180 research outputs found

    Sparsity-based Recovery of Finite Alphabet Solutions to Underdetermined Linear Systems

    No full text
    International audienceWe consider the problem of estimating a deterministic finite alphabet vector f from underdetermined measurements y = A f, where A is a given (random) n x M matrix. Two new convex optimization methods are introduced for the recovery of finite alphabet signals via l1-norm minimization. The first method is based on regularization. In the second approach, the problem is formulated as the recovery of sparse signals after a suitable sparse transform. The regularization-based method is less complex than the transform-based one. When the alphabet size pp equals 2 and (n,N) grows proportionally, the conditions under which the signal will be recovered with high probability are the same for the two methods. When p > 2, the behavior of the transform-based method is established. Experimental results support this theoretical result and show that the transform method outperforms the regularization-based one

    The Simplest Solution to an Underdetermined System of Linear Equations

    Full text link
    Consider a d*n matrix A, with d<n. The problem of solving for x in y=Ax is underdetermined, and has infinitely many solutions (if there are any). Given y, the minimum Kolmogorov complexity solution (MKCS) of the input x is defined to be an input z (out of many) with minimum Kolmogorov-complexity that satisfies y=Az. One expects that if the actual input is simple enough, then MKCS will recover the input exactly. This paper presents a preliminary study of the existence and value of the complexity level up to which such a complexity-based recovery is possible. It is shown that for the set of all d*n binary matrices (with entries 0 or 1 and d<n), MKCS exactly recovers the input for an overwhelming fraction of the matrices provided the Kolmogorov complexity of the input is O(d). A weak converse that is loose by a log n factor is also established for this case. Finally, we investigate the difficulty of finding a matrix that has the property of recovering inputs with complexity of O(d) using MKCS.Comment: Proceedings of the IEEE International Symposium on Information Theory Seattle, Washington, July 9-14, 200

    Recovery of binary sparse signals from compressed linear measurements via polynomial optimization

    Get PDF
    The recovery of signals with finite-valued components from few linear measurements is a problem with widespread applications and interesting mathematical characteristics. In the compressed sensing framework, tailored methods have been recently proposed to deal with the case of finite-valued sparse signals. In this work, we focus on binary sparse signals and we propose a novel formulation, based on polynomial optimization. This approach is analyzed and compared to the state-of-the-art binary compressed sensing methods

    Underdetermined Source Separation of Finite Alphabet Signals Via L1 Minimization

    No full text
    International audienceThis paper addresses the underdetermined source separation problem of finite alphabet signals. We present a new framework for recovering finite alphabet signals. We formulate this problem as a recovery of sparse signals from highly incomplete measurements. It is known that sparse solutions can be obtained by L_1 minimization, through convex optimization. This relaxation procedure in our problem fails in recovering sparse solutions. However, this does not impact the reconstruction of the finite alphabet signals. Simulation results are presented to show that this approach provides good recovery properties and good images separation performance

    Identifiability for Blind Source Separation of Multiple Finite Alphabet Linear Mixtures

    Full text link
    We give under weak assumptions a complete combinatorial characterization of identifiability for linear mixtures of finite alphabet sources, with unknown mixing weights and unknown source signals, but known alphabet. This is based on a detailed treatment of the case of a single linear mixture. Notably, our identifiability analysis applies also to the case of unknown number of sources. We provide sufficient and necessary conditions for identifiability and give a simple sufficient criterion together with an explicit construction to determine the weights and the source signals for deterministic data by taking advantage of the hierarchical structure within the possible mixture values. We show that the probability of identifiability is related to the distribution of a hitting time and converges exponentially fast to one when the underlying sources come from a discrete Markov process. Finally, we explore our theoretical results in a simulation study. Our work extends and clarifies the scope of scenarios for which blind source separation becomes meaningful

    Sparse Signal Processing Concepts for Efficient 5G System Design

    Full text link
    As it becomes increasingly apparent that 4G will not be able to meet the emerging demands of future mobile communication systems, the question what could make up a 5G system, what are the crucial challenges and what are the key drivers is part of intensive, ongoing discussions. Partly due to the advent of compressive sensing, methods that can optimally exploit sparsity in signals have received tremendous attention in recent years. In this paper we will describe a variety of scenarios in which signal sparsity arises naturally in 5G wireless systems. Signal sparsity and the associated rich collection of tools and algorithms will thus be a viable source for innovation in 5G wireless system design. We will discribe applications of this sparse signal processing paradigm in MIMO random access, cloud radio access networks, compressive channel-source network coding, and embedded security. We will also emphasize important open problem that may arise in 5G system design, for which sparsity will potentially play a key role in their solution.Comment: 18 pages, 5 figures, accepted for publication in IEEE Acces

    Reconstruction par transformation parcimonieuse de solutions à alphabet fini de systèmes linéaires sous-déterminés

    No full text
    National audienceNous considérons le problème d'estimer un vecteur à alphabet fini à partir d'un système sous-déterminé y = Af , où A est une matrice aléatoire générique réelle donnée de dimension n × N . Une méthode originale par optimisation convexe est proposée pour reconstruire le vecteur par minimisation L1 . Cette méthode est basée sur une transformation du problème dans un domaine où la solution recherchée est parcimonieuse. Le comportement théorique de cette méthode est donné et illustrée expérimentalement

    Compression-Based Compressed Sensing

    Full text link
    Modern compression algorithms exploit complex structures that are present in signals to describe them very efficiently. On the other hand, the field of compressed sensing is built upon the observation that "structured" signals can be recovered from their under-determined set of linear projections. Currently, there is a large gap between the complexity of the structures studied in the area of compressed sensing and those employed by the state-of-the-art compression codes. Recent results in the literature on deterministic signals aim at bridging this gap through devising compressed sensing decoders that employ compression codes. This paper focuses on structured stochastic processes and studies the application of rate-distortion codes to compressed sensing of such signals. The performance of the formerly-proposed compressible signal pursuit (CSP) algorithm is studied in this stochastic setting. It is proved that in the very low distortion regime, as the blocklength grows to infinity, the CSP algorithm reliably and robustly recovers nn instances of a stationary process from random linear projections as long as their count is slightly more than nn times the rate-distortion dimension (RDD) of the source. It is also shown that under some regularity conditions, the RDD of a stationary process is equal to its information dimension (ID). This connection establishes the optimality of the CSP algorithm at least for memoryless stationary sources, for which the fundamental limits are known. Finally, it is shown that the CSP algorithm combined by a family of universal variable-length fixed-distortion compression codes yields a family of universal compressed sensing recovery algorithms

    Sparsity Enhanced Decision Feedback Equalization

    Full text link
    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution
    • …
    corecore