280 research outputs found

    Face Centered Image Analysis Using Saliency and Deep Learning Based Techniques

    Get PDF
    Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based object detection, deep learning structured objects categorization and recognition, human facial landmark detection and multitask biometrics. To implement object detection, a three-level saliency detection based on the self-similarity technique (SMAP) is firstly proposed in the work. The first level of SMAP accommodates statistical methods to generate proto-background patches, followed by the second level that implements local contrast computation based on image self-similarity characteristics. At last, the spatial color distribution constraint is considered to realize the saliency detection. The outcome of the algorithm is a full resolution image with highlighted saliency objects and well-defined edges. In object recognition, the Adaptive Deconvolution Network (ADN) is implemented to categorize the objects extracted from saliency detection. To improve the system performance, L1/2 norm regularized ADN has been proposed and tested in different applications. The results demonstrate the efficiency and significance of the new structure. To fully understand the facial biometrics related activity contained in the image, the low rank matrix decomposition is introduced to help locate the landmark points on the face images. The natural extension of this work is beneficial in human facial expression recognition and facial feature parsing research. To facilitate the understanding of the detected facial image, the automatic facial image analysis becomes essential. We present a novel deeply learnt tree-structured face representation to uniformly model the human face with different semantic meanings. We show that the proposed feature yields unified representation in multi-task facial biometrics and the multi-task learning framework is applicable to many other computer vision tasks

    Facial Expression Analysis under Partial Occlusion: A Survey

    Full text link
    Automatic machine-based Facial Expression Analysis (FEA) has made substantial progress in the past few decades driven by its importance for applications in psychology, security, health, entertainment and human computer interaction. The vast majority of completed FEA studies are based on non-occluded faces collected in a controlled laboratory environment. Automatic expression recognition tolerant to partial occlusion remains less understood, particularly in real-world scenarios. In recent years, efforts investigating techniques to handle partial occlusion for FEA have seen an increase. The context is right for a comprehensive perspective of these developments and the state of the art from this perspective. This survey provides such a comprehensive review of recent advances in dataset creation, algorithm development, and investigations of the effects of occlusion critical for robust performance in FEA systems. It outlines existing challenges in overcoming partial occlusion and discusses possible opportunities in advancing the technology. To the best of our knowledge, it is the first FEA survey dedicated to occlusion and aimed at promoting better informed and benchmarked future work.Comment: Authors pre-print of the article accepted for publication in ACM Computing Surveys (accepted on 02-Nov-2017

    Face Recognition: Issues, Methods and Alternative Applications

    Get PDF
    Face recognition, as one of the most successful applications of image analysis, has recently gained significant attention. It is due to availability of feasible technologies, including mobile solutions. Research in automatic face recognition has been conducted since the 1960s, but the problem is still largely unsolved. Last decade has provided significant progress in this area owing to advances in face modelling and analysis techniques. Although systems have been developed for face detection and tracking, reliable face recognition still offers a great challenge to computer vision and pattern recognition researchers. There are several reasons for recent increased interest in face recognition, including rising public concern for security, the need for identity verification in the digital world, face analysis and modelling techniques in multimedia data management and computer entertainment. In this chapter, we have discussed face recognition processing, including major components such as face detection, tracking, alignment and feature extraction, and it points out the technical challenges of building a face recognition system. We focus on the importance of the most successful solutions available so far. The final part of the chapter describes chosen face recognition methods and applications and their potential use in areas not related to face recognition

    Effect of cooking time on physical properties of almond milk-based lemak cili api gravy

    Get PDF
    One of the crucial elements in developing or reformulating product is to maintain the quality throughout its entire shelf life. This study aims to determine the effect of different cooking time on the almond milk-based of lemak cili api gravy. Various cooking times of 5, 10, 15, 20, 25 and 30 minutes were employed to the almond milk-based lemak cili api gravy followed by determination of their effects on physical properties such as total soluble solids content, pH and colour. pH was determined by using a pH meter. Refractometer was used to evaluate the total soluble solids content of almond milk-based lemak cili api gravy. The colours were determined by using spectrophotometer which expressed as L*, a* and b* values. Results showed that almond milk-based lemak cili api gravy has constant values of total soluble solids with pH range of 5 to 6, which can be classified as low acid food. Colour analysis showed that the lightness (L*) and yellowness (b*) are significantly increased while redness (a*) decreased. In conclusion, this study shows that physical properties of almond milk-based lemak cili api gravy changes by increasing the cooking time

    Face recognition in the wild.

    Get PDF
    Research in face recognition deals with problems related to Age, Pose, Illumination and Expression (A-PIE), and seeks approaches that are invariant to these factors. Video images add a temporal aspect to the image acquisition process. Another degree of complexity, above and beyond A-PIE recognition, occurs when multiple pieces of information are known about people, which may be distorted, partially occluded, or disguised, and when the imaging conditions are totally unorthodox! A-PIE recognition in these circumstances becomes really “wild” and therefore, Face Recognition in the Wild has emerged as a field of research in the past few years. Its main purpose is to challenge constrained approaches of automatic face recognition, emulating some of the virtues of the Human Visual System (HVS) which is very tolerant to age, occlusion and distortions in the imaging process. HVS also integrates information about individuals and adds contexts together to recognize people within an activity or behavior. Machine vision has a very long road to emulate HVS, but face recognition in the wild, using the computer, is a road to perform face recognition in that path. In this thesis, Face Recognition in the Wild is defined as unconstrained face recognition under A-PIE+; the (+) connotes any alterations to the design scenario of the face recognition system. This thesis evaluates the Biometric Optical Surveillance System (BOSS) developed at the CVIP Lab, using low resolution imaging sensors. Specifically, the thesis tests the BOSS using cell phone cameras, and examines the potential of facial biometrics on smart portable devices like iPhone, iPads, and Tablets. For quantitative evaluation, the thesis focused on a specific testing scenario of BOSS software using iPhone 4 cell phones and a laptop. Testing was carried out indoor, at the CVIP Lab, using 21 subjects at distances of 5, 10 and 15 feet, with three poses, two expressions and two illumination levels. The three steps (detection, representation and matching) of the BOSS system were tested in this imaging scenario. False positives in facial detection increased with distances and with pose angles above ± 15°. The overall identification rate (face detection at confidence levels above 80%) also degraded with distances, pose, and expressions. The indoor lighting added challenges also, by inducing shadows which affected the image quality and the overall performance of the system. While this limited number of subjects and somewhat constrained imaging environment does not fully support a “wild” imaging scenario, it did provide a deep insight on the issues with automatic face recognition. The recognition rate curves demonstrate the limits of low-resolution cameras for face recognition at a distance (FRAD), yet it also provides a plausible defense for possible A-PIE face recognition on portable devices

    Robust subspace learning for static and dynamic affect and behaviour modelling

    Get PDF
    Machine analysis of human affect and behavior in naturalistic contexts has witnessed a growing attention in the last decade from various disciplines ranging from social and cognitive sciences to machine learning and computer vision. Endowing machines with the ability to seamlessly detect, analyze, model, predict as well as simulate and synthesize manifestations of internal emotional and behavioral states in real-world data is deemed essential for the deployment of next-generation, emotionally- and socially-competent human-centered interfaces. In this thesis, we are primarily motivated by the problem of modeling, recognizing and predicting spontaneous expressions of non-verbal human affect and behavior manifested through either low-level facial attributes in static images or high-level semantic events in image sequences. Both visual data and annotations of naturalistic affect and behavior naturally contain noisy measurements of unbounded magnitude at random locations, commonly referred to as ‘outliers’. We present here machine learning methods that are robust to such gross, sparse noise. First, we deal with static analysis of face images, viewing the latter as a superposition of mutually-incoherent, low-complexity components corresponding to facial attributes, such as facial identity, expressions and activation of atomic facial muscle actions. We develop a robust, discriminant dictionary learning framework to extract these components from grossly corrupted training data and combine it with sparse representation to recognize the associated attributes. We demonstrate that our framework can jointly address interrelated classification tasks such as face and facial expression recognition. Inspired by the well-documented importance of the temporal aspect in perceiving affect and behavior, we direct the bulk of our research efforts into continuous-time modeling of dimensional affect and social behavior. Having identified a gap in the literature which is the lack of data containing annotations of social attitudes in continuous time and scale, we first curate a new audio-visual database of multi-party conversations from political debates annotated frame-by-frame in terms of real-valued conflict intensity and use it to conduct the first study on continuous-time conflict intensity estimation. Our experimental findings corroborate previous evidence indicating the inability of existing classifiers in capturing the hidden temporal structures of affective and behavioral displays. We present here a novel dynamic behavior analysis framework which models temporal dynamics in an explicit way, based on the natural assumption that continuous- time annotations of smoothly-varying affect or behavior can be viewed as outputs of a low-complexity linear dynamical system when behavioral cues (features) act as system inputs. A novel robust structured rank minimization framework is proposed to estimate the system parameters in the presence of gross corruptions and partially missing data. Experiments on prediction of dimensional conflict and affect as well as multi-object tracking from detection validate the effectiveness of our predictive framework and demonstrate that for the first time that complex human behavior and affect can be learned and predicted based on small training sets of person(s)-specific observations.Open Acces

    Curvelet and Ridgelet-based Multimodal Biometric Recognition System using Weighted Similarity Approach

    Get PDF
    Biometric security artifacts for establishing the identity of a person with high confidence have evoked enormous interest in security and access control applications for the past few years. Biometric systems based solely on unimodal biometrics often suffer from problems such as noise, intra-class variations and spoof attacks. This paper presents a novel multimodal biometric recognition system by integrating three biometric traits namely iris, fingerprint and face using weighted similarity approach. In this work, the multi-resolution features are extracted independently from query images using curvelet and ridgelet transforms, and are then compared to the enrolled templates stored in the database containing features of each biometric trait. The final decision is made by normalizing the feature vectors, assigning different weights to the modalities and fusing the computed scores using score combination techniques. This system is tested with the public unimodal databases such as CASIA–Iris-V3-Interval, FVC2004, ORL and self-built multimodal databases. Experimental results obtained shows that the designed system achieves an excellent recognition rate of 98.75 per cent and 100 per cent for the public and self-built databases respectively and provides ultra high security than unimodal biometric systems.Defence Science Journal, 2014, 64(2), pp. 106-114. DOI: http://dx.doi.org/10.14429/dsj.64.346
    corecore