213 research outputs found

    Learning sound representations using trainable COPE feature extractors

    Get PDF
    Sound analysis research has mainly been focused on speech and music processing. The deployed methodologies are not suitable for analysis of sounds with varying background noise, in many cases with very low signal-to-noise ratio (SNR). In this paper, we present a method for the detection of patterns of interest in audio signals. We propose novel trainable feature extractors, which we call COPE (Combination of Peaks of Energy). The structure of a COPE feature extractor is determined using a single prototype sound pattern in an automatic configuration process, which is a type of representation learning. We construct a set of COPE feature extractors, configured on a number of training patterns. Then we take their responses to build feature vectors that we use in combination with a classifier to detect and classify patterns of interest in audio signals. We carried out experiments on four public data sets: MIVIA audio events, MIVIA road events, ESC-10 and TU Dortmund data sets. The results that we achieved (recognition rate equal to 91.71% on the MIVIA audio events, 94% on the MIVIA road events, 81.25% on the ESC-10 and 94.27% on the TU Dortmund) demonstrate the effectiveness of the proposed method and are higher than the ones obtained by other existing approaches. The COPE feature extractors have high robustness to variations of SNR. Real-time performance is achieved even when the value of a large number of features is computed.Comment: Accepted for publication in Pattern Recognitio

    Audio Event Detection using Weakly Labeled Data

    Full text link
    Acoustic event detection is essential for content analysis and description of multimedia recordings. The majority of current literature on the topic learns the detectors through fully-supervised techniques employing strongly labeled data. However, the labels available for majority of multimedia data are generally weak and do not provide sufficient detail for such methods to be employed. In this paper we propose a framework for learning acoustic event detectors using only weakly labeled data. We first show that audio event detection using weak labels can be formulated as an Multiple Instance Learning problem. We then suggest two frameworks for solving multiple-instance learning, one based on support vector machines, and the other on neural networks. The proposed methods can help in removing the time consuming and expensive process of manually annotating data to facilitate fully supervised learning. Moreover, it can not only detect events in a recording but can also provide temporal locations of events in the recording. This helps in obtaining a complete description of the recording and is notable since temporal information was never known in the first place in weakly labeled data.Comment: ACM Multimedia 201

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC

    Efficient and Robust Methods for Audio and Video Signal Analysis

    Get PDF
    This thesis presents my research concerning audio and video signal processing and machine learning. Specifically, the topics of my research include computationally efficient classifier compounds, automatic speech recognition (ASR), music dereverberation, video cut point detection and video classification.Computational efficacy of information retrieval based on multiple measurement modalities has been considered in this thesis. Specifically, a cascade processing framework, including a training algorithm to set its parameters has been developed for combining multiple detectors or binary classifiers in computationally efficient way. The developed cascade processing framework has been applied on video information retrieval tasks of video cut point detection and video classification. The results in video classification, compared to others found in the literature, indicate that the developed framework is capable of both accurate and computationally efficient classification. The idea of cascade processing has been additionally adapted for the ASR task. A procedure for combining multiple speech state likelihood estimation methods within an ASR framework in cascaded manner has been developed. The results obtained clearly show that without impairing the transcription accuracy the computational load of ASR can be reduced using the cascaded speech state likelihood estimation process.Additionally, this thesis presents my work on noise robustness of ASR using a nonnegative matrix factorization (NMF) -based approach. Specifically, methods for transformation of sparse NMF-features into speech state likelihoods has been explored. The results reveal that learned transformations from NMF activations to speech state likelihoods provide better ASR transcription accuracy than dictionary label -based transformations. The results, compared to others in a noisy speech recognition -challenge show that NMF-based processing is an efficient strategy for noise robustness in ASR.The thesis also presents my work on audio signal enhancement, specifically, on removing the detrimental effect of reverberation from music audio. In the work, a linear prediction -based dereverberation algorithm, which has originally been developed for speech signal enhancement, was applied for music. The results obtained show that the algorithm performs well in conjunction with music signals and indicate that dynamic compression of music does not impair the dereverberation performance

    Low-Rank Representation For Enhanced Deep Neural Network Acoustic Models

    Get PDF
    Automatic speech recognition (ASR) is a fascinating area of research towards realizing humanmachine interactions. After more than 30 years of exploitation of Gaussian Mixture Models (GMMs), state-of-the-art systems currently rely on Deep Neural Network (DNN) to estimate class-conditional posterior probabilities. The posterior probabilities are used for acoustic modeling in hidden Markov models (HMM), and form a hybrid DNN-HMM which is now the leading edge approach to solve ASR problems. The present work builds upon the hypothesis that the optimal acoustic models are sparse and lie on multiple low-rank probability subspaces. Hence, the main goal of this Master project aimed at investigating different ways to restructure the DNN outputs using low-rank representation. Exploiting a large number of training posterior vectors, the underlying low-dimensional subspace can be identified, and low-rank decomposition enables separation of the “optimal” posteriors from the spurious (unstructured) uncertainties at the DNN output. Experiments demonstrate that low-rank representation can enhance posterior probability estimation, and lead to higher ASR accuracy. The posteriors are grouped according to their subspace similarities, and structured through low-rank decomposition. Furthermore, a novel hashing technique is proposed exploiting the low-rank property of posterior subspaces that enables fast search in the space of posterior exemplars

    A Closer Look at Weak Label Learning for Audio Events

    Get PDF
    —Audio content analysis in terms of sound events is an important research problem for a variety of applications. Recently, the development of weak labeling approaches for audio or sound event detection (AED) and availability of large scale weakly labeled dataset have finally opened up the possibility of large scale AED. However, a deeper understanding of how weak labels affect the learning for sound events is still missing from literature. In this work, we first describe a CNN based approach for weakly supervised training of audio events. The approach follows some basic design principle desirable in a learning method relying on weakly labeled audio. We then describe important characteristics, which naturally arise in weakly supervised learning of sound events. We show how these aspects of weak labels affect the generalization of models. More specifically, we study how characteristics such as label density and corruption of labels affects weakly supervised training for audio events. We also study the feasibility of directly obtaining weak labeled data from the web without any manual label and compare it with a dataset which has been manually labeled. The analysis and understanding of these factors should be taken into picture in the development of future weak label learning methods. Audioset, a large scale weakly labeled dataset for sound events is used in our experiments
    • …
    corecore