We consider wireless networks that can be modeled by multiple access channels
in which all the terminals are equipped with multiple antennas. The propagation
model used to account for the effects of transmit and receive antenna
correlations is the unitary-invariant-unitary model, which is one of the most
general models available in the literature. In this context, we introduce and
analyze two resource allocation games. In both games, the mobile stations
selfishly choose their power allocation policies in order to maximize their
individual uplink transmission rates; in particular they can ignore some
specified centralized policies. In the first game considered, the base station
implements successive interference cancellation (SIC) and each mobile station
chooses his best space-time power allocation scheme; here, a coordination
mechanism is used to indicate to the users the order in which the receiver
applies SIC. In the second framework, the base station is assumed to implement
single-user decoding. For these two games a thorough analysis of the Nash
equilibrium is provided: the existence and uniqueness issues are addressed; the
corresponding power allocation policies are determined by exploiting random
matrix theory; the sum-rate efficiency of the equilibrium is studied
analytically in the low and high signal-to-noise ratio regimes and by
simulations in more typical scenarios. Simulations show that, in particular,
the sum-rate efficiency is high for the type of systems investigated and the
performance loss due to the use of the proposed suboptimum coordination
mechanism is very small