18,151 research outputs found

    A Bayesian approach for inferring the dynamics of partially observed endemic infectious diseases from space-time-genetic data

    Get PDF
    We describe a statistical framework for reconstructing the sequence of transmission events between observed cases of an endemic infectious disease using genetic, temporal and spatial information. Previous approaches to reconstructing transmission trees have assumed all infections in the study area originated from a single introduction and that a large fraction of cases were observed. There are as yet no approaches appropriate for endemic situations in which a disease is already well established in a host population and in which there may be multiple origins of infection, or that can enumerate unobserved infections missing from the sample. Our proposed framework addresses these shortcomings, enabling reconstruction of partially observed transmission trees and estimating the number of cases missing from the sample. Analyses of simulated datasets show the method to be accurate in identifying direct transmissions, while introductions and transmissions via one or more unsampled intermediate cases could be identified at high to moderate levels of case detection. When applied to partial genome sequences of rabies virus sampled from an endemic region of South Africa, our method reveals several distinct transmission cycles with little contact between them, and direct transmission over long distances suggesting significant anthropogenic influence in the movement of infected dogs

    A Bayesian space–time model for clustering areal units based on their disease trends

    Get PDF
    Population-level disease risk across a set of non-overlapping areal units varies in space and time, and a large research literature has developed methodology for identifying clusters of areal units exhibiting elevated risks. However, almost no research has extended the clustering paradigm to identify groups of areal units exhibiting similar temporal disease trends. We present a novel Bayesian hierarchical mixture model for achieving this goal, with inference based on a Metropolis-coupled Markov chain Monte Carlo ((MC) 3 ) algorithm. The effectiveness of the (MC) 3 algorithm compared to a standard Markov chain Monte Carlo implementation is demonstrated in a simulation study, and the methodology is motivated by two important case studies in the United Kingdom. The first concerns the impact on measles susceptibility of the discredited paper linking the measles, mumps, and rubella vaccination to an increased risk of Autism and investigates whether all areas in the Scotland were equally affected. The second concerns respiratory hospitalizations and investigates over a 10 year period which parts of Glasgow have shown increased, decreased, and no change in risk

    Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock

    Get PDF
    Whole-genome sequencing has provided fundamental insights into infectious disease epidemiology, but has rarely been used for examining transmission dynamics of a bacterial pathogen in wildlife. In the Greater Yellowstone Ecosystem (GYE), outbreaks of brucellosis have increased in cattle along with rising seroprevalence in elk. Here we use a genomic approach to examine Brucella abortus evolution, cross-species transmission and spatial spread in the GYE. We find that brucellosis was introduced into wildlife in this region at least five times. The diffusion rate varies among Brucella lineages (∼3 to 8 km per year) and over time. We also estimate 12 host transitions from bison to elk, and 5 from elk to bison. Our results support the notion that free-ranging elk are currently a self-sustaining brucellosis reservoir and the source of livestock infections, and that control measures in bison are unlikely to affect the dynamics of unrelated strains circulating in nearby elk populations

    Networks and the epidemiology of infectious disease

    Get PDF
    The science of networks has revolutionised research into the dynamics of interacting elements. It could be argued that epidemiology in particular has embraced the potential of network theory more than any other discipline. Here we review the growing body of research concerning the spread of infectious diseases on networks, focusing on the interplay between network theory and epidemiology. The review is split into four main sections, which examine: the types of network relevant to epidemiology; the multitude of ways these networks can be characterised; the statistical methods that can be applied to infer the epidemiological parameters on a realised network; and finally simulation and analytical methods to determine epidemic dynamics on a given network. Given the breadth of areas covered and the ever-expanding number of publications, a comprehensive review of all work is impossible. Instead, we provide a personalised overview into the areas of network epidemiology that have seen the greatest progress in recent years or have the greatest potential to provide novel insights. As such, considerable importance is placed on analytical approaches and statistical methods which are both rapidly expanding fields. Throughout this review we restrict our attention to epidemiological issues

    Geographical mortality patterns in Italy

    Get PDF
    In this paper, we present a hierarchical spatial model for the analysis of geographical variation in mortality between the Italian provinces in the year 2001, according to gender, age class, and cause of death. When analysing counts data specific to geographical locations, classical empirical rates or standardised mortality ratios may produce estimates that show a very high level of overdispersion due to the effect of spatial autocorrelation among the observations, and due to the presence of heterogeneity among the population sizes. We adopt a Bayesian approach and a Markov chain Monte Carlo computation with the goal of making more consistent inferences about the quantities of interest. While considering information for the year 1991, we also take into account a temporal effect from the previous geographical pattern. Results have demonstrated the flexibility of our proposal in evaluating specific aspects of a counts spatial process, such as the clustering effect and the heterogeneity effect.clustering effect, heterogeneity effect, hierarchical spatio-temporal model, relative risks

    Bayesian spatial analysis of demographic survey data

    Get PDF
    In this paper we analyze the spatial patterns of the risk of unprotected sexual intercourse for Italian women during their initial experience with sexual intercourse. We rely on geo-referenced survey data from the Italian Fertility and Family Survey, and we use a Bayesian approach relying on weakly informative prior distributions. Our analyses are based on a logistic regression model with a multilevel structure. The spatial pattern uses an intrinsic Gaussian conditional autoregressive (CAR) error component. The complexity of such a model is best handled within a Bayesian framework, and statistical inference is carried out using Markov Chain Monte Carlo simulation. In contrast with previous analyses based on multilevel model, our approach avoids the restrictive assumption of independence between area effects. This model allows us to borrow strength from neighbors in order to obtain estimates for areas that may, on their own, have inadequate sample sizes. We show that substantial geographical variation exists within Italy (Southern Italy has higher risks of unprotected first-time sexual intercourse). The findings are robust with respect to the specification of the prior distribution. We argue that spatial analysis can give useful insights on unmet reproductive health needs.contraceptive use, FFS, hierarchical Bayesian modeling, Italy, Monte Carlo Markov Chain, multilevel statistical models, spatial statistical demography

    An Extended Laplace Approximation Method for Bayesian Inference of Self-Exciting Spatial-Temporal Models of Count Data

    Full text link
    Self-Exciting models are statistical models of count data where the probability of an event occurring is influenced by the history of the process. In particular, self-exciting spatio-temporal models allow for spatial dependence as well as temporal self-excitation. For large spatial or temporal regions, however, the model leads to an intractable likelihood. An increasingly common method for dealing with large spatio-temporal models is by using Laplace approximations (LA). This method is convenient as it can easily be applied and is quickly implemented. However, as we will demonstrate in this manuscript, when applied to self-exciting Poisson spatial-temporal models, Laplace Approximations result in a significant bias in estimating some parameters. Due to this bias, we propose using up to sixth-order corrections to the LA for fitting these models. We will demonstrate how to do this in a Bayesian setting for Self-Exciting Spatio-Temporal models. We will further show there is a limited parameter space where the extended LA method still has bias. In these uncommon instances we will demonstrate how a more computationally intensive fully Bayesian approach using the Stan software program is possible in those rare instances. The performance of the extended LA method is illustrated with both simulation and real-world data
    corecore