Hammond and Jones, 2008); 2.77 kg/kg (Hammond and Jones, 2008); 2.87 kg/kg 
(Hammond and Jones, 2008); 2.89 kg/kg (Hammond and Jones, 2008); 3.03 kg/kg (Hammond and Jones, 
2008); 3.27 kg/kg (Hammond and Jones, 2008) 

NOx creation  0.0039 - 0.00431 lb/lb 
SOx creation  0.00836 - 0.00924 lb/lb 
Water usage * 1.26e3 - 1.39e3 in^3/lb 

Processing energy, CO2 footprint & water 
Casting energy * 4.67e3 - 5.16e3 BTU/lb 
Casting CO2 * 0.814 - 0.9 lb/lb 
Casting water * 569 - 853 in^3/lb 
Rough rolling, forging energy * 5.63e3 - 6.22e3 BTU/lb 
Rough rolling, forging CO2 * 0.981 - 1.08 lb/lb 
Rough rolling, forging water * 198 - 297 in^3/lb 
Extrusion, foil rolling energy * 1.11e4 - 1.23e4 BTU/lb 
Extrusion, foil rolling CO2 * 1.94 - 2.15 lb/lb 
Extrusion, foil rolling water * 349 - 524 in^3/lb 
Wire drawing energy * 4.14e4 - 4.58e4 BTU/lb 
Wire drawing CO2 * 7.22 - 7.98 lb/lb 
Wire drawing water * 1e3 - 1.51e3 in^3/lb 
Metal powder forming energy * 1.63e4 - 1.79e4 BTU/lb 
Metal powder forming CO2 * 3.02 - 3.34 lb/lb 
Metal powder forming water * 1.14e3 - 1.71e3 in^3/lb 
Vaporization energy * 4.67e6 - 5.17e6 BTU/lb 
Vaporization CO2 * 815 - 901 lb/lb 
Vaporization water * 1.25e5 - 1.88e5 in^3/lb 
Coarse machining energy (per unit wt removed) * 1.03e3 - 1.14e3 BTU/lb 
Coarse machining CO2 (per unit wt removed) * 0.18 - 0.199 lb/lb 
Fine machining energy (per unit wt removed) * 8.46e3 - 9.35e3 BTU/lb 
Fine machining CO2 (per unit wt removed) * 1.48 - 1.63 lb/lb 
Grinding energy (per unit wt removed) * 1.67e4 - 1.85e4 BTU/lb 
Grinding CO2 (per unit wt removed) * 2.92 - 3.22 lb/lb 
Non-conventional machining energy (per unit wt removed) * 4.67e4 - 5.17e4 BTU/lb 
Non-conventional machining CO2 (per unit wt removed) * 8.15 - 9.01 lb/lb 

Recycling and end of life 
Recycle False 
Embodied energy, recycling * 3.48e3 - 3.85e3 BTU/lb 
CO2 footprint, recycling * 0.636 - 0.703 lb/lb 
Recycle fraction in current supply  39.9 - 44 % 



 

Downcycle False 
Combust for energy recovery Combust for energy recovery 
Landfill False 
Biodegrade Biodegrade 
Possible substitutes for principal component 
Iron is the least expensive and most widely used metal. In most applications, iron and steel compete 
either with less expensive nonmetallic materials or with more expensive materials having a property 
advantage. Iron  and steel compete with lighter materials, such as aluminum and plastics, in the motor 
vehicle industry; aluminum,concrete, and  wood in construction; and aluminum, glass, paper, and plastics 
in containers. 

Geo-economic data for principal component 
Principal component Iron 
Typical exploited ore grade  45.1 - 49.9 % 
Minimum economic ore grade  25 - 70 % 
Abundance in Earth's crust  4.1e4 - 6.3e4 ppm 
Abundance in seawater  0.0025 - 0.003 ppm 
Annual world production, principal component  2.26e9   ton/yr 
Reserves, principal component  1.57e11   l. ton 
Main mining areas (metric tonnes per year) 
Australia, 530e6 
Brazil, 389e6 
Canada, 40e6 
China, 1.32e9 
India, 150e3 
Iran, 37e3 
Kazakhstan, 25e6 
Russia, 102e6 
South Africa, 67e6 
Sweden, 26e6 
Ukraine, 80e6 
United States of America, 52e6 
Venezuela, 30e6 
Other countries, 88e6 

Eco-indicators for principal component 
Eco-indicator 95  39 millipoints/lb 

Notes 
Keywords 
ROC 250, Astralloy Wear Technology Corp. (USA); XK1345, Steelmark-Eagle & Globe (AUSTRALIA); 
XK1340, Steelmark-Eagle & Globe (AUSTRALIA); XK1335, Steelmark-Eagle & Globe (AUSTRALIA); A-
1203, AFORA (Aceros Afora S.A.) (SPAIN); 
Standards with similar compositions 
The following information is taken from ASM AlloyFinder 3 - see link to References table for further 
information. 
BDS 6354 40G2F (Bulgaria) 
GB 3077(88) 40Mn2 (China) 
GB 8162(87) 40Mn2 (China) 
GB/T 3078(94) 40Mn2 (China) 
YB/T 5052(93) 40Mn2 (China) 
DIN 42MnV7 (Germany) 
DIN WNr 1.5223 (Germany) 
DGN B-203 1340 (Mexico) 
DGN B-297 1340 (Mexico) 
NMX-B-300(91) 1340 (Mexico) 
AS 1442 K1340 (NSW Australia) 
AS 1442(92) X1340 (NSW Australia) 



 

AS 1443(94) X1340 (NSW Australia) 
ASTM A29/A29M(93) 1340 (USA) 
ASTM A322(96) 1340 (USA) 
ASTM A331(95) 1340 (USA) 
ASTM A519(96) 1340 (USA) 
ASTM A547 1340 (USA) 
ASTM A752(93) 1340 (USA) 
ASTM A829/A829M(95) 1340 (USA) 
DoD-F-24669/1(86)(86) 1340 (USA) 
MIL-S-16974E(86) 1340 (USA) 
SAE 770(84) 1340 (USA) 
SAE J404(94) 1340 (USA) 
 AISI 1340 (USA) 
COPANT 334 1340 (Venezuela) 
COPANT 514 1340 (Venezuela) 
 

Links 
ProcessUniverse 
Producers 
Reference 
Shape 
Values marked * are estimates. 
No warranty is given for the accuracy of this data 

  



 

Low alloy steel, AISI 4150, tempered at 205°C & oil quenched 
General information 
Designation 
AISI 4150 
Condition Tempered at 205°C & oil quenched 
UNS number G41500 
US name SAE  4150, ASTM  4150, ASTM 

G41500, ASTM  1A  1, ASTM 4150H, 
~SAE PS 40, ~SAE 4150H 

GB (Chinese) name 50CrMo 
Typical uses 
General construction; general mechanical engineering; automotive; tools; axles; gears; springs. 

Composition overview 
Compositional summary 
Fe97-98 / Cr0.8-1.1 / Mn0.75-1 / C0.48-0.53 / Si0.15-0.35 / Mo0.15-0.25 (impurities: S<0.04, P<0.035) 
Material family Metal (ferrous) 
Base material Fe (Iron) 

Composition detail (metals, ceramics and glasses) 
C (carbon)  0.48 - 0.53 % 
Cr (chromium)  0.8 - 1.1 % 
Fe (iron) * 96.7 - 97.7 % 
Mn (manganese)  0.75 - 1 % 
Mo (molybdenum)  0.15 - 0.25 % 
P (phosphorus)  0 - 0.035 % 
S (sulfur)  0 - 0.04 % 
Si (silicon)  0.15 - 0.35 % 

Price 
Price * 0.286 - 0.299 USD/lb 

Physical properties 
Density  0.282 - 0.285 lb/in^3 

Mechanical properties 
Young's modulus  29.2 - 30.7 10^6 psi 
Yield strength (elastic limit)  225 - 276 ksi 
Tensile strength  252 - 307 ksi 
Elongation  8 - 12 % strain 
Compressive strength * 225 - 276 ksi 
Flexural modulus * 29.2 - 30.7 10^6 psi 
Flexural strength (modulus of rupture)  225 - 276 ksi 
Shear modulus  11.2 - 12 10^6 psi 
Bulk modulus  22.5 - 25.1 10^6 psi 
Poisson's ratio  0.285 - 0.295  
Shape factor  13  
Hardness - Vickers  475 - 585 HV 
Fatigue strength at 10^7 cycles * 91.4 - 105 ksi 
Fatigue strength model (stress range) * 80.2 - 120 ksi 
Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles 



 

_ 

Mechanical loss coefficient (tan delta) * 2e-4 - 2.6e-4  

Impact & fracture properties 
Fracture toughness * 20.9 - 42.8 ksi.in^0.5 

Thermal properties 
Melting point  2.57e3 - 2.73e3 °F 
Maximum service temperature * 329 - 383 °F 
Minimum service temperature * -54.4 - -0.4 °F 
Thermal conductivity * 23.1 - 26.6BTU.ft/hr.ft^2.°F 
Specific heat capacity * 0.107 - 0.117 BTU/lb.°F 
Thermal expansion coefficient * 6.11 - 7.22 µstrain/°F 
Latent heat of fusion * 114 - 120 BTU/lb 

Electrical properties 
Electrical resistivity  20 - 25 µohm.cm 
Galvanic potential * -0.5 - -0.42 V 

Magnetic properties 
Magnetic type Magnetic 

Optical properties 
Transparency Opaque 

Bio-data 
Food contact Yes 

Restricted substances risk indicators 
RoHS (EU) compliant grades? False 

Processing properties 
Metal casting Unsuitable 
Metal cold forming Excellent 
Metal hot forming Excellent 
Metal press forming Excellent 
Metal deep drawing Limited use 
Carbon equivalency  0.795 - 0.967  

Durability 
Water (fresh) Acceptable 
Water (salt) Limited use 
Weak acids Limited use 
Strong acids Unacceptable 



 

Weak alkalis Acceptable 
Strong alkalis Limited use 
Organic solvents Excellent 
Oxidation at 500C Acceptable 
UV radiation (sunlight) Excellent 
Galling resistance (adhesive wear) Acceptable 
Flammability Non-flammable 

Primary production energy, CO2 and water 
Embodied energy, primary production  1.32e4 - 1.46e4 BTU/lb 

Sources 
19.4 MJ/kg (Dhingra, Overly, Davis, 1999); 23 MJ/kg (Norgate, Jahanshahi, Rankin, 2007); 27.9 MJ/kg 
(Ecoinvent v2.2); 29.2 MJ/kg (Hammond and Jones, 2008); 32.8 MJ/kg (Hammond and Jones, 2008); 34.7 
MJ/kg (Hammond and Jones, 2008); 35.4 MJ/kg (Hammond and Jones, 2008); 37.2 MJ/kg (Sullivan and 
Gaines, 2010); 38 MJ/kg (Hammond and Jones, 2008); 45.4 MJ/kg (Hammond and Jones, 2008) 

CO2 footprint, primary production  2.26 - 2.49 lb/lb 
Sources 

0.396 kg/kg (Voet, van der and Oers, van, 2003); 1.75 kg/kg (Ecoinvent v2.2); 1.81 kg/kg (Voet, van der and 
Oers, van, 2003); 2.23 kg/kg (Voet, van der and Oers, van, 2003); 2.3 kg/kg (Norgate, Jahanshahi, Rankin, 
2007); 2.74 kg/kg (Hammond and Jones, 2008); 2.77 kg/kg (Hammond and Jones, 2008); 2.87 kg/kg 
(Hammond and Jones, 2008); 2.89 kg/kg (Hammond and Jones, 2008); 3.03 kg/kg (Hammond and Jones, 
2008); 3.27 kg/kg (Hammond and Jones, 2008) 

NOx creation * 0.0126 - 0.0139 lb/lb 
SOx creation * 0.0215 - 0.0238 lb/lb 
Water usage * 1.34e3 - 1.48e3 in^3/lb 

Processing energy, CO2 footprint & water 
Casting energy * 4.62e3 - 5.1e3 BTU/lb 
Casting CO2 * 0.806 - 0.89 lb/lb 
Casting water * 563 - 844 in^3/lb 
Rough rolling, forging energy * 6.08e3 - 6.71e3 BTU/lb 
Rough rolling, forging CO2 * 1.06 - 1.17 lb/lb 
Rough rolling, forging water * 210 - 315 in^3/lb 
Extrusion, foil rolling energy * 1.2e4 - 1.33e4 BTU/lb 
Extrusion, foil rolling CO2 * 2.1 - 2.32 lb/lb 
Extrusion, foil rolling water * 374 - 561 in^3/lb 
Wire drawing energy * 4.48e4 - 4.95e4 BTU/lb 
Wire drawing CO2 * 7.81 - 8.63 lb/lb 
Wire drawing water * 1.09e3 - 1.63e3 in^3/lb 
Metal powder forming energy * 1.59e4 - 1.76e4 BTU/lb 
Metal powder forming CO2 * 2.96 - 3.27 lb/lb 
Metal powder forming water * 1.12e3 - 1.67e3 in^3/lb 
Vaporization energy * 4.67e6 - 5.16e6 BTU/lb 
Vaporization CO2 * 815 - 901 lb/lb 
Vaporization water * 1.25e5 - 1.88e5 in^3/lb 
Coarse machining energy (per unit wt removed) * 1.1e3 - 1.21e3 BTU/lb 
Coarse machining CO2 (per unit wt removed) * 0.191 - 0.212 lb/lb 
Fine machining energy (per unit wt removed) * 9.13e3 - 1.01e4 BTU/lb 
Fine machining CO2 (per unit wt removed) * 1.59 - 1.76 lb/lb 
Grinding energy (per unit wt removed) * 1.81e4 - 2e4 BTU/lb 
Grinding CO2 (per unit wt removed) * 3.15 - 3.48 lb/lb 
Non-conventional machining energy (per unit wt removed) * 4.67e4 - 5.16e4 BTU/lb 
Non-conventional machining CO2 (per unit wt removed) * 8.15 - 9.01 lb/lb 

Recycling and end of life 
Recycle False 
Embodied energy, recycling * 3.48e3 - 3.85e3 BTU/lb 
CO2 footprint, recycling * 0.636 - 0.703 lb/lb 
Recycle fraction in current supply  39.9 - 44 % 
Downcycle False 



 

Combust for energy recovery Combust for energy recovery 
Landfill False 
Biodegrade Biodegrade 
Possible substitutes for principal component 
Iron is the least expensive and most widely used metal. In most applications, iron and steel compete 
either with less expensive nonmetallic materials or with more expensive materials having a property 
advantage. Iron  and steel compete with lighter materials, such as aluminum and plastics, in the motor 
vehicle industry; aluminum,concrete, and  wood in construction; and aluminum, glass, paper, and plastics 
in containers. 

Geo-economic data for principal component 
Principal component Iron 
Typical exploited ore grade  45.1 - 49.9 % 
Minimum economic ore grade  25 - 70 % 
Abundance in Earth's crust  4.1e4 - 6.3e4 ppm 
Abundance in seawater  0.0025 - 0.003 ppm 
Annual world production, principal component  2.26e9   ton/yr 
Reserves, principal component  1.57e11   l. ton 
Main mining areas (metric tonnes per year) 
Australia, 530e6 
Brazil, 389e6 
Canada, 40e6 
China, 1.32e9 
India, 150e3 
Iran, 37e3 
Kazakhstan, 25e6 
Russia, 102e6 
South Africa, 67e6 
Sweden, 26e6 
Ukraine, 80e6 
United States of America, 52e6 
Venezuela, 30e6 
Other countries, 88e6 

Eco-indicators for principal component 
Eco-indicator 95  49.9 millipoints/lb 
Eco-indicator 99  89.9 millipoints/lb 

Notes 
Keywords 
MTD 4, Bethlehem Lukens Plate (USA); TKS 50CRMO4, ThyssenKrupp Stahl AG (GERMANY); 
Standards with similar compositions 
The following information is taken from ASM AlloyFinder 3 - see link to References table for further 
information. 
IAS IRAM 4150 (Argentina) 
EN 10083/1(91)A1(96) 1.7228 (Europe) 
EN 10083/1(91)A1(96) 50CrMo4 (Europe) 
AFNOR NFA35565(94) 48CD4 (France) 
AFNOR NFA35565(94) 48CrMo4 (France) 
AFNOR NFA35571 50SCD5 (France) 
DIN 1652(90) 50CrMo4 (Germany) 
DIN 1652(90) WNr 1.7228 (Germany) 
DIN 17201(89) WNr 1.7228 (Germany) 
DIN 17212(72) 49CrMo4 (Germany) 
DIN 17212(72) WNr 1.7238 (Germany) 
DIN 17230(80) 48CrMo4 (Germany) 
DIN 17230(80) WNr 1.3565 (Germany) 
DIN EN 10083(91) 50CrMo4 (Germany) 



 

UNI 3545(80) 51CrMoV4 (Italy) 
DGN B-203 4150 (Mexico) 
DGN B-297 4150 (Mexico) 
NMX-B-300(91) 4150 (Mexico) 
AS 1444 X4150 (NSW Australia) 
AS 1444(96) 4150 (NSW Australia) 
TS 2288(97) 51CrMoV4-17701 (Turkey) 
ASTM A29/A29M(93) 4150 (USA) 
ASTM A322(96) 4150 (USA) 
ASTM A331(95) 4150 (USA) 
ASTM A519(96) 4150 (USA) 
ASTM A752(93) 4150 (USA) 
ASTM A829/A829M(95) 4150 (USA) 
ASTM A866(94) 4150 (USA) 
MIL-B-11595E(88) ORD 4150 (USA) 
MIL-B-11595E(88) ORD 4150 ReS (USA) 
MIL-S-11595 ORD4150 (USA) 
SAE 770(84) 4150 (USA) 
SAE J404(94) 4150 (USA) 
 AISI 4150 (USA) 
COPANT 334 4150 (Venezuela) 
COPANT 514 4150 (Venezuela) 
 C.4733 (Yugoslavia) 
 C.4736 (Yugoslavia) 
 

Links 
ProcessUniverse 
Producers 
Reference 
Shape 
Values marked * are estimates. 
No warranty is given for the accuracy of this data 

  



 

Nickel-titanium alloy, austenitic 
General information 
Overview 
Nitinol exhibits the ability to undergo reversible phase changes (austenitic - martensitic) in the solid state. 
This leads to shape memory and superelastic characteristics, which has resulted in wide spread use in 
applications such as frames for glasses and vascular stents that utilise this shape memory functionality. 
This record represents the performance in the austenitic state. 
Designation 
Ni-45Ti Nitinol 
UNS number N01555 
Typical uses 
Medical device applications including stents, heart valves, guidewires, bone fixation devices and dental 
restorations; Frames for glasses; Mobile phone components; Underwires for bras; Switches or variable 
resistors; 

Composition overview 
Compositional summary 
Ni54-57 / Ti43-46 (impurities: C<0.07, Co<0.05, Fe<0.05, O<0.05, Nb<0.025, Cr<0.01, Cu<0.01, 
H<0.005) 
Material family Metal (non-ferrous) 
Base material Ni (Nickel) 

Composition detail (metals, ceramics and glasses) 
C (carbon)  0 - 0.07 % 
Co (cobalt)  0 - 0.05 % 
Cr (chromium)  0 - 0.01 % 
Cu (copper)  0 - 0.01 % 
Fe (iron)  0 - 0.05 % 
H (hydrogen)  0 - 0.005 % 
Nb (niobium)  0 - 0.025 % 
Ni (nickel)  54.5 - 57 % 
O (oxygen)  0 - 0.05 % 
Ti (titanium)  42.7 - 45.5 % 

Price 
Price * 9.34 - 10.4 USD/lb 

Physical properties 
Density  0.232 - 0.236 lb/in^3 

Mechanical properties 
Young's modulus  5.95 - 12 10^6 psi 
Yield strength (elastic limit)  28.3 - 100 ksi 
Tensile strength  130 - 276 ksi 
Elongation  5 - 50 % strain 
Compressive strength * 59.5 - 69.3 ksi 
Flexural modulus * 8.56 - 9.44 10^6 psi 
Flexural strength (modulus of rupture)  28.3 - 100 ksi 
Shear modulus * 3.42 - 3.77 10^6 psi 
Bulk modulus * 8.56 - 9.44 10^6 psi 
Poisson's ratio  0.32 - 0.34  
Shape factor  14  
Hardness - Vickers * 1.23e3 - 1.43e3 HV 
Fatigue strength at 10^7 cycles * 19.4 - 23.5 ksi 

Impact & fracture properties 
Fracture toughness * 247 - 298 ksi.in^0.5 

Thermal properties 
Melting point  2.34e3 - 2.43e3 °F 
Maximum service temperature * -58 - 212 °F 



 

Minimum service temperature  -459   °F 
Thermal conductivity  9.88 - 10.9BTU.ft/hr.ft^2.°F 
Specific heat capacity  0.196 - 0.204 BTU/lb.°F 
Thermal expansion coefficient  6 - 6.22 µstrain/°F 
Latent heat of fusion  10.2 - 10.6 BTU/lb 

Electrical properties 
Electrical resistivity  82 - 100 µohm.cm 
Galvanic potential * -0.23 - -0.15 V 

Magnetic properties 
Magnetic type Magnetic 

Optical properties 
Transparency Opaque 

Bio-data 
Food contact Yes 

Restricted substances risk indicators 
RoHS (EU) compliant grades? False 

Processing properties 
Metal casting Acceptable 
Metal cold forming Excellent 
Metal hot forming Excellent 
Metal press forming Acceptable 
Metal deep drawing Limited use 

Durability 
Water (fresh) Excellent 
Water (salt) Excellent 
Weak acids Excellent 
Strong acids Acceptable 
Weak alkalis Excellent 
Strong alkalis Excellent 
Organic solvents Excellent 
Oxidation at 500C Excellent 
UV radiation (sunlight) Excellent 
Galling resistance (adhesive wear) Limited use 

Notes 
Tendency to gall when formed but excellent self-mating resistance with minimal lubrication. 

Flammability Non-flammable 

Primary production energy, CO2 and water 
Embodied energy, primary production * 1.44e5 - 1.59e5 BTU/lb 
CO2 footprint, primary production * 20.2 - 22.3 lb/lb 
NOx creation * 0.133 - 0.147 lb/lb 
SOx creation * 0.228 - 0.252 lb/lb 
Water usage * 3.88e4 - 4.29e4 in^3/lb 

Processing energy, CO2 footprint & water 
Casting energy * 5.04e3 - 5.57e3 BTU/lb 
Casting CO2 * 0.879 - 0.971 lb/lb 
Casting water * 614 - 921 in^3/lb 
Rough rolling, forging energy * 4.59e3 - 5.07e3 BTU/lb 
Rough rolling, forging CO2 * 0.8 - 0.884 lb/lb 
Rough rolling, forging water * 169 - 254 in^3/lb 
Extrusion, foil rolling energy * 9.05e3 - 1e4 BTU/lb 
Extrusion, foil rolling CO2 * 1.58 - 1.75 lb/lb 
Extrusion, foil rolling water * 292 - 438 in^3/lb 
Wire drawing energy * 3.36e4 - 3.71e4 BTU/lb 
Wire drawing CO2 * 5.86 - 6.48 lb/lb 



 

Wire drawing water * 815 - 1.22e3 in^3/lb 
Metal powder forming energy * 7.03e3 - 7.77e3 BTU/lb 
Metal powder forming CO2 * 1.23 - 1.36 lb/lb 
Metal powder forming water * 494 - 741 in^3/lb 
Vaporization energy * 4.15e5 - 4.59e5 BTU/lb 
Vaporization CO2 * 72.5 - 80.1 lb/lb 
Vaporization water * 1.11e4 - 1.67e4 in^3/lb 
Coarse machining energy (per unit wt removed) * 873 - 967 BTU/lb 
Coarse machining CO2 (per unit wt removed) * 0.152 - 0.169 lb/lb 
Fine machining energy (per unit wt removed) * 6.9e3 - 7.63e3 BTU/lb 
Fine machining CO2 (per unit wt removed) * 1.2 - 1.33 lb/lb 
Grinding energy (per unit wt removed) * 1.34e4 - 1.48e4 BTU/lb 
Grinding CO2 (per unit wt removed) * 2.34 - 2.58 lb/lb 
Non-conventional machining energy (per unit wt removed) * 4.15e3 - 4.59e3 BTU/lb 
Non-conventional machining CO2 (per unit wt removed) * 0.725 - 0.801 lb/lb 

Recycling and end of life 
Recycle False 
Embodied energy, recycling * 2.14e4 - 2.36e4 BTU/lb 
CO2 footprint, recycling * 3.91 - 4.32 lb/lb 
Recycle fraction in current supply  0.1   % 
Downcycle False 
Combust for energy recovery Combust for energy recovery 
Landfill False 
Biodegrade Biodegrade 

Geo-economic data for principal component 
Principal component Nickel 
Typical exploited ore grade * 0.997 - 1.1 % 
Minimum economic ore grade * 0.1 - 2 % 
Abundance in Earth's crust * 80 - 90 ppm 
Abundance in seawater * 5e-4 - 0.002 ppm 
Annual world production, principal component  1.41e6   ton/yr 
Reserves, principal component  6.99e7   l. ton 
Main mining areas (metric tonnes per year) 
Australia, 240e3 
Brazil, 149e3 
Canada, 225e3 
China, 95e3 
Colombia, 75e3 
Cuba, 66e3 
Dominican Republic, 12.5e3 
Indonesia, 440e3 
Madagascar, 26e3 
New Caledonia, 145e3 
the Philippines, 440e3 
Russia, 250e3 
South Africa, 48e3 
Other countries, 274e3 

Notes 
Other notes 
Nitinol demonstrates both superelasticity and shape memory functionality due to it being able to undergo 
phase changes in the solid state. Martensitic and austenitic crystal structures are possible and it is the 
reversible transition between these two phases that results in these unique material properties.  
 
At low temperatures below the transition temperature nitinol exists in the martensitic phase, whereas 
above this temperature it exists in the austenitic phase. This transition temperature varies depending on 



 

the composition of the nitinol and can be from -50°C to 150°C. The shape of the nitinol structure, known 
as the parent shape is defined in the high temperature austenitic phase and is remembered by the 
material, even when it is deformed at lower temperatures. So when the structure is returned to the 
austenitic phase the parent shape is returned and demonstrates thermal shape memory. 
 
The closely related effect of superelasticity in nitinol also results from this transition between phases, but 
instead of temperature the application of stress causes the phase change. Within a certain temperature 
range it is possible to apply a stress to a nitinol structure that changes the material from the austenitic 
phase to the martensitic phase, whilst causing a shape change. When the stress is removed the 
austenitic phase is restored and the nitinol structure returns to is parent shape. So applying and then 
removing a stress to nitinol materials can result in the same effect as cooling and heating it through its 
transition temperature. 
Keywords 
Fort Wayne FWM NiTi, Johnson Matthey NITI, Memry, NASA SP-5110, NDC SE508 Tubing, NDC SE508 
Wire, NDC SM495 Wire,Special Metals Body-Temperature Ni-Ti, Special Metals Chrome-Doped 
Superelastic Ni-Ti,Special Metals High-Strength,Superelastic Ni-Ti, Special Metals High-Temperature 
Shape Memory Ni-Ti, Special Metals Ribbon High-Temperature Shape Memory Ni-Ti, Special Metals 
Superelastic Ni-Ti 

Links 
ProcessUniverse 
Producers 
Reference 
Values marked * are estimates. 
No warranty is given for the accuracy of this data 

  



 

Titanium, alpha-beta alloy, Ti-6Al-2Sn-4Zr-6Mo (6-2-4-6) 
General information 
Designation 
Ti-6Al-2Sn-4Zr-6Mo (6-2-4-6) 
Typical uses 
Gas turbine applications, deep sour wells. 

Composition overview 
Compositional summary 
Ti80-84 / Al5.5-6.5 / Mo5.5-6.5 / Zr3.5-4.5 / Sn1.8-2.2 (impurities: Fe<0.15, C<0.04, N<0.04) 
Material family Metal (non-ferrous) 
Base material Ti (Titanium) 

Composition detail (metals, ceramics and glasses) 
Al (aluminum)  5.5 - 6.5 % 
C (carbon)  0 - 0.04 % 
Fe (iron)  0 - 0.15 % 
Mo (molybdenum)  5.5 - 6.5 % 
N (nitrogen)  0 - 0.04 % 
Sn (tin)  1.75 - 2.25 % 
Ti (titanium) * 80 - 83.8 % 
Zr (zirconium)  3.5 - 4.5 % 

Price 
Price * 10.4 - 11.1 USD/lb 

Physical properties 
Density  0.168   lb/in^3 

Mechanical properties 
Young's modulus  16.4 - 16.7 10^6 psi 
Yield strength (elastic limit)  155 - 160 ksi 
Tensile strength  170 - 174 ksi 
Elongation  10 - 20 % strain 
Compressive strength * 162 - 170 ksi 
Flexural modulus * 16.4 - 16.7 10^6 psi 
Flexural strength (modulus of rupture)  162 - 170 ksi 
Shear modulus  5.95 - 6.24 10^6 psi 
Bulk modulus  18.1 - 21.5 10^6 psi 
Poisson's ratio  0.35 - 0.37  
Shape factor  11  
Hardness - Vickers  336 - 351 HV 
Fatigue strength at 10^7 cycles * 91.8 - 93.7 ksi 
Fatigue strength model (stress range) * 86.8 - 99.1 ksi 
Parameters: Stress Ratio = -1, Number of Cycles = 1e7cycles 



 

_ 

Mechanical loss coefficient (tan delta) * 0.001 - 0.002  

Impact & fracture properties 
Fracture toughness * 63.7 - 72.8 ksi.in^0.5 

Thermal properties 
Melting point  2.96e3 - 2.99e3 °F 
Maximum service temperature  824 - 860 °F 
Minimum service temperature  -459   °F 
Thermal conductivity  4.04 - 4.1BTU.ft/hr.ft^2.°F 
Specific heat capacity * 0.129 - 0.155 BTU/lb.°F 
Thermal expansion coefficient  5.22 - 5.44 µstrain/°F 
Latent heat of fusion  155 - 159 BTU/lb 

Electrical properties 
Electrical resistivity * 158 - 200 µohm.cm 
Galvanic potential * -0.12 - -0.04 V 

Magnetic properties 
Magnetic type Non-magnetic 

Optical properties 
Transparency Opaque 

Bio-data 
Food contact No 

Restricted substances risk indicators 
RoHS (EU) compliant grades? False 

Processing properties 
Metal casting Acceptable 
Metal cold forming Limited use 
Metal hot forming Acceptable 
Metal press forming Acceptable 
Metal deep drawing Limited use 

Durability 
Water (fresh) Excellent 
Water (salt) Excellent 
Weak acids Excellent 
Strong acids Acceptable 
Weak alkalis Excellent 



 

Strong alkalis Acceptable 
Organic solvents Excellent 
Oxidation at 500C Acceptable 
UV radiation (sunlight) Excellent 
Galling resistance (adhesive wear) Limited use 

Notes 
High tendency to gall can be overcome by anodizing. 

Flammability Non-flammable 

Primary production energy, CO2 and water 
Embodied energy, primary production * 2.33e5 - 2.57e5 BTU/lb 
CO2 footprint, primary production * 31.3 - 34.5 lb/lb 
NOx creation * 0.215 - 0.237 lb/lb 
SOx creation * 0.367 - 0.406 lb/lb 
Water usage * 1.09e4 - 1.2e4 in^3/lb 

Processing energy, CO2 footprint & water 
Casting energy * 5.64e3 - 6.23e3 BTU/lb 
Casting CO2 * 0.984 - 1.09 lb/lb 
Casting water * 687 - 1.03e3 in^3/lb 
Rough rolling, forging energy * 6.83e3 - 7.54e3 BTU/lb 
Rough rolling, forging CO2 * 1.19 - 1.32 lb/lb 
Rough rolling, forging water * 231 - 346 in^3/lb 
Extrusion, foil rolling energy * 1.35e4 - 1.5e4 BTU/lb 
Extrusion, foil rolling CO2 * 2.36 - 2.61 lb/lb 
Extrusion, foil rolling water * 415 - 623 in^3/lb 
Wire drawing energy * 5.04e4 - 5.57e4 BTU/lb 
Wire drawing CO2 * 8.79 - 9.72 lb/lb 
Wire drawing water * 1.22e3 - 1.83e3 in^3/lb 
Metal powder forming energy * 2.02e4 - 2.24e4 BTU/lb 
Metal powder forming CO2 * 3.76 - 4.17 lb/lb 
Metal powder forming water * 1.42e3 - 2.13e3 in^3/lb 
Vaporization energy * 6.26e6 - 6.92e6 BTU/lb 
Vaporization CO2 * 1.09e3 - 1.21e3 lb/lb 
Vaporization water * 1.68e5 - 2.52e5 in^3/lb 
Coarse machining energy (per unit wt removed) * 1.21e3 - 1.34e3 BTU/lb 
Coarse machining CO2 (per unit wt removed) * 0.211 - 0.233 lb/lb 
Fine machining energy (per unit wt removed) * 1.03e4 - 1.13e4 BTU/lb 
Fine machining CO2 (per unit wt removed) * 1.79 - 1.98 lb/lb 
Grinding energy (per unit wt removed) * 2.03e4 - 2.25e4 BTU/lb 
Grinding CO2 (per unit wt removed) * 3.54 - 3.92 lb/lb 
Non-conventional machining energy (per unit wt removed) * 6.26e4 - 6.92e4 BTU/lb 
Non-conventional machining CO2 (per unit wt removed) * 10.9 - 12.1 lb/lb 

Recycling and end of life 
Recycle False 
Embodied energy, recycling * 3.08e4 - 3.4e4 BTU/lb 
CO2 footprint, recycling * 5.63 - 6.22 lb/lb 
Recycle fraction in current supply  21.8 - 24.1 % 
Downcycle False 
Combust for energy recovery Combust for energy recovery 
Landfill False 
Biodegrade Biodegrade 
Possible substitutes for principal component 
There are few substitutes for titanium in aircraft and space use without some sacrifice of performance.  
For industrial uses, high-nickel steel, zirconium, and, to a limited extent, the superalloy metals may be 
substituted. In certain applications, ground calcium carbonate, precipitated calcium carbonate, kaolin, and 
talc compete with titanium dioxide as a white pigment. 



 

Geo-economic data for principal component 
Principal component Titanium 
Typical exploited ore grade  15.2 - 16.8 % 
Minimum economic ore grade  2 - 30 % 
Abundance in Earth's crust  4.4e3 - 6.6e3 ppm 
Abundance in seawater  0.001   ppm 
Annual world production, principal component  1.87e5 - 2.07e5 ton/yr 
Reserves, principal component  7.14e8   l. ton 
Main mining areas (metric tonnes per year) 
Australia, 1.39e6 
Brazil, 47e3 
Canada, 770e3 
China, 950e3 
India, 366e3 
Madagascar, 430e3 
Mozambique, 489e3 
Norway, 400e3 
Sierra Leone, 90e3 
South Africa, 1.22e6 
Ukraine, 470e3 
United States of America, 300e3 
Vietnam, 500e3 
Other countries, 107e3 

Notes 
Other notes 
Elevated temperature characteristics of Ti-6242 with higher strength levels. Competitive over Ti-6242 up 
to approximately 727K. 
Keywords 
OMC 6AL-2SN-4ZR-6MO, Manufacturer unknown (); 
Standards with similar compositions 
IMI ; Grade ; DIN ; BSTA ; AMS 4981 

Links 
ProcessUniverse 
Producers 
Reference 
Shape 
Values marked * are estimates. 
No warranty is given for the accuracy of this data 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix F: BOM Including Cost Analysis, List of Vendors, and Contact Information 

  



 

 

Appendix G: Drawing Packet Including Vendor Supplied Component Specification and Data 

Sheets 

 

Drawing List 

 

Subsystem 
Part/Dwg. 
Number Part Description 

0. Deployable Antenna 
Assembly   

 100-HT-S Heat Treatment, Stowed 

 100-HT-D Heat Treatment, Deployed 

 100-ST-S String Tensioners, Stowed 

 100-ST-D String Tensioners, Deployed 

 100-E Exploded View 

   

   

I. Housing Assembly 200-HT Housing Assembly (Heat Treatment) 

 200-ST Housing Assembly (String Tensioners) 

 201-HT Top Plate (Heat Treatment) 

 201-ST Top Plate (String Tensioners) 

 202 Side Plate 

 203 Bottom Plate 

 204 Stopper 

 205 Retractable Reel 

 206 Cable Eyebolt 

 207 Back Plate 

 208 M6 Fastener 

   

II. Reflector Deployer Assembly  300-HT Reflector Deployer (Heat Treatment) 

 300-ST Reflector Deployer (String Tensioners) 

 301-HT Deployer Casing (Heat Treatment) 

 301-ST Deployer Casing (String Tensioners) 

 302 Deployer Casing Cover 

 303 Spool 

 304-HT Tape Measure Boom (Heat Treatment) 

 304-ST Tape Measure Boom (String Tensioners) 

 305 Boom Fasteners (M2 x 0.4 mm) (100 pack) 

 306 Bearings 



 

   

   

   

III. Power Transmission 400 Power Transmission Assembly 

 401 Main Shaft 

 402 Shaft Key 

 403 Motor Gear 

 404 Main Shaft Gear 

 405 Gear Stock 

 406 Motor 

 407 Set Screw for Gears 

 408 Motor Mount 

 409 Cable Ties 

   

IV. Feed Deployment 500 Power Transmission Assembly 

 501 Feed Deployer 

 501-1 Feed Deployer Casing 

 501-2 Feed Boom 

 502 Feed Stand 

 503 12 mm Feed Shaft 

 504 Motor Shaft Coupler 

 505 Feed Motor Mount 

 506 Feed 

 507 Feed Top Screw 

   

   

V. Reflector 600 Reflector Assembly 

 601 Mylar Sheet 

 602 Nitinol Ribs 

   

   

IV. Other Components 700 
All Other Fasteners (M4x 0.7 mm) 100 

pack 

 701 9V Battery Supply 

 702 Tensioning Cable 
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Part Number: 406 
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Part Number: 409 



 

 
 

 



 

 
 



 

 
 



 

 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12mm to 4mm .70" 625238 

Part Number: 504 
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Part Number: 601 
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Part Number: 701 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Part Number: 702 



 

Appendix H.1: Detailed Supporting Analysis 



 



 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 



 

 
 

 

 



 

% Appendix H.2 

  
% Senior Project 
% SolidWorks Data Script for Reflector 

  
% Stellar Dudes: David Galvez, Mack Lennon, Caleb Barber 

  
% Alright dudes, here's what's up. This code ultimately outputs height values 
% of our ideal reflector at various structured x,z positions. We can adjust 
% how fine we want these x,z positions to be by making Nx and Nz bigger. 
% The final matrix that we care about is yq. We will compare the ideal yq 
% with our measure yq that we will hopefully get from a 3D scan. 

  
% Update - the scan sucked. We are better off measuring by hand and seeing 
% what we get. 

  
% ReflectorLocations_5cmSpacing.csv is the saved values we took from 
% SolidWorks using a mesh of 5 cm. We can make that smaller if we want but 
% it will take more time. 

  
clc 
clear all 
close all 

  
fileID = fopen('ReflectorLocations_5cmSpacing.csv'); % Open data file 

  
% scan text file: specify format, skip header lines, specify delimiter 
C = textscan(fileID, '%d %f %f %f %f %s','HeaderLines',9,'Delimiter',','); 

  
fclose(fileID);                 % Close data file 

  
[N,d,x,y,z,Comp] = C{1,:};      % Define variables stored in cell array 

  
% Number of points in x and z directions ( probably as accurate as we'll 
% get from a 5 cm mesh spacing in SolidWorks 
Nx = 20; Nz = 40; 

  
% maximum values for x and z directions 
xmin = min(x); 
xmax = max(x);  
zmin = min(z); 
zmax = max(z);  

  
% Spatial Step Sizes 
dx = (xmax-xmin)/Nx;  
dz = (zmax-zmin)/Nz; 

  
% Here, we turn our wacky mesh locations into something structured 
xgv = xmin:dx:xmax;           % regular mesh vector in x-direction 
zgv = zmin:dz:zmax;           % regular mesh vector in z-direction 
[xq, zq] = meshgrid(xgv, zgv);  % create regular mesh arrays 

  
% Find y values at locations xq,zq from scattered data of y located at x,z 
yq = griddata(x,z,y,xq,zq);     % interpolate nodal data onto regular mesh 



 

  
% Plot Data 
y1 = min(y); 
y2 = max(y); 
Nc = 100; % Number of Contours (change to make best plot) 
dy = (y2 - y1)/Nc; 
v = y1:dy:y2; 
colormap(jet) 
contourf(xq,zq,yq, v, 'Linestyle', 'none'); % contour plot of data 
ymax = max(y1,y2); 
ymin = min(y1,y2); 
caxis([ymin, ymax]) 
axis equal tight 
title('Contour Plot of y values') % title needs to be at bottom 
xlabel('x [m]') 
ylabel('z [m]') 
%  

  
height_matrix = [0 10 40 60 15 40 200 260 150 140 110 100]; 

  
% Based off the matrix produced above, I probed values of theoretical 
y_values = [17.2862 48.6721 48.6721 130.8299 163.098 163.098 ... 
    293.0256 424.5632 390.4169 424.5632 259.7957 293.0256]; 

  
lhm = length(height_matrix); 

  
height_difference = zeros(1,lhm); 
height_difference_squared = zeros(1,lhm); 

  
for p = 1:lhm 
    height_difference(p) = height_matrix(p) - y_values(p); 
    height_difference_squared(p) = (height_difference(p))^2; 
end 

  
% rms in mm 
rms = sqrt((1/length(height_matrix))*sum(height_difference_squared)); 
rms = rms/10; 

  
% Let's hope for the best 

  

 

 

  



 

Appendix I: Operator's Manual: Deployable Cubesat Antenna 
Team: Stellar Dudes 

Sponsor: Dr. Tomas Svitek, Stellar Exploration Inc.  
Advisor: Professor Rossman, Cal Poly, San Luis Obispo 

  

  

  

  

  

  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

I. Pre-Folding and Deployment Preparation 
A. Before operation of the deployable antenna, the reflector and reflector material must be 
folded and stowed properly.  

B. With the booms fully extended the reflector and rib material must be folded in the 
manner shown below in Figure 1. 

 

 
Figure 1. Proper folding method of ribbed reflector (starting from the bottom) 

  
C. The reflector and folded ribs must be stowed behind the stopper, as seen 

in  Figure 2 to constrain the top of the reflector folds and prevent unwanted 
deployment.  



 

 
Figure 2. Proper stowing behind stopper 

  
D. Roll up booms by flipping switch to reverse position until reflector is placed 

behind stopper. 

  

  
II. Operation 

A. Reflector should only be deployed from a flat table and in a location that allows for at 
least 2m x 1m of open space in front of the deployment unit. 
B. Before deployment reflector should be checked for tears and tangles that may prevent 
deployment. 
C. It is preferable to deploy the reflector and feed separately (not at the same time) to 
prevent the motion of one from affecting the other. 
D. Once the booms are fully extended, the switches should be flipped to the off position. 
E. The reflector will remain open until properly stowed as explained in the above section. 
F. A proper deployment should look like Figure 4 shown below. 



 

 
Figure 4. Fully Deployed Reflector 

  

  
III. Safety Concerns 

A. Deployer unit must be set on a sturdy table to avoid unwanted movement during 
deployment. 
B. Fingers and loose articles of clothing must be kept away from deployer during 
operations. 
C. Reflector must be checked for tears and tangles before operation to assure a proper 
deployment.  
D. Power source and wiring must be properly insulated and checked for any loose metal 
that may cause any fire danger. 
E. The deployer unit must have at least 2m x 1m of space in front of it before deployment. 
F. Due to the use of highly elastic materials, sudden motions may occur when reflector is 
deployed. Stand clear of reflector as it deploys. 
G. Safety glasses will be worn when handling highly elastic components such as the ribbed 
reflector to prevent any accidental injury. 

  
 

 

 

 

 

 

 

 

 

 

 

 



 

Appendix J: List of Edits from PDR to CDR 

Report Edit Log 

Team: Stellar Dudes 

Edits for Report: 
(Check box) 

PDR  

CDR  

FDR X 

 

Report 

Section # 

Source of  

recommended edit 

(Sponsor, Advisor, 

Team, Reviewer) 

Brief description of edit 

Ch.5 Team Added detail and prototype design to Manufacturing 

section 

Ch.5. 11 Team/Advisor Updated costs and shipping 

Ch.4 Advisor Reorganization Final Design, added pics, reduced 

paragraphs and labels 

Ch.6  Team Discussed Test Results 

Ch.6 Advisor Added new specs table addressing if pass/fail 

Ch. 7 Team Discussed improvements needed and overall conclusion 

Gantt Chart Team Updated Gantt Chart and reorganized planned and actual 

Throughout Advisor Correctly labeled and introduced Figures 

Throughout Team Improved readability and flow/ removed contractions 

Thoughout  Advisor Mention Figure then show it 

   

   

   

   

   

   

   

 


