16 research outputs found

    Estimating Local Function Complexity via Mixture of Gaussian Processes

    Full text link
    Real world data often exhibit inhomogeneity, e.g., the noise level, the sampling distribution or the complexity of the target function may change over the input space. In this paper, we try to isolate local function complexity in a practical, robust way. This is achieved by first estimating the locally optimal kernel bandwidth as a functional relationship. Specifically, we propose Spatially Adaptive Bandwidth Estimation in Regression (SABER), which employs the mixture of experts consisting of multinomial kernel logistic regression as a gate and Gaussian process regression models as experts. Using the locally optimal kernel bandwidths, we deduce an estimate to the local function complexity by drawing parallels to the theory of locally linear smoothing. We demonstrate the usefulness of local function complexity for model interpretation and active learning in quantum chemistry experiments and fluid dynamics simulations.Comment: 19 pages, 16 figure

    Learning with Kernels

    Get PDF

    Efficient Learning-based Image Enhancement : Application to Compression Artifact Removal and Super-resolution

    Get PDF
    Many computer vision and computational photography applications essentially solve an image enhancement problem. The image has been deteriorated by a specific noise process, such as aberrations from camera optics and compression artifacts, that we would like to remove. We describe a framework for learning-based image enhancement. At the core of our algorithm lies a generic regularization framework that comprises a prior on natural images, as well as an application-specific conditional model based on Gaussian processes. In contrast to prior learning-based approaches, our algorithm can instantly learn task-specific degradation models from sample images which enables users to easily adapt the algorithm to a specific problem and data set of interest. This is facilitated by our efficient approximation scheme of large-scale Gaussian processes. We demonstrate the efficiency and effectiveness of our approach by applying it to example enhancement applications including single-image super-resolution, as well as artifact removal in JPEG- and JPEG 2000-encoded images

    A Practical and Conceptual Framework for Learning in Control

    No full text
    We propose a fully Bayesian approach for efficient reinforcement learning (RL) in Markov decision processes with continuous-valued state and action spaces when no expert knowledge is available. Our framework is based on well-established ideas from statistics and machine learning and learns fast since it carefully models, quantifies, and incorporates available knowledge when making decisions. The key ingredient of our framework is a probabilistic model, which is implemented using a Gaussian process (GP), a distribution over functions. In the context of dynamic systems, the GP models the transition function. By considering all plausible transition functions simultaneously, we reduce model bias, a problem that frequently occurs when deterministic models are used. Due to its generality and efficiency, our RL framework can be considered a conceptual and practical approach to learning models and controllers whe

    Emulation of random output simulators

    Get PDF
    Computer models, or simulators, are widely used in a range of scientific fields to aid understanding of the processes involved and make predictions. Such simulators are often computationally demanding and are thus not amenable to statistical analysis. Emulators provide a statistical approximation, or surrogate, for the simulators accounting for the additional approximation uncertainty. This thesis develops a novel sequential screening method to reduce the set of simulator variables considered during emulation. This screening method is shown to require fewer simulator evaluations than existing approaches. Utilising the lower dimensional active variable set simplifies subsequent emulation analysis. For random output, or stochastic, simulators the output dispersion, and thus variance, is typically a function of the inputs. This work extends the emulator framework to account for such heteroscedasticity by constructing two new heteroscedastic Gaussian process representations and proposes an experimental design technique to optimally learn the model parameters. The design criterion is an extension of Fisher information to heteroscedastic variance models. Replicated observations are efficiently handled in both the design and model inference stages. Through a series of simulation experiments on both synthetic and real world simulators, the emulators inferred on optimal designs with replicated observations are shown to outperform equivalent models inferred on space-filling replicate-free designs in terms of both model parameter uncertainty and predictive variance
    corecore