44 research outputs found

    Sparsity based sub-wavelength imaging with partially incoherent light via quadratic compressed sensing

    Full text link
    We demonstrate that sub-wavelength optical images borne on partially-spatially-incoherent light can be recovered, from their far-field or from the blurred image, given the prior knowledge that the image is sparse, and only that. The reconstruction method relies on the recently demonstrated sparsity-based sub-wavelength imaging. However, for partially-spatially-incoherent light, the relation between the measurements and the image is quadratic, yielding non-convex measurement equations that do not conform to previously used techniques. Consequently, we demonstrate new algorithmic methodology, referred to as quadratic compressed sensing, which can be applied to a range of other problems involving information recovery from partial correlation measurements, including when the correlation function has local dependencies. Specifically for microscopy, this method can be readily extended to white light microscopes with the additional knowledge of the light source spectrum.Comment: 16 page

    On Conditions for Uniqueness in Sparse Phase Retrieval

    Full text link
    The phase retrieval problem has a long history and is an important problem in many areas of optics. Theoretical understanding of phase retrieval is still limited and fundamental questions such as uniqueness and stability of the recovered solution are not yet fully understood. This paper provides several additions to the theoretical understanding of sparse phase retrieval. In particular we show that if the measurement ensemble can be chosen freely, as few as 4k-1 phaseless measurements suffice to guarantee uniqueness of a k-sparse M-dimensional real solution. We also prove that 2(k^2-k+1) Fourier magnitude measurements are sufficient under rather general conditions

    Imaging with a small number of photons

    Get PDF
    Low-light-level imaging techniques have application in many diverse fields, ranging from biological sciences to security. We demonstrate a single-photon imaging system based on a time-gated inten- sified CCD (ICCD) camera in which the image of an object can be inferred from very few detected photons. We show that a ghost-imaging configuration, where the image is obtained from photons that have never interacted with the object, is a useful approach for obtaining images with high signal-to-noise ratios. The use of heralded single-photons ensures that the background counts can be virtually eliminated from the recorded images. By applying techniques of compressed sensing and associated image reconstruction, we obtain high-quality images of the object from raw data comprised of fewer than one detected photon per image pixel.Comment: 9 pages, 4 figure

    Nonlinear Basis Pursuit

    Full text link
    In compressive sensing, the basis pursuit algorithm aims to find the sparsest solution to an underdetermined linear equation system. In this paper, we generalize basis pursuit to finding the sparsest solution to higher order nonlinear systems of equations, called nonlinear basis pursuit. In contrast to the existing nonlinear compressive sensing methods, the new algorithm that solves the nonlinear basis pursuit problem is convex and not greedy. The novel algorithm enables the compressive sensing approach to be used for a broader range of applications where there are nonlinear relationships between the measurements and the unknowns

    Reconstruction of Integers from Pairwise Distances

    Get PDF
    Given a set of integers, one can easily construct the set of their pairwise distances. We consider the inverse problem: given a set of pairwise distances, find the integer set which realizes the pairwise distance set. This problem arises in a lot of fields in engineering and applied physics, and has confounded researchers for over 60 years. It is one of the few fundamental problems that are neither known to be NP-hard nor solvable by polynomial-time algorithms. Whether unique recovery is possible also remains an open question. In many practical applications where this problem occurs, the integer set is naturally sparse (i.e., the integers are sufficiently spaced), a property which has not been explored. In this work, we exploit the sparse nature of the integer set and develop a polynomial-time algorithm which provably recovers the set of integers (up to linear shift and reversal) from the set of their pairwise distances with arbitrarily high probability if the sparsity is O(n^{1/2-\eps}). Numerical simulations verify the effectiveness of the proposed algorithm.Comment: 14 pages, 4 figures, submitted to ICASSP 201

    Phase Retrieval From Binary Measurements

    Full text link
    We consider the problem of signal reconstruction from quadratic measurements that are encoded as +1 or -1 depending on whether they exceed a predetermined positive threshold or not. Binary measurements are fast to acquire and inexpensive in terms of hardware. We formulate the problem of signal reconstruction using a consistency criterion, wherein one seeks to find a signal that is in agreement with the measurements. To enforce consistency, we construct a convex cost using a one-sided quadratic penalty and minimize it using an iterative accelerated projected gradient-descent (APGD) technique. The PGD scheme reduces the cost function in each iteration, whereas incorporating momentum into PGD, notwithstanding the lack of such a descent property, exhibits faster convergence than PGD empirically. We refer to the resulting algorithm as binary phase retrieval (BPR). Considering additive white noise contamination prior to quantization, we also derive the Cramer-Rao Bound (CRB) for the binary encoding model. Experimental results demonstrate that the BPR algorithm yields a signal-to- reconstruction error ratio (SRER) of approximately 25 dB in the absence of noise. In the presence of noise prior to quantization, the SRER is within 2 to 3 dB of the CRB
    corecore