157 research outputs found

    Outage Efficient Strategies for Network MIMO with Partial CSIT

    Full text link
    We consider a multi-cell MIMO downlink (network MIMO) where BB base-stations (BS) with MM antennas connected to a central station (CS) serve KK single-antenna user terminals (UT). Although many works have shown the potential benefits of network MIMO, the conclusion critically depends on the underlying assumptions such as channel state information at transmitters (CSIT) and backhaul links. In this paper, by focusing on the impact of partial CSIT, we propose an outage-efficient strategy. Namely, with side information of all UT's messages and local CSIT, each BS applies zero-forcing (ZF) beamforming in a distributed manner. For a small number of UTs (K≤MK\leq M), the ZF beamforming creates KK parallel MISO channels. Based on the statistical knowledge of these parallel channels, the CS performs a robust power allocation that simultaneously minimizes the outage probability of all UTs and achieves a diversity gain of B(M−K+1)B(M-K+1) per UT. With a large number of UTs (K≥MK \geq M), we propose a so-called distributed diversity scheduling (DDS) scheme to select a subset of \Ks UTs with limited backhaul communication. It is proved that DDS achieves a diversity gain of B\frac{K}{\Ks}(M-\Ks+1), which scales optimally with the number of cooperative BSs BB as well as UTs. Numerical results confirm that even under realistic assumptions such as partial CSIT and limited backhaul communications, network MIMO can offer high data rates with a sufficient reliability to individual UTs.Comment: 26 pages, 8 figures, submitted to IEEE Trans. on Signal Processin

    Power Allocation Games in Wireless Networks of Multi-antenna Terminals

    Full text link
    We consider wireless networks that can be modeled by multiple access channels in which all the terminals are equipped with multiple antennas. The propagation model used to account for the effects of transmit and receive antenna correlations is the unitary-invariant-unitary model, which is one of the most general models available in the literature. In this context, we introduce and analyze two resource allocation games. In both games, the mobile stations selfishly choose their power allocation policies in order to maximize their individual uplink transmission rates; in particular they can ignore some specified centralized policies. In the first game considered, the base station implements successive interference cancellation (SIC) and each mobile station chooses his best space-time power allocation scheme; here, a coordination mechanism is used to indicate to the users the order in which the receiver applies SIC. In the second framework, the base station is assumed to implement single-user decoding. For these two games a thorough analysis of the Nash equilibrium is provided: the existence and uniqueness issues are addressed; the corresponding power allocation policies are determined by exploiting random matrix theory; the sum-rate efficiency of the equilibrium is studied analytically in the low and high signal-to-noise ratio regimes and by simulations in more typical scenarios. Simulations show that, in particular, the sum-rate efficiency is high for the type of systems investigated and the performance loss due to the use of the proposed suboptimum coordination mechanism is very small

    Adaptive Power Allocation and Control in Time-Varying Multi-Carrier MIMO Networks

    Full text link
    In this paper, we examine the fundamental trade-off between radiated power and achieved throughput in wireless multi-carrier, multiple-input and multiple-output (MIMO) systems that vary with time in an unpredictable fashion (e.g. due to changes in the wireless medium or the users' QoS requirements). Contrary to the static/stationary channel regime, there is no optimal power allocation profile to target (either static or in the mean), so the system's users must adapt to changes in the environment "on the fly", without being able to predict the system's evolution ahead of time. In this dynamic context, we formulate the users' power/throughput trade-off as an online optimization problem and we provide a matrix exponential learning algorithm that leads to no regret - i.e. the proposed transmit policy is asymptotically optimal in hindsight, irrespective of how the system evolves over time. Furthermore, we also examine the robustness of the proposed algorithm under imperfect channel state information (CSI) and we show that it retains its regret minimization properties under very mild conditions on the measurement noise statistics. As a result, users are able to track the evolution of their individually optimum transmit profiles remarkably well, even under rapidly changing network conditions and high uncertainty. Our theoretical analysis is validated by extensive numerical simulations corresponding to a realistic network deployment and providing further insights in the practical implementation aspects of the proposed algorithm.Comment: 25 pages, 4 figure

    Degrees of Freedom of Time Correlated MISO Broadcast Channel with Delayed CSIT

    Full text link
    We consider the time correlated multiple-input single-output (MISO) broadcast channel where the transmitter has imperfect knowledge on the current channel state, in addition to delayed channel state information. By representing the quality of the current channel state information as P^-{\alpha} for the signal-to-noise ratio P and some constant {\alpha} \geq 0, we characterize the optimal degree of freedom region for this more general two-user MISO broadcast correlated channel. The essential ingredients of the proposed scheme lie in the quantization and multicasting of the overheard interferences, while broadcasting new private messages. Our proposed scheme smoothly bridges between the scheme recently proposed by Maddah-Ali and Tse with no current state information and a simple zero-forcing beamforming with perfect current state information.Comment: revised and final version, to appear in IEEE transactions on Information Theor
    • …
    corecore