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Summary (English)

Today, modern digital devices can be customized significantly to the individ-
ual user by adjusting or optimizing multiple parameters affecting the output of
the devices. Such personal optimization of devices is referred to as personaliza-
tion. In the case of hearing aids, personalization is not only a possibility offered
to the user, but a requirement that must be performed carefully and precisely
in order for the user to utilize the full potential of modern multi-parameter
hearing aids. Today though, personalization is still based on a manual time-
consuming trial-and-error approach performed by the user himself or, in case of
hearing aids, by a hearing-care professional based on typically ambiguous oral
feedback from the user. This often results in sub-optimal or even inappropriate
settings of multi-parameter devices. This dissertation presents research on a
machine-learning based interactive personalization system to improve the per-
sonalization of devices and, in particular, of hearing-aid devices. The proposed
personalization system iteratively learns a non-parametric probabilistic model
of a user’s assumed internal response function over all possible settings of a
multi-parameter device based directly on sequential perceptual feedback from
the user. A sequential design based on active learning is used to obtain the
maximum of the user’s unknown internal response function in as few iterations
as possible. Experiments were conducted where the proposed personalization
system obtained a significantly preferred setting for individual users within ten
to twenty iterations in scenarios with up to four parameters.

Following a short introduction that includes a summary of results and contri-
butions, the first main chapter focuses on the probabilistic modeling framework
in which a Gaussian process is used to model the user’s unobserved internal re-
sponse function. The first main challenge addressed in this context is to account
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for inconsistent and thus noisy user feedback. The second main challenge ad-
dressed is to support feedback which closely reflects the user’s perception while
providing maximal information about it without imposing a high cognitive load.
In the second main chapter, active learning and sequential design are discussed
in relation to the challenge of obtaining the setting that maximizes the user’s
unobserved internal response function in as few iterations as possible. For the
Gaussian process framework, an active learning criterion is proposed specifically
suitable for this type of optimization. The final chapter contains an overall dis-
cussion and conclusion of the present work and research based in part on the
results from eight scientific paper contributions contained in the appendices.



Resumé (Danish)

Nutidens digitale apparater kan skræddersys betydeligt til den enkelte bruger
ved justering eller optimering af en række parametre, der p̊avirker apparatets
output. Personalisering referer til s̊adan en form for personlig optimering.
For høreapparater er personalisering ikke kun et tilbud til brugeren, men en
nødvendighed, hvis brugeren skal opn̊a det fulde udbytte af nutidens høreapparater
indeholdende flere parametre. I dag bliver personalisering stadig baseret p̊a
manuelt at prøve sig frem, hvilket er tidskrævende. Det bliver gjort af brugeren
selv, eller hvad ang̊ar høreapparater, af en professionel høreapparatsspecialist
baseret p̊a typisk uklar mundtlig feedback fra brugeren. Dette resulterer i ofte
ikke optimale eller s̊agar uhensigtsmæssige apparatindstillinger. Denne afhan-
dling præsenterer forskning omkring et machine-learning-baseret personaliser-
ingssystem til at forbedre personaliseringen af apparater specielt med henblik
p̊a høreapparater. Det foresl̊aede personaliseringssystem lærer iterativt en ikke-
parametrisk probabilistisk model af en brugers (antaget) interne responsfunk-
tion over mulige parameterindstillinger baseret direkte p̊a perceptuel feedback
fra brugeren. Et sekventielt design baseret p̊a active learning bruges for i s̊a
f̊a iterationer som muligt at lære hvilken indstilling, der maksimerer brugerens
interne responsfunktion. I udførte eksperimenter lærte det foresl̊aede person-
aliseringssystem en signifikant foretrukket indstilling for individuelle brugere
indenfor ti til tyve iterationer i scenarier med op til fire parametre.

Efter en kort introduktion, der inkluderer en oversigt over resultater og forskn-
ingsbidrag, fokuserer det første hovedkapitel p̊a den probabilistiske modeller-
ingsmetode, hvor en Gaussisk proces bruges til modellering af brugerens ikke ob-
serverede interne responsfunktion. De adresserede hovedudfordringer er i denne
kontekst at tage højde for inkonsistent og dermed støjfyldt brugerfeedback og
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at supportere feedback, som nøje reflekterer brugerens perception uden dog at
resultere i en høj kognitiv belastning. I det andet hovedkapitel bliver active
learning og sekventielt design diskuteret i relation til udfordringen i at lære i
s̊a f̊a iterationer som mulig den indstilling, der maksimerer brugerens ikke ob-
serverede interne responsfunktion. I relation til en Gaussisk proces foresl̊as et
active learning kriterium, som er specifikt velegnet til den omtalte form for op-
timering. Det sidste kapitel indeholder en overordnet diskussion om det her
omtale stykke arbejde og forskning baseret til dels p̊a de otte videnskabelige
artikler, som er at finde i appendikserne. Det sidste kapitel indeholder ogs̊a
konklusionen.
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Nomenclature

Abbreviations

Abreviation Explanation

HA(s) hearing aid(s).

HCP hearing-care professional.

IRF internal response function; refers to the assumed unobserved
process related to a user’s perception of stimuli.

MUSHRA multiple stimuli with hidden references and anchors; per-
ceptual measurement paradigm.

i.i.d. independent and identically distributed.

psd positive semidefinite.

GP Gaussian process.

ML marginal likelihood.

ML-II marginal-likelihood-II; also called the evidence, used to op-
timize hyperparameters, i.e. covariance and likelihood pa-
rameters, of a Gaussian process.

MAP-II Maximum-A-Posterior-II; used to optimize hyperparame-
ters, i.e. covariance and likelihood parameters, of a Gaussian
process regularized by hyperpriors.

SE Squared Exponential; a SE kernel is a common covariance
or kernel function.

ISO isotropic.



xii Nomenclature

ARD automaic relevance determination.

PP probability product; a PP kernel is a special covariance or
kernel function.

MT multi task; MT learning.

CF collaborative filtering.

EP Expectation Propagation; approximate inference method.

VB Variational Bayes; approximate inference method.

FI(T)C fully independent (training) conditional.

PI(T)C partially independent (training) conditional.

TG truncated Gaussian; a TG distribution.

GP-WA a warped GP model.

GP-TG a GP model with the TG likelihood function.

GP-BE a GP model with the Beta likelihood function.

2AFC two-alternative forced-choice; perceptual measurement
paradigm.

SPGP sparse pseudo-input GP.

PJ pairwise judgment; a PJ kernel is a common covariance or
kernel function for pairwise observations.

EI Expected Improvement; an active-learning criterion.

uEI uni-variate Expected Improvement; original EI criterion.

bEI bi-variate Expected Improvement; extended EI criterion.

UCB upper confidence bound; an active-learning criterion.

Symbols and Notation

Symbol Explanation

R real numbers.

a a scalar.

a a vector.

ai i’th component of vector a.

ai a unique vector.

A a matrix.

[A]i,j or Ai,i the element of the matrix A that is in the i’th row and j’th
column.
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[A]i the entire i’th row of the matrix A.

Ai a unique matrix.

a>, A> transpose of vector and matrix, respectively.

A−1 the inverse of a matrix.

In×n n-by-n identity matrix.

diag(a) diagonal matrix, where the diagonal elements are given by the
vector, a.

x a D-dimensional input, i.e., x ∈ RD.

X set of n inputs, xi, i.e., X = {xi|i = 1, ..., n}.
x̄ a D-dimensional pseudo input, i.e., x̄ ∈ RD.

X̄ matrix containing the n̄ pseudo inputs, i.e., X̄ = [x̄1, ..., x̄n̄]>.

k(x,x′) covariance or kernel function. Typically, covariance function is
used.

K covariance matrix, where [K]i,j = k(xi,xj).

y an observation.

y vector of m observations, i.e., y = [y1, ..., ym]>.

Y set of pairwise observations between any two instances, uk and
vk, i.e., Y = {yk|uk, vk, k = 1, ...,m}.

GP a Gaussian process.

f(x) a function. In general, f(x) is considered a latent represen-
tation. For the specific applications described in the present
work, f(x) models individual user’s IRF

f vector of n function values of the function f(x), i.e.,
f = [f(x1), ..., f(xn)]>.

fk function value(s) associated with the k’th likelihood function.
∗ or ∗ the star is used rather loosely, either as a sub or super script,

to indicate vectors and matrices associated with predictions.

θL set of likelihood parameters.

p(z) distribution of the stochastic variable, z.

p(z|·) conditional distribution of the stochastic variable, z.

p(yk|fk,θL),
p(yk|fk)

likelihood function with or without explicitly indicating the like-
lihood parameters, θL.

p(y|f) likelihood.

p(f) prior distribution.

p(f |y) posterior distribution.
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µ mean vector.

Σ covariance matrix.

N (µ,Σ),
N (z|µ,Σ)

(multi-variate) Gaussian distribution with mean, µ and co-
variance Σ. Hence, p(z) = N (z|µ,Σ) or alternatively, z ∼
N (µ,Σ)

Φ(z) cumulative density function of the standard Gaussian distribu-
tion with zero mean and unity variance.

Beta(z|α, β) beta distribution with shape parameters, α and β.

B(α, β) beta function.

O(·) computational cost.
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Chapter 1

Introduction

The opening chapter contains a general introduction to the present
thesis. The chapter includes a background in Section 1.1 and a mo-
tivation in Section 1.2 with a non-technical conceptual description of
the proposed personalization system. In Section 1.3, previous work
related to the described personalization system is shortly summarized.
Finally, a summary of research contributions is contained in Sec-
tion 1.4.



2 Introduction

1.1 Background

The capabilities of modern digital consumer devices, such as smartTVs, smart-
phones and professional audio equipment, are constantly becoming increasingly
advanced and customizable in terms of the number of tunable parameters and
thus possible settings. Consequently, the devices offer the user an increased level
of personalization. For some devices, users may be able to obtain an optimal
or possibly suboptimal setting based on the user’s own perception by simple
manual trial-and-error procedures. In general though, the increasing flexibility
encourages methods that optimize or personalize the setting of device parame-
ters more intelligently and systematically.

Digital hearing aids (HAs) are medical devices, which do not only offer a high
level of personalization, but actually require that they are carefully personalized.
HA personalization—more commonly referred to as HA fitting and fine-tuning—
is today carried out using pre-defined rules named prescriptions [Dillon, 2012,
Chapter 10] followed by up to several fine-tuning attempts [Dillon, 2012, Chap-
ter 11-12]. A prescription defines rules for gain and compression settings of
HAs based on the user’s absolute pure-tone hearing thresholds measured at dif-
ferent frequencies. These thresholds are collected in what is referred to as an
audiogram. The deterministic prescriptions are developed based on decades of
research studying the human auditory system and on empirical and practical ex-
perience. Generally, the purpose of any prescription is to recover speech that is
inaudible to the user. However, the prescriptive rules are based on the idea that
given the audiogram one size fits all. In practice, HAs are fitted initially in the
clinic by a hearing-care professional (HCP) based on a particular prescription
with other HA features—such as noise reduction, microphone configurations
etc.—set to reasonable default values. Often, fine-tuning is immediately needed
to accommodate whatever the user may find inappropriate with the prescribed
gain and compression settings and/or with the default feature settings. After
a period of time in which the user during daily routines has become aware of
potential problems with the initial fitting, the user is scheduled to come back
to the clinic for further fine-tuning to address any problems. During fine tuning
the HCP manually tries to adjust the setting of the HAs including gain and
compressor settings as well as settings of available features based on the user’s
descriptions of the problem(s). Because the average HA user is seldom used
to describe the perception of sound, the descriptions of problems are typically
ambiguous and incomplete.

A persistent problem with HAs is that more than 10% of them end up ”in the
drawer” [Kochkin et al., 2010], meaning that after purchase the user never wears
the HAs, because they do not meet expectations. Kochkin et al. [2010] argue
this is because the protocol for fitting HAs is in many occasions not being fully
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respected in the clinic. Particularly, HA fine-tuning and validation of achieved
performance and benefit are being blamed for the high amount of ”drawer” HAs.
Hence, a key to successfully operating HAs is to have them carefully personalized
to the individual beyond the prescription and default feature settings.

During the fine-tuning procedure, the user’s perception is translated twice for
every HA adjustment. The first translation is the often ambiguous explanation
by the user about what sounds inappropriate. The second translation occurs
when the HCP seek to understand what problems the user seek to describe.
Thereby, a lot can get lost in translation even before the HCP may consider what
the problem is with the current HA setting. Subsequently, the HCP can only
resort to an knowledge-based1 trial and error approach in order to iterate towards
successfully personalized HAs. The above assumes that the user actually reports
that there is a problem with the current setting. Because HAs are medical
devices which are recommended and personalized by a professional, especially
first time HA users are not aware that constant and valuable feedback from
them is key in order to obtain good HA performance and benefit. Consequently,
some users—in particular, first time users— initially accept an imperfect setting
without mentioning that something might not live up to their expectations. The
reason these users do not report any potential issues is simply because they
believe that a professional knows how the HA should sound and thus knows
what is best for the user. The truth is however that nobody knows exactly how
the HA sound is perceived individually, except the individual user.

In summary, at least two problems persist with the existing personalization
routine. First of all, the vast number of adjustable parameters embedded in
both modern consumer devices and in digital HAs makes manual trial-and-
error approaches extremely difficult to keep track of in practice. Secondly for
the case of HA personalization and other related areas, the entire feedback
link from the user through the HCP to the adjustment made in the HAs can
be very imperfect. Although the exact proportion is unknown, a considerable
amount of users wear HAs (or have them in the drawer) which are not carefully
personalized, and consequently do not benefit fully from the technological leap
over the last couple of decades. To close the gap between technology and benefit,
a leap in the way devices are personalized in the future must be made to keep
up with the advancing technology in modern digital devices.

1The use of trial-and-error as a reference to how hearing aids are being fine-tuned today, is
by no means intended to discredit the HCP. Therefore, knowledge-based trial-and-error should
be read throughout this thesis to highlight that each trial is a qualified-guess by a professional
with years of audiological experience, training and expertize.
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1.2 Motivation

Today, devices are highly personalizable, but the personalization approach used
in practice arguably falls short, because a manual trial-and-error approach, and
in case of HA fine-tuning also the oral feedback link from the user through the
experienced professional to the HA adjustment, are insufficient. Hence, the fine-
tuning and thus the personalization of devices could be improved, significantly,
with more intelligent and structured optimization techniques based directly on
the users perception, and not on an imperfect oral translation thereof.2

The hypothesis is that the personalization of devices—in particular HAs—can
be improved significantly by the use of interactive optimization techniques based
on probabilistic machine learning. The user must be provided with a simple user
interface, where individual device settings are assessed in close resemblance with
the user’s perception, and possible inconsistent and thus noisy user feedback
must be modeled carefully. Furthermore, the number of assessments required
to obtain an optimal setting could be reduced if a model of the user’s unob-
served internal response function (IRF) over possible device settings is used to
propose settings for user assessment actively. Hence in short, a robust and fast
personalization system should sequentially update a model of the user’s IRF
over devices settings based on a current set of assessments and then actively
query a new setting to be assessed based on the updated model. At the end, the
suggested optimal setting is the one that maximizes the predicted IRF of the
user. A conceptual illustration of the considered system is sketched in Fig. 1.1.

Such a system however imposes some key challenges from a machine learning
perspective. First of all, user feedback is essentially very noisy and subject to
various bias effects [Bech and Zacharov, 2007], but might also be exhausting for
users to provide. For this reason, absolute ratings should be used with care and
generally only when suitable anchors and/or reference examples can be defined.
For audio evaluation, one of the most commonly used standards for absolute
ratings—the ITU-R BS.1534-1 [2003], more commonly known as the MUSHRA
test [Bech and Zacharov, 2007, Sec. 10.1.3]—is relying on suitable reference
and anchor stimuli in order to obtain consistent absolute ratings. Pairwise,
or more generally, relative assessments are arguably more appropriate when
dealing with human perception as pointed out by Lockhead [2004]. Lockhead

2Since users will be guided through different device settings while being forced to decide
which settings they prefer over others, a positive side effect is that users will to a greater
extend explore and recognize their own individual preference. Thereby, users will obtain
greater psychological ownership through active engagement, which is for instance known to
results in a better outcome of the entire hearing-impairment therapy [Dillon et al., 2006,
Convery et al., 2011].
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Figure 1.1: Conceptual sketch of the considered personalization framework. The
framework utilizes loosely speaking an interactive loop, which consists of three
parts. (1) Based on an estimate of a user’s IRF, active learning is used to suggest
settings—one or several—that the user should assess. (2) The user assesses the
new setting(s) by evaluation. The assessment is given as feedback to the model
of the user’s IRF. (3) The estimate of the user’s IRF is updated based on the
past assessments including the new one.

[2004] argues that effectively all absolute ratings including Weber’s law [Weber,
1965]—more commonly known as the just noticeable difference—are relative. A
fundamental benefit of pairwise assessments is that they are typically easier and
more intuitive for users to perform consistently. The reason for this is that a
pairwise assessment is essentially simpler than an absolute assessment, because
a pairwise assessment is inherently relative, and is thus following Lockhead
[2004] in closer resemblance with human perception. In any case, it is in general
not correct to assume the observational noise to be i.i.d Gaussian noise, when
assessments are provided as either an absolute and bounded rating or a pairwise
comparison. Hence one challenge from a machine-learning perspective is to
support and possibly develop noise models for these kinds of noise types for the
personalization system considered in the present work.

A second challenge is that the complexity of the user’s IRF are unknown and
will most certainly vary across applications, contexts and subjects. Therefore,
a non-parametric approach towards modeling of the user’s IRF is considered
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in the present work, in which the functional complexity is not strictly specified
beforehand. This however requires that the non-parametric model of the user’s
IRF can be trained robustly to avoid over fitting. A Gaussian process [Ras-
mussen and Williams, 2006] constitutes an appealing Bayesian non-parametric
regression framework for this purpose, which is specifically considered in the
present work to model the user’s unobserved IRF. Due to the special nature
of the observations, traditional Gaussian process regression is not directly ap-
plicable. Hence, the specially developed choice models must be adopted to the
Gaussian process framework.

The final key challenge from a machine learning perspective is to apply ac-
tive learning for (ideally global) optimization of the user’s IRF modeled in the
Gaussian process framework.

1.3 Related Work

The problem of personalizing systems and in particular system parameters have
been studied considerably over the last two to three decades. For HA personal-
ization, the earliest attempts use a modified simplex procedure [Neuman et al.,
1987, Kuk and Pape, 1992] and later Genetic algorithms [Takagi and Ohsaki,
1999, Durant et al., 2004, Baskent et al., 2007] to optimize parameters based on
responses from users. Both methods however require an unrealistic number of
user interactions to convergence even for few system parameters.

The first to conceptualize an interactive machine-learning based approach for
personalization of device parameters driven by forced-choice pairwise-comparison
user feedback were Heskes and de Vries [2005]. They rely on a specific para-
metrized functional form of the user’s IRF, which they refer to as the user’s
utility function. They assume this functional form to be known beforehand. In
practice, this is an assumption that is difficult to satisfy. This makes the frame-
work by Heskes and de Vries [2005] less applicable. Birlutiu et al. [2009, 2010]
have proposed an approach for preference learning which is closer related to the
present work also relying on non-parametric Gaussian processes, although their
approach is not sequential. Instead, their framework use a multi-task formu-
lation for preference learning, where the IRFs from like-minded users are able
to transfer information between them to boost (or regularize) the learning of a
single user’s IRF. Groot et al. [2011] consider Gaussian processes for preference
learning without the multi-task formulation on real-world data. Neither the
approach by Birlutiu et al. [2009, 2010] nor the approach by Groot et al. [2011]
are currently an optimization technique. Groot et al. [2010] consider Gaussian
processes for optimization of some parameters (the amount of different ingredi-
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ents in a cake mix) given that other parameters are uncontrolled (for instance
the baking temperature). This framework however considers only traditional
regression and thus not feedback from pairwise comparisons, which is crucial
for perceptual evaluation. Another machine learning direction was proposed
by Reed [2001], where a nearest neighbor approach was used to assist a user op-
timizing an equalization system. Also for optimal equalization, Sabin and Pardo
[2008], Pardo et al. [2012] propose a system which linearly correlates a partic-
ular user’s concept of for instance a ”warm sound” with a specific equalization
setting.

1.4 Outline and Contributions

In addition to this introductory chapter, the present thesis contains two main
chapters, a chapter containing a discussion and a conclusion, and finally the
eight paper contributions in the appendix. The first main chapter serves as a
general introduction to the developed Gaussian process framework including the
proposed noise models needed to support the special type of observations con-
sidered in the present work. The second main chapter describes the sequential
design approach including the active learning criterion found to perform well
for the problems considered in the present work.

Chapter 2 - Gaussian Processes: Provides an introduction to the Gaussian
process framework applied in the paper contributions. The chapter lever-
ages standard Gaussian process regression in an attempt to provide the
reader with the foundation to use Gaussian process regression with non-
traditional likelihood functions. In particular, the chapter reviews the
non-standard likelihood functions developed in the present work for both
absolute assessments and pairwise judgments. Additionally, the chapter
throughout contains various details and references to interesting literature.

Chapter 3 - Active Learning: Describes active learning and sequential de-
sign heuristics in relation to the present work. Specifically, the focus is
on Expected Improvement as a global optimization criterion and on a bi-
variate version thereof, which fully exploits the Gaussian process predic-
tions.

Chapter 4 - Discussion and Conclusion: Contains discussions of further
machine-learning research relevant for the present work, and real-world
application perspectives of the present work. This chapter also contains
the conclusion.
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Paper A - Efficient Preference Learning with Pairwise Continuous
Observations and Gaussian Processes: This paper proposes a novel
pairwise likelihood function for the Gaussian process framework. The
likelihood supports observations that encode both the pairwise decision of
selecting one of two options and the degree to which the selected option
is better, preferred or likewise than the other option. On an artificial ex-
ample, it is demonstrated that a Gaussian process model can be learned
using fewer observations of the type supported be the novel likelihood
than with what is required with the state-of-the-art binary pairwise likeli-
hood function by Chu and Ghahramani [2005a]—also under adverse noise
conditions.

Paper B, C - On Sparse Multi-Task Gaussian Process Priors for Mu-
sic Preference Learning, Pseudo Inputs for Pairwise Learning
with Gaussian Processes: In these two papers, the pseudo-input for-
mulation for sparse Gaussian processes is applied for the binary pairwise
Gaussian process model by Chu and Ghahramani [2005a]. The papers,
thus propose a sparse version of the binary pairwise likelihood function by
Chu and Ghahramani [2005a]. The resulting sparse version scales O(n̄2n)
instead of O(n3) for the standard version, where n is the number of ob-
servational inputs and n̄ << n is the number of pseudo inputs.

Paper D - Efficient Individualization of Hearing Aid Processed Sound:
For the case of personalizing hearing aids to the individual, the machine-
learning approach described in the present work is examined in a real-world
scenario. An experiment has been conducted where five hearing-aid users
personalize two hearing-aid parameters controlling how the hearing aids
process speech in the presence of background noise. Although the dif-
ferences between settings of the two parameters are extremely subtle, the
predictions of individual user’s IRF between test and retest indicate some-
what robust reproducible and stable estimates of the obtained preferred
setting for four out of the five subjects.

Paper E - Bounded Gaussian Process Regression: Two novel likelihood
functions are proposed for the Gaussian process framework which model
the observational noise of an absolute bounded response explicitly in the
observational space. This is in contrast to the approach proposed by
Snelson et al. [2004], where the bounded observations are warped to an
unbounded space, such that the noise is modeled implicitly by a standard
Gaussian process regression model. The noise-modeling abilities of the dif-
ferent approaches are compared on two real-would examples where several
subjects have rated different signal processing strategies of a compressor.
The comparison favors the novel likelihood functions slightly. Code for
the two new likelihood functions is available for the matlab-gpml toolbox
by Rasmussen and Nickisch [2010].



1.4 Outline and Contributions 9

Paper F - Personalized Audio Systems - A Bayesian Approach: A
personalization system using absolute assessments in a MUSHRA like
paradigm is proposed for personalization of multi-parameter audio sys-
tems. A five-band equalizer is used as an example of a multi-parameter
audio system. An experiment with test subjects has been conducted,
which shows a significant benefit of the active learning/sequential design
approach. Moreover, a special structure in the kernel is used specifically
for audio applications, which exploits correlation between ”adjacent” sys-
tem parameters. The latter though is seen to decrease performance when
used in the specific active-learning setup.

Paper G, H - Hearing Aid Personalization, Perception based Person-
alization of Hearing Aids using Gaussian Processes and Active
Learning: The machine-learning personalization system proposed in the
present work is described in detail and used to obtain preferred settings in
two real-world HA experiments. In the two experiments, preferred settings
of two and four parameters, respectively, are obtained in a set of hearing
aids for a group of HA users in a music context. Only results from the last
experiment are reported in Paper G. Generally, the results show a signifi-
cant (p0 < 0.05) preference for the setting obtained with the system when
compared to the prescription. Based on test/retest results, it is demon-
strated that the system is capable of reproducing the obtained settings
for individual users within qualitatively reasonable limits, although both
learning and fatigue effects come into play regarding user consistency.
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Chapter 2

Gaussian Processes

Gaussian processes are priors over entire functions and are thus nat-
ural priors in Bayesian non-parametric regression frameworks. A
(zero-mean) Gaussian process is defined only through a covariance
(or kernel) function, which makes Gaussian processes very flexible.
The Bayesian formulation makes it possible to learn kernel param-
eters from data in a principle manner. On the downside, the com-
putational cost of a Gaussian process scales cubic in the number of
training examples.

In the present work, only few training examples are available, hence
the computational scaling is not a problem. Instead, the Bayesian
non-parametric formulation makes it possible to consider a rich class
of functions, with a principle way to restrict the solution based on
the limited amount of training examples.
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2.1 Introduction to Gaussian Processes

Formally, a Gaussian process (GP) is a collection of random variables, any finite
number of which have a joint Gaussian distribution [Rasmussen and Williams,
2006, Def. 2.1]. A GP is completely defined by a mean function, m(x), and a
positive semidefinite (psd) covariance or kernel function, k(x,x′), written as

f(x) ∼ GP (m(x), k(x,x′)) (2.1)

indicating that the function f : RD → R,x 7→ f(x) is modeled by a GP.
In the remainder of this thesis, only zero-mean GPs are considered, hence
m(x) = 0 will be implicit, but further details of non zero-mean GPs are given
by Rasmussen and Williams [2006]. For a finite set of D-dimensional inputs,
X = {xi|i = 1, ..., n}, and corresponding function values, f = [f(x1), ..., f(xn)]>,
the prior over f is defined by the GP as a multivariate Gaussian distribution
given by

f |X ∼ N (0,K) , (2.2)

where the elements in the kernel matrix, K, are given as [K]i,j = k(xi,xj). By
far the simplest and most elegant way to derive a traditional GP for regression
in the presence of i.i.d. Gaussian noise, ε, with variance σ2, is to proceed as
Rasmussen and Williams [2006]. Given the GP, the joint distribution between
the noisy targets, y = [y1, ..., yn], where yi = f(xi)+σ, and the function values,
f∗, for a new set of inputs, X ∗ = {x∗l ∈ RD|l = 1, ..., n∗}, is given by

[
y

f∗

]
∼ N

([
0

0

]
,

[
K + σ2In×n

K>∗

K∗
K∗∗

])
, (2.3)

where [K∗∗]l,r = k(x∗l ,x
∗
r) and [K∗]i,l = k(xi,x

∗
l ). By the use of Eq. 332

in Petersen and Pedersen [2008], the predictive distribution, p(f∗|y,X ,X ∗), is
directly available as

p(f∗|y,X ,X ∗) = N (f∗|µ∗,Σ∗) , with (2.4a)

µ∗ = K>∗
(
K + σ2In×n

)−1
y (2.4b)

Σ∗ = K∗∗ −K>∗
(
K + σ2In×n

)−1
K∗ (2.4c)

Despite the simplicity, this approach only shows little of what is needed to use
GPs for more sophisticated (none-Gaussian) likelihoods. Another approach to
derive the same fundamental equations from Eq. 2.4 is to define the Gaussian
likelihood, p(y|f), explicitly as

p(y|f) =

n∏

k=1

N
(
yk|fk, σ2

)
= N

(
y|f , σ2In×n

)
= N

(
f |y, σ2In×n

)
, (2.5)
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where the last equal sign comes from the fact that the random variable and
mean of the Gaussian distribution can be interchanged. From Bayes formula,
the posterior of f is given by

p(f |y,X ) =
p(y|f)p(f |X )

p(y|X )
∝ N

(
f |y, σ2In×n

)
N (f |0,K) , (2.6)

which up to the normalization constant, p(y|X ), is seen just to be the product
of two Gaussian distributions in f . This product has a straight-forward solution
listed in Eq. 348 in Petersen and Pedersen [2008], which also gives an expression
for the important normalization constant, p(y|X ), called the marginal likelihood
(ML) or evidence. Thus, the posterior and marginal likelihood are directly
available [Petersen and Pedersen, 2008, Eq. 348] as

p(f |y,X ) = N (f |µ,Σ) , with (2.7a)

µ = K
(
K + σ2In×n

)−1
y (2.7b)

Σ =

(
K−1 +

1

σ2
In×n

)−1

= K
(
K + σ2In×n

)−1
σ2In×n (2.7c)

p(y|X ) = N
(
y|0,K + σ2In×n

)
. (2.7d)

Note, that the logarithm of Eq. 2.7d is identical to Eq. 2.30 in Rasmussen and
Williams [2006] and is used for learning (or optimizing) covariance-function and
likelihood parameters of the standard GP regression model. In the literature,
this learning scheme is referred to as either evidence optimization or marginal-
likelihood-II (ML-II) optimization. In the present work, weakly-informative
hyper priors are typically used to regularize the marginal likelihood, p(y|X ), to
obtain a more robust Maximum-A-Posterior-II (MAP-II) scheme.

The predictive distribution can be derived following a general procedure which
also applies for none-Gaussian likelihoods given that the posterior distribution
of f is Gaussian. Except for the standard Gaussian likelihood, the posterior
is rarely analytically tractable, in which case the Gaussian posterior is an ap-
proximation to the true posterior. In any case, the predictive distribution,
p(f∗|y,X ,X ∗), is given by

p(f∗|y,X ,X ∗) =

∫
p(f∗|f ,X ,X ∗)p(f |y,X )df , (2.8)

where the last term is the—typically approximate, but for standard GP regres-
sion, exact—posterior, whereas the first term follows from the joint distribution
given the GP between f and f∗ as

[
f

f∗

]
∼ N

([
0

0

]
,

[
K

K>∗

K∗
K∗∗

])
, (2.9)
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resulting in [Petersen and Pedersen, 2008, Eq. 348]

p(f∗|f ,X ,X ∗) = N
(
f∗|K>∗K−1f ,K∗∗ −K>∗K−1K∗

)
(2.10)

A solution to the marginalization over f in Eq. 2.8 can be found by insterting
Eq. 2.7a and Eq. 2.10 and use Eq. 2.115 in Bishop [2006] to give

p(f∗|y,X ,X ∗) =

∫
p(f∗|f ,X ,X ∗)p(f |y,X )df , (2.11)

=

∫
N
(
f∗|K>∗K−1f ,K∗∗ −K>∗K−1K∗

)
N (f |µ,Σ) df (2.12)

= N (f∗|µ∗,Σ∗) , with (2.13)

µ∗ = K>∗K−1µ, (2.14)

Σ∗ = K∗∗ −K>∗K−1K∗ + K>∗K−1ΣK−1K∗ (2.15)

= K∗∗ −K>∗
(
K−1 + K−1ΣK−1

)
K∗. (2.16)

Eq. 2.14 and Eq. 2.16 are the two general equations needed to make predictions
for any GP model with a Gaussian posterior—also when the Gaussian posterior
is an approximation to the true posterior. For the standard Gaussian likelihood,
inserting the expressions for the mean and variance from Eq. 2.7 yields

µ∗ = K>∗
(
K + σ2In×n

)−1
y (2.17)

Σ∗ = K∗∗ −K>∗
(
K−1 + K−1ΣK−1

)
K∗ (2.18)

= K∗∗ −K>∗

(
K−1 + K−1

(
K−1 +

1

σ2
In×n

)−1

K−1

)
K∗ (2.19)

= K∗∗ −K>∗
(
K + σ2In×n

)−1
K∗, (2.20)

where the last expression is obtained by using the Woodbury identity [Petersen
and Pedersen, 2008, Eq. 145]. Although the previous procedure is rather tedious
for deriving the predictive distribution in the standard GP regression case com-
pared to the procedure by Rasmussen and Williams [2006, Chapter 2.2], Eq. 2.14
and Eq. 2.16 apply for any GP model where a Gaussian (approximation to the)
posterior can be obtained.

This concludes the introduction to GPs. The next sections describe a few gen-
eral concepts useful for general GP models. Firstly, Section 2.1.1 contains a brief
overview of covariance functions relevant for the work described in this thesis.
Multi-task and collaborative filtering extensions for GPs are described in Sec-
tion 2.1.2. In Section 2.1.3, a brief introduction to approximate inference is
given focusing in particular on the Laplace approximation. In Section 2.1.4, the
idea of sparse GPs is introduced which seeks to reduce the O(n3) computational
cost for general GP models.
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Figure 2.1: Samples from a (zero-mean) GP with a squared exponential covari-
ance function for different sizes of the length-scale parameter, λ.

2.1.1 Covariance Functions

As mentioned, the covariance function1, k(x,x′), fully defines a zero-mean GP
prior, partly by one or several length-scale parameter(s), λ. In Fig. 2.1, sam-
ples from a GP prior with three different length scales of a standard covariance
function are depicted. Obviously, the length scale is directly related to the
smoothness of the sampled functions. In this section, only a few (stationary)
covariance functions related to the present work are presented. For a more
complete treatment of kernels—including for instance non-stationary kernels,
construction of new kernels from known ones or kernels applicable when the in-
puts are distinct objects or instances—see for instance Rasmussen and Williams
[2006], Bishop [2006].

By far the most widely used covariance function for GPs is the squared expo-
nential (SE) kernel [Rasmussen and Williams, 2006, Chapter 4] given by2

kSE(x,x′) = σf exp

(
−1

2
[x− x′]>L−1[x− x′]

)
, (2.21)

where the psd matrix, L, is refereed to as the input-covariance matrix, not to
be confused with the covariance matrix, K. The two well-known versions of the
SE kernel, namely the isotropic (ISO) version, kISO, and the automatic rele-
vance determination (ARD) version kARD, are obtained when L = λ2ID×D and
L = diag

(
[λ2

1, ..., λ
2
D]>

)
, respectively3. Several other interesting anisotropic—

hence, non-diagonal—versions of L exist, for instance to obtain dimensional-
ity reduction Vivarelli and Williams [1999]. Rasmussen and Williams [2006,

1Specifically in relation to GPs, the term covariance function instead of kernel is typically
used, to indicate that the kernel directly specifies the covariance of the GP prior.

2Note, that the definition by Rasmussen and Williams [2006, Chapter 4] does not contain
the function variance, σ2

f .
3Note, the ISO version of the SE kernel is similar to what is known as the radial basic func-

tion (RBF) kernel for other algorithms, such as the support vector machine (SVM) [Bishop,
2006, Chapter 7]
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Eq. 4.22] suggest a general structure where L−1 is a low-rank matrix constructed
from a few basis directions. A similar idea is adopted in Pap. F where the input-
correlation matrix is directly specified to obtain (a fixed) correlation between
adjacent input dimensions.

The SE kernel provides smooth non-linear interpolation between training exam-
ples. Hence, the SE covariance function is less suitable for extrapolation pur-
poses because inputs ”in distant areas” do not covary with any training data.
The predictions are then only influenced by the prior in these distant areas.
Naturally, periodic kernels overcome this in settings where a specific periodic
structure can be assumed, but more generic approaches have been proposed
recently. Duvenaud et al. [2011, 2013] consider finite-order additive kernels de-
fined as a sum of higher-order one-dimensional base kernels, where interactions
between base kernels have the ability to capture global structures. Duvenaud
et al. [2011, 2013] show that typically only a few orders are required to capture
global structures, which limits the computational burden. Wilson and Adams
[2013] adopt a different approach, where a spectral-mixture kernel is proposed,
in which a spectral density is learned during training capturing local and global
patterns.

An interesting, yet less common kernel worth mentioning is the probability prod-
uct (PP) kernel [Jebara et al., 2004]. The PP kernel measures covariance be-
tween two distributions instead of between scalar or vector inputs. In case of two
Gaussian mixtures as inputs, the particular case of the PP kernel corresponding
to the Hellinger divergence is analytically tractable. This could be particularly
suitable for specific audio applications in which a single input is a sequence of
features extracted at particular points in time.

2.1.2 Multi-Task and Collaborative-Filtering Extensions

In the literature, authors sometimes do not distinguish between multi-task (MT)
learning and collaborative filtering (CF) [Su and Khoshgoftaar, 2009], whereas
others might use completely different expressions. However, the idea in both
MT and CF learning is that similar or related tasks should be able to learn
from each other or transfer information between the tasks (users). This is
thus useful in several applications where either the amount of data is sparse
for a single user, but can be considered dense across multiple users, or where
labeling is expensive for single users, but can be spread among several users.
In the present thesis, the following distinction will be made between the CF
approach and the MT approach. In a CF approach, users are not characterized
by a set of observable features, hence the similarity between users is based only
on the partly observed data for individual users. In traditional CF problems,
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observations are organized in a sparse user-by-item matrix, where missing entries
are predicted by some kind of matrix-factorization model. Similar or like-minded
users then have similar loadings (hidden features). In MT learning, users are
described by a set of observable features, such as age, gender etc. The approach
in MT learning is to model the data as a function of both task and user features
directly.

CF for GPs has been considered by several including Schwaighofer et al. [2005],
Yu et al. [2005], where a hierarchical structure is used in which the mean vector
and the covariance matrix of a GP prior are drawn from a conjugated prior—a
Gaussian distribution for the mean and an inverse Wishart distribution for the
covariance matrix. The conjugated prior is thus shared across users. This was
later applied to the case of hearing-aid personalization by Birlutiu et al. [2009,
2010].

For MT learning, a hierarchical approach has been suggested by Bakker and
Heskes [2004], where the mean vector is a linear combination of user features
with a set of weights for individual clusters of users.

A fundamentally different MT formulation was proposed by Yu and Chu [2007]
and later considered by Bonilla et al. [2007, 2008, 2010], in which the user
features are included directly in the covariance function. This MT formulation
basically correlates users directly in the kernel by defining a MT kernel as the
product of two other kernels—one between user features, x(u), and one between
original input features, x,

kMT([x,x(u)], [x′,x(u)′]) = k(x,x′) · k(x(u),x(u)′). (2.22)

If the input sets for all users are identical, the MT GP prior covariance matrix,
KMT, is given as the Kronecker product of the covariance matrix between users,
K(u), and the covariance matrix between inputs, K

KMT = K(u) ⊗K. (2.23)

Only the MT kernel has been used in the present work in contribution B, and
generally, the CF/MT approach has not been a great part of the present work.
The concept, however, would be a suitable and interesting research field follow-
ing the present work once data for several users is collected. At this point, the
hierarchical GP framework for CF [Schwaighofer et al., 2005, Yu et al., 2005]
reads promising. The reason is that it overcomes a fundamental issue with the
MT kernel approach [Bonilla et al., 2007, 2008, 2010], namely that the user fea-
tures must alone posses the information needed to model the variation across
functions for different users. Possibly, a combined approach similar to Houlsby
et al. [2012] in which the MT kernel is incorporated at the top level in the
hierarchy would be worth studying.
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2.1.3 Approximate Posterior Inference

Only few likelihoods—essentially only Gaussian likelihoods—yield analytically
tractable posterior distributions (Eq. 2.6). When the posterior is not analyti-
cally tractable, one needs to resort to either sampling based inference or analyti-
cal posterior approximations. Although sampling-based inference is exact when
sampling is performed for an (effectively) infinitely amount of time, these meth-
ods are typically slow compared to analytical approximations, making them less
attractive in an interactive system. Therefore, only analytical approximations—
in particular the Laplace approximation—have been considered.

The basic idea of an analytical approximate-inference method is to fit a well-
described distribution to the posterior. Typically, this distribution is chosen
from the exponential family, and in particular, the Gaussian distribution is the
choice for GPs. Thus, approximate inference consists of approximating the
intractable posterior distribution, p(f |y,X ), with a Gaussian, q(f |y,X ) as

q(f |y,X ) = N (f |µ,Σ) ≈ p(f |y,X ) (2.24)

Note already at this point, that once the posterior approximation is given,
predictions are performed as described in Sec. 2.1 using Eq. 2.14 and 2.16.
There exist essentially three methods for obtaining the Gaussian approxima-
tion, q(f |y,X ); the Laplace approximation [Mackay, 2003, Chapter 27], Expec-
tation Propagation (EP) by Minka [2001], and Variational Bayes (VB) [Mackay,
2003, Chapter 33]. In general though, not all methods are equally suitable for
a particular likelihood. For GPs, the two most common approximate inference
methods are the Laplace approximation [Williams and Barber, 1998, Rasmussen
and Williams, 2006, Section 3.4] and EP [Rasmussen and Williams, 2006, Sec-
tion 3.6]. The Laplace approximation has been used to perform approximate
inference for the pairwise models developed in the present work mainly due to
its simplicity, although EP is generally found to better capture the relevant mass
of the intractable posterior.

In the Laplace approximation, the mode of the true posterior, f̂ , is found. Then
the Gaussian approximation to the posterior is obtained as

qLAP(f |y,X ) = N
(
f |f̂ , (K−1 + W)−1

)
, (2.25)

where W = −∇∇f log p(y|f) is the Hessian of the negative log likelihood at the
mode, which is typically diagonal. Exceptions are the pairwise models described
in Sec. 2.3. The expression for the covariance of the approximation is the neg-
ative inverse Hessian of the log posterior at the mode. The mode, f̂ , is found
with a Newton method given by [Rasmussen and Williams, 2006, Eq. 3.18]

fnew = (K−1 + W)−1(Wf +∇ log p(y|f)). (2.26)
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The Laplace approximation also gives an (approximate) expression [Rasmussen
and Williams, 2006, Eq. 3.32] for the log marginal likelihood, log p(y|X ),

log q(y|X ) = log p(y|f̂)− 1

2
f̂>K−1f̂ − 1

2
log det(In×n + KW), (2.27)

which is optimized with respect to the hyper parameters, θ, to train the GP us-
ing the ML-II scheme or with additional hyper priors using the MAP-II scheme.

The EP approximation method approaches the approximating Gaussian, q(f |y,X ),
differently than the Laplace approximation. EP utilizes that it is normally as-
sumed that the likelihood factorizes, such that the GP posterior factorizes as

p(f |y,X ) =
1

Z
N (f |0,K)

m∏

k=1

p(yk|fk), where

p(yk|fk) ≈ Z̃kN
(
fk|µ̃k, Σ̃k

)
⇒

qEP(f |y,X ) =
1

ZEP
N (f |0,K)

m∏

k=1

N
(
fk|µ̃k, Σ̃k

)

= N (f |µ,Σ) ,

(2.28)

where Z has been substituted for the marginal likelihood, fk is the function
values of the k’th likelihood term and Σ̃k is diagonal4. Note, that for standard
GP regression and classification [Rasmussen and Williams, 2006, Chapter 2 & 3]
m = n, k = i and fk = [fi] has only a single variable such that the approximation
is given [Rasmussen and Williams, 2006, Eq. 3.53]

µ = ΣΣ̃
−1

µ̃

Σ =
(
Σ̃
−1

+ K−1
), (2.29)

where µ̃ is a vector with elements µ̃i and Σ̃ is simply a diagonal matrix with
elements [Σ̃]i,i = Σ̃k=i from Eq. 2.28. For the models described in Sec. 2.3, the
latter is not the case as fk = [f(xuk

), f(xvk)]>, where uk, vk ∈ {1, ..., n}, such
that xuk

,xvk ∈ X . In this case, Eq. 2.29 still applies, but the elements [µ̃]i and
[Σ̃]i,i are now given as the resulting mean and variance [Petersen and Pedersen,
2008, Eq. 348] from the product of multiple Gaussians—all the Gaussian factors
containing fi, which are essentially spread across several likelihood functions.
EP has not been implemented for the pairwise models in Sec. 2.3, but doing
so will require some book keeping with respect to the n function values, fi,
appearing in each of the m likelihood terms, p(yk|fk).

4For likelihoods depending on more than one functional value as for instance the pairwise
likelihood in Sec. 2.3 with two function values, the diagonal version corresponds to a fully
factorized posterior, where each multi-function-valued likelihood term is approximated with
as many Gaussian factors as function values. This is the simplest factorization.
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Figure 2.2: Illustration of the difference between the Laplace and the EP ap-
proximation on a simple example with the cumulative Gaussian likelihood [Ras-
mussen and Williams, 2006, Chapter 3]

With the above in mind, the parameters of each Gaussian factor in the approx-
imation5 are found by moment matching following Rasmussen and Williams
[2006, Eq. 3.55-3.57 & 3.59]. The EP approximation to the marginal likelihood,
ZEP ≈ p(y|X ), is obtained by Rasmussen and Williams [2006, Eq. 3.65].

Fig. 2.2 illustrates a fundamental difference between the Laplace approximation
and EP given a skewed one-dimensional posterior. While the Laplace approxi-
mation fits a Gaussian distribution around the mode of the true posterior, EP
fits a Gaussian around the mean instead, that better captures the probability
mass of the true posterior.

2.1.4 Sparse Approximation

Sparsity in the GP context refers to reduction of the O(n3) scaling associated
with GPs. Some of the earliest attempts, for instance Lawrence et al. [2002],
simply reduce the number of data points included in Y by removing the least
informative observations according to some criterion. Although such attempts
are referred to as sparse GP solutions in the literature, such attempts are in
the present thesis not considered to be so. Rather, such attempts are specific
applications of active learning discussed in Chapter 3, where available observa-
tions are thrown away. Hence in this thesis, a sparse GP solution is one which

5Note, that as a multi-function-valued likelihood functions is approximated by several
Gaussian factors, each one-dimensional Gaussian factor is considered separately.
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includes all of the available data.

The general idea of the pseudo-input sparse GP formulation originally proposed
by Snelson and Ghahramani [2006] is to model the n (original) function values,
f , by a smaller set of n̄ << n inducing variables, f̄ , corresponding to a set of
pseudo-inputs, X̄ = [x̄1, ..., x̄n̄]>, where x̄j ∈ RD.6,7 The inducing variables, f̄ ,
are modeled by the same GP as the original function values, f , hence

[
f

f̄

]
∼ N

([
0

0

]
,

[
K

K>X̄

KX̄

KX̄X̄

])
, (2.30)

where [KX̄X̄]i,j = k(x̄i, x̄j) and [KX̄]i,j = k(xi, x̄j). The trick in the pseudo-
input formulation is to define a sparse likelihood function as

p(yk|f̄) =

∫
p(yk|fk)p(fk|f̄)dfk, (2.31)

which for standard GP regression yields

p(yi|f̄) =

∫
N
(
yi|fi, σ2

)
N
(
fi|kX̄K−1

X̄X̄
f̄ , [K]i,i − kX̄K−1

X̄X̄
k>X̄
)
dfi (2.32)

= N
(
yi|kX̄K−1

X̄X̄
f̄ , [K]i,i − kX̄K−1

X̄X̄
k>X̄ + σ2

)
, (2.33)

where kX̄ is the i’th row of KX̄. The sparse approximation now enters by
assuming that the sparse likelihood factorizes, hence

p(y|f̄) =

n∏

i=1

p(yi|f̄) = N
(
y|KX̄K−1

X̄X̄
f̄ ,Λ + σ2In×n

)
(2.34)

where Λ is diagonal with elements [Λ]i,i = [K]i,i − kX̄K−1
X̄X̄

k>
X̄

. With the
sparse likelihood, inference is now performed for the inducing variables having a
traditional GP prior. Effectively, this means that the original n× n covariance
matrix, K, has been substituted with a smaller n̄× n̄ covariance matrix, KX̄X̄,
which is inverted instead of the original one. Thereby, the computational cost
has been reduced to O(n̄2n) compared to the O(n3) computational cost of a full
GP.

For a unifying view on sparse GPs, see Quiñonero Candela and Rasmussen
[2005]. Quiñonero Candela and Rasmussen [2005] define the above version [Snel-
son and Ghahramani, 2006] as the fully independent training conditional (FITC),

6Note, that the bar notation, ,̄ is used to indicate pseudo inputs, variables etc, when
referring to the sparse pseudo-input formulation and should here not be confused with the
mean of a variable.

7Note, that the pseudo inputs are explicitly collected in a matrix to indicate that the
pseudo-inputs are not true inputs, but parameters of a sparse GP model. Consequently, the
locations of the pseudo-inputs can be optimized together with the likelihood and covariance
parameters.
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whereas a version in which Λ is block diagonal is referred to as the partially in-
dependent training conditional (PITC), which was also considered by Snelson
and Ghahramani [2007]. Usually, predictions are conditionally independent of
the original function values, f , given the inducing variables, f̄ , in which case
FITC becomes FIC/FI(T)C, and PITC becomes PIC/PI(T)C [Quiñonero Can-
dela and Rasmussen, 2005]. The FIC and PIC are common expression found in
the literature.

Others have extended the original pseudo-input formulation. Vanhatalo and
Vehtari [2008] model global variations with the FIC formulation in combina-
tion with compactly supported covariance function to capture local variation.
Walder et al. [2008] propose an extension, where each covariance function for
the inducing variables was allowed to have its own function variance, σf . This
avoids the predictive distribution to be widened at new locations, that happen
to be far from any pseudo inputs. Lazaro-Gredilla and Figueiras-Vidal [2009]
define the pseudo inputs to be in another (lower dimensional) domain than the
original function values.

A sparse approximation proposed in Pap. C for binary pairwise observations is
described in Sec. 2.3.2.1.
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2.2 Bounded Gaussian Process Regression

When observations are bounded and do not have infinite support, i.e., when y ∈
]a, b[ with a 6= −∞ and b 6=∞, a standard GP model from 2.1 is not appropriate.
The bounded case occurs if the observations are for instance perceptual ratings,
probabilities or proportions. To address this case, the simplest approach is
to warp the observations onto a space with infinite support (unbounded) and
model the warped observations z = g(y) with a traditional GP regression model
as Snelson et al. [2004]. Several warping functions, g(y), apply depending on
the problem. Snelson et al. [2004] propose a weighted sum of tanh functions.
Recently, a Bayesian Warped Gaussian Process model has been proposed by
Lázaro-Gredilla [2012], where the warping function is modeled by an additional
GP and is thus non-parametric. Lázaro-Gredilla [2012] show that the model is
highly generic in the sense that it supports a broad range of both regression and
classification problems. On the downside, the model by Lázaro-Gredilla [2012]
is not analytically tractable as is the case with the original warped GP model
by Snelson et al. [2004].

Effectively, the warped GP models model the observational noise indirectly as
the noise is modeled in the latent function space with a traditional Gaussian
likelihood. A fundamentally different approach is to model the noise in the
bounded observational space directly, with an appropriate likelihood function
with bounded support. Two alternatives have been proposed in Pap. E—a
bounded likelihood based on a truncated distribution and one based on the
beta distribution.

2.2.1 Truncated Gaussian Likelihood Function

Bounded support can be imposed on the standard Gaussian distribution by trun-
cation, or on any other relevant distribution such as the student’s t-distribution.
In the present work, the truncated Gaussian (TG) distribution Johnson and
Kotz [1970a, Section 7.1]) is considered. A TG likelihood function has been
defined as [Pap. E]

LTG ≡ p (yi|fi,θL) =
νN (ν (yi − µ̂ (fi)))

Φ (ν (b− µ̂ (fi)))− Φ (ν (a− µ̂ (fi)))
, (2.35)

where the distribution is parametrized by the mode µ̂ (fi) and inverse dispersion
parameter, ν. The domain limits a and b are assumed to be 0 and 1, respectively.
The mode, µ̂ (fi) = g(fi), is given by a monotonic-increasing non-linear warping
function, g(fi). In the present work, the standard cumulative Gaussian is used,
hence µ̂ (fi) = Φ (fi). The TG likelihood function is depicted in Fig. 2.3(a).
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(b) Beta Likelihood

Figure 2.3: Illustration of the (a) TG [Fig. 1, Pap. E] and (b) Beta [Fig. 2,
Pap. E] likelihood functions proposed in the present work. p(yi|fi) is shown as
the gray-scale level for different values of ν.

Another interesting alternative for the warping function is a weighted sum of
tanh functions similar to Snelson et al. [2004] or of cumulative Gaussian distri-
butions. A more involved alternative is to use a non-parametric parametrization
of g(fi) adopted from Lázaro-Gredilla [2012]. As noted in Pap. E, it is possible
to parametrized the mean of the TG by g(fi) although the mean parametriza-
tion requires the use of numerical or approximate methods. This is avoided with
the mode parametrization used in the present work [Pap. E].

2.2.2 Beta Likelihood Function

The beta distribution [Johnson and Kotz, 1970b, Chapter 24] has bounded sup-
port, thus it is a natural distribution to consider for bounded observations. The
beta distribution has previously been applied in parametric settings by Ferrari
and Cribari-Neto [2004] and Smithson and Verkuilen [2006].
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In the present work, a beta likelihood function is derived by re-parametrizing
the shape parameters, α, β, of the beta distribution

Beta (y|α, β) =
1

B (α, β)

(y − a)α−1(b− y)β−1

(b− a)α+β−1
, (2.36)

in terms of the beta mean, µ(fi), such that the Beta likelihood function be-
comes [Pap. E]

LBE ≡ p(yi|fi,θL) = Beta (yi|νµ(fi), ν (1− µ(fi))) , (2.37)

where ν is an inverse dispersion parameter. Here, the domain limits, a, b, are
assumed to be 0 to 1, respectively. The mean µ(fi) = g(fi) is parametrized
by any monotonic-increasing non-linear warping function, g(fi). As for the TG
likelihood function from Sec. 2.2.1, several—more or less involved—alternatives
apply for g(fi). Here, the (standard) cumulative Gaussian is again chosen, hence
µ(fi) = Φ(fi). The resulting Beta likelihood function is depicted in Fig. 2.3(b).

2.2.3 Predicting Bounded Responses

None of the bounded likelihood functions from Sec. 2.2.1-2.2.2 result in analyti-
cally tractable posterior distributions. Approximate inference and ML-II param-
eter optimization for both models are performed with either EP or the Laplace
approximation. Details about approximate inference are found in Pap. E. These
details are also needed to perform the covariance function and likelihood param-
eter optimizations described in Sec. 2.1.3.

With a successful Gaussian approximation, q(f |y,X ) = N (f |µ,Σ), to the true
posterior, the predictive distribution, p(f∗|y,X ,X ∗), of the latent function val-
ues for unseen inputs, x∗l , follows directly from Eq. 2.14 and 2.16. As always in
Bayesian modeling, the predictive distribution of the observed variable, y∗, is
given by marginalizing over the joint distribution as

p(y∗|Y,X ,x∗) =

∫
p(y∗|f∗)N (f∗|µ∗,Σ∗) df∗ (2.38)

which is only analytically tractable for the warped GP [Snelson et al., 2004,
Eq. 8] as

pGP−WA(y∗|Y,X ,x∗) =
N
(
Φ−1(y∗)|µ∗,Σ∗

)

Φ(Φ−1(y∗))
. (2.39)

For the two bounded likelihood functions, the integration in Eq. 2.38 can only
be performed numerically. Fortunately, it is only a one-dimensional integral
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per new data point. For the Beta likelihood function, the predictive mean of
the observed variable is analytically tractable, and is actually identical to the
predictive mean of the warped GP8 (derivations are shown in Pap. E)

EGP-WA{y∗} = EGP-BE{y∗} = Φ

(
µ∗√

1 + (σ∗)2

)
.

In Fig. 2.2.3, the predictive distributions of the different bounded GP models
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Figure 2.4: Predictive distributions for the three bounded models: warped GP
(GP-WA), Truncated Gaussian (GP-TG) and Beta distribution (GP-BE). For
GP-TG and GP-BE both Laplace and EP inference are shown. Training data:
+, test examples: ·, predictive mean: − and 68% and 95% percentiles: · · · .
Contours of the predictive distribution are shown in gray. [Fig. 3, Pap. E]

8Keep in mind that although there is an equal sign between the predictive mean of the
cumulative-warped and the beta model, the means will in general be different due to the
difference in the latent predictive distributions of the GP.
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are shown using a simple one-dimensional toy example. Note, that the predic-
tive distributions of the three models are different especially near the domain
boundaries. In Pap. E, it is shown that the GP with the Beta likelihood mod-
els the noise slightly better than the two other models on two real-world data
sets, in which the bounded observations are perceptual ratings on a bounded
scale. But as noted, the better model really depends—as usual—on the specific
application.
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2.3 Gaussian Process Regression from Pairwise
Data

In this section, m 6= n pairwise observations, Y = {yk|uk, vk, k = 1, ...,m}, are
given between any two distinct instances, uk, vk ∈ {1, ..., n}, implying xuk

,xvk ∈
X . The observations, yk, can come in one of the following forms; unbounded
y ∈ R (Sec 2.3.1), binary classification y ∈ {−1, 1} (Sec. 2.3.2), or bounded
y ∈]0, 1[ (Sec. 2.3.3).

In the following sections, it is assumed that any type of relative responses, yk, are
generated by a (possibly non-linear) process depending explicitly on the differ-
ence between two function values, fk = [f(xuk

), f(xvk)]>, of a latent unobserved
process, i.e., the user’s IRF, modeled by a GP, thus f(x) ∼ GP (0, k(x,x′)). In
effect, this turns the pairwise modeling problem into a regression problem in
which the observations define relative relations between function values.

Pairwise likelihood functions, p(yk|fk), for the three types of observations will
be defined. In the unbounded case (Sec. 2.3.1), the observations are directly
the difference between two function values and the observations are polluted
with i.i.d Gaussian noise. This makes the corresponding GP model analyti-
cally tractable. In the binary case (Sec. 2.3.2), observations are two-alternative
forced-choices (2AFC) given as a binary variable. This case is typically referred
to as preference learning in the literature. In the bounded case (Sec. 2.3.3),
observations are given as a bounded response capturing for instance the degree
of preference between two input instances. The models for the last two cases
above do not yield analytically tractable posterior distributions. Details about
approximate inference using the Laplace approximation are found in Jensen and
Nielsen [2011].

2.3.1 Pairwise Gaussian Likelihood

Formally, the observations, yk, are noisy versions of the difference between the
two function values, hence

yk = f(xvk)− f(xuk
) + ε, ε ∼ N

(
0, σ2

)
(2.40)

It is convenient to formulate a sparse m×n indicator matrix, M, with non-zero
elements given as

[M]k,uk
= −1, [M]k,vk = 1 (2.41)
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Using the sparse indicator matrix, a pairwise Gaussian likelihood is defined as

p(y|f) =

m∏

k=1

p(yk|fk) =

m∏

k=1

N
(
yk|f(xvk)− f(xuk

), σ2
)

= N
(
y|Mf , σ2Im×m

)
.

(2.42)

Using the GP prior from Eq. 2.2, Bayes rule yields

p(f |y,X ) =
p(y|f)p(f |X )

p(y|X )
∝ N

(
y|Mf , σ2Im×m

)
N (f |0,K) (2.43)

The posterior, p(f |y,X ), and marginal likelihood, p(y|X ), are obtained from
Eq. 2.116 and Eq. 2.115 in Bishop [2006], respectively, which result in

p(f |y,X ) = N (f |µ,Σ) , with (2.44a)

µ =

(
K−1 +

1

σ2
M>M

)−1
1

σ2
M>y (2.44b)

= K
(
M>MK + σ2In×n

)−1
M>y (2.44c)

Σ =

(
K−1 +

1

σ2
M>M

)−1

(2.44d)

p(y|X ) = N
(
y|0, σ2Im×m + MKM>) (2.44e)

The predictive distribution is as usual obtained by inserting the posterior mean
and covariance from Eq. 2.44 into Eq. 2.14 and Eq. 2.16 to give

µ∗ = K>∗K−1µ = K>∗
(
M>MK + σ2In×n

)−1
M>y (2.45)

Σ∗ = K∗∗ −K>∗
(
K−1 + K−1ΣK−1

)
K∗ (2.46)

= K∗∗ −K>∗

(
K−1 + K−1

(
K−1 +

1

σ2
M>M

)−1

K−1

)
K∗ (2.47)

= K∗∗ −K>∗
(
K + σ2[M>M]−1

)−1
K∗ (2.48)

= K∗∗ −K>∗ [M>M][M>M]−1
(
K + σ2[M>M]−1

)−1
K∗ (2.49)

= K∗∗ −K>∗ [M>M]
(
K[M>M] + σ2In×n

)−1
K∗ (2.50)

Note, that the warped GP framework [Snelson et al., 2004] can be applied in
this pairwise case to transform bounded observations into unbounded versions.
Thereby, an analytically tractable GP model is obtained, which however models
the observational noise implicitly in latent space.



30 Gaussian Processes

−10 0 10
0

0.5

1

f (xvk )− f (xuk )

p
(y

k
=

1|
f
k
)

 

 

σ = 0.5
σ = 1
σ = 2

Figure 2.5:

2.3.2 Preference Learning

For preference learning [Fürnkranz, 2010, see object ranking ], the response vari-
able is a 2AFC paired-comparison, such that yk ∈ {−1, 1} indicates a preference
for either uk or vk, respectively. Noisy observations of this type have historically
been modeled either by the Logit or Probit choice model Bock and Jones [1968,
chapter 6]. In the present work, only the Probit model is considered mainly for
analytical reasons.

Given the function, f , the likelihood of observing the binary choice, yk, is di-
rectly modeled as

p (yk|fk,θL) = Φ

(
yk
f (xvk)− f (xuk

)√
2σ

)
, (2.51)

where Φ(·) is the standard cumulative Gaussian—with zero mean and unity
variance—and θL = {σ}. This classic Probit likelihood function is by no means
a new invention and can be dated back to Thurstone and his fundamental defi-
nition of The Law of Comparative Judgment [Thurstone, 1927]. However, it has
first been considered with GPs by Chu and Ghahramani [2005a] and later by
for instance Chu and Ghahramani [2005b] and Bonilla et al. [2010]. The cumu-
lative Gaussian pairwise likelihood for different values of the noise parameter,
σ, is depicted in Fig 2.5.

Given an analytical approximation to the intractable posterior, q(f |Y,X ) =
N (f |µ,Σ)—which in the present work is obtained by the Laplace approxima-
tion [Jensen and Nielsen, 2011]— the predictive distribution, p(f∗|Y,X ,x∗), of
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latent function values follows directly from Eq. 2.14 and Eq. 2.16. Since the
cumulative Gaussian is an odd function, the (hard) prediction of the prefer-
ence relation x∗r � x∗s or x∗r ≺ x∗s between two new inputs, x∗r ,x

∗
s ∈ R, is

given by which of the inputs that has the largest predicted function mean value,
µ∗. The predictive distribution, p(y∗|Y,X ,x∗r ,x∗s), of the binary label involves
computing the expectation of the likelihood function under the two-dimensional
predictive distribution of the latent function values, f∗r , f

∗
s , which yields [Chu

and Ghahramani, 2005a]

P (x∗r � x∗s|Y) = Φ


 µ∗r − µ∗s√

2σ2 + Σ∗r,r + Σ∗s,s − 2Σ∗r,s


 (2.52)

2.3.2.1 Sparse Approximation for Cumulative Gaussian

In Pap. C, it is shown that for the cumulative Gaussian likelihood, it is possible
to analytically solve the integration in Eq. 2.31 to obtain a sparse pseudo-input
formulation of the cumulative Gaussian likelihood from Eq. 2.51 as

p(yk|f̄) =

∫
p(yk|fk)p(fk|f̄)dfk (2.53)

=

∫
Φ

(
yk
f(xvk)− f(xuk

)√
2σ

)
N
(
fk|KkX̄K−1

X̄X̄
f̄ , Σ̄

)
dfk, (2.54)

= Φ

(
yk

([KX̄]vk − [KX̄]uk
)K−1

X̄X̄
f̄

σX̄,k

)
(2.55)

where [KX̄]i denotes the i’th row in KX̄ from Eq. 2.30, and
[

fk

f̄

]
∼ N

([
0

0

]
,

[
Kk

K>kX̄

KkX̄

KX̄X̄

])
, (2.56)

Σ̄ = Kk −KkX̄K−1
X̄X̄

K>kX̄, (2.57)

σX̄,k =
√

2σ2 + [Σ̄]1,1 + [Σ̄]2,2 + 2[Σ̄]1,2. (2.58)

In Pap. C, inference is performed using the Laplace approximation and the loca-
tions of the pseudo inputs are optimized together with hyper parameters using
ML-II optimization (details are shown in Pap. C). An illustration of the sparse
cumulative Gaussian likelihood and a GP prior (SPGP) is shown in Fig. 2.6.
Notice, that especially the predictive standard deviation of the SPGP model
differs significantly from the full GP model. As mentioned in Sec. 2.1.4, Walder
et al. [2008] address this issue by having individual function variances, σ2

f , in
each of the kernel functions for the pseudo inputs.
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Figure 2.6: Predictive distribu-
tion of a full (GP) and sparse
(SPGP) pairwise GP, respectively.
freal is a single draw from a GP
prior used to generate a binary
pairwise data set between the in-
puts marked with black crosses.
The colored crosses indicate the
(pseudo/real) inputs of the full
and sparse GP models in corre-
sponding color. In the example
n = 31, n̄ = 9 and m = 465. [Fig.
1(a), Pap. C]
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2.3.3 Continuous and Bounded Observations

The information carried in each binary preference relation does not express to
what extent either of the two input instances, uk or vk, is preferred over the
other. If the extend or degree of a single preference relation is available and
the inherent noise can be modeled robustly, it is possible to learn preference
relations—and thus indirectly a more informative latent representation—with
a smaller set of observations. In the present work, the degree of preference is
captured by formally defining the domain of the response variable as yk ∈ ]0, 1[.
The first option, uk, is preferred for yk < 0.5. The second option, vk, is preferred
for yk > 0.5 and none is preferred for yk = 0.5. Hence, the response captures
both the choice between uk and vk, and the degree of the preference.

The observational noise is modeled by the beta distribution similar to Sec. 2.2.2
in which the cumulative Gaussian is used as a link function to specify the mean,
µ(fk, σ), of the beta distribution as

µ (fk, σ) = Φ

(
f (xvk)− f (xuk

)√
2σ

)
. (2.59)

By parametrizing the beta distribution by the mean, the beta likelihood function
becomes

p (yk|fk,θL) = Beta (yk| νµ(fk, σ), ν(1− µ(fk, σ))) , (2.60)

= Beta (yk|α(fk), β(fk)) ,
α(fk)=νµ(fk, σ)

β(fk)=ν(1− µ(fk, σ))
(2.61)

where ν is an inverse dispersion parameter and θL = {σ, ν}. The proposed
beta likelihood function is depicted in Fig. 2.3.3 for different values of ν. Since
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Figure 2.7: Illustration of beta likelihood with p(πk|fk,θL) shown as a color
level. The likelihood parameters θL are σ = 0.1 and left: ν = 3, middle: ν = 10
and right: ν = 30

posterior inference with the beta likelihood function is analytically intractable,
approximate inference based on the Laplace approximation is performed, which
is considered in Pap. A. Details are found in Jensen and Nielsen [2011]. With an
approximation to the true posterior, the predictive distribution, p(f∗t |Y,X ,x∗r ,x∗s),
of latent function values, f∗t = [f∗r , f

∗
s ]>, follows from Eq. 2.14 and Eq. 2.16. The

predictive distribution of y∗,

p(y∗|Y,X ,x∗r ,x∗s) =

∫
p(y∗|f∗t ,θL)p(f∗t |Y,X ,x∗r ,x∗s)df∗t (2.62)

=

∫
Beta (yk|α(f∗t ), β(f∗t ))N (f∗t |µ∗,Σ∗) df∗t (2.63)

involves an integration which is analytically intractable. Instead, numerical
integration is used. The predictive distribution for binary relations, x∗r � x∗s or
x∗r ≺ x∗s, can be obtained as

p(x∗r � x∗s|Y,X ,x∗r ,x∗s) =

∫ 1/2

0

p(y∗|Y,X ,x∗r ,x∗s)dy∗ (2.64)

=

∫ 1/2

0

∫
Beta (yk|α(f∗t ), β(f∗t ))N (f∗t |µ∗,Σ∗) df∗t dy∗ (2.65)

=

∫ ∫ 1/2

0

Beta (yk|α(f∗t ), β(f∗t ))N (f∗t |µ∗,Σ∗) dy∗df∗t (2.66)

=

∫
N (f∗t |µ∗,Σ∗)

∫ 1/2

0

Beta (yk|α(f∗t ), β(f∗t )) dy∗df∗t (2.67)

=

∫
N (f∗t |µ∗,Σ∗) Betacdf

(
1

2

∣∣∣∣α(f∗t ), β(f∗t )

)
df∗t , (2.68)

where by definition probabilities are finite measures in which case Fubini’s the-
orom is used to interchange the integration in Eq. 2.66. Note, that in case
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of noise-free predictions, ν → ∞, the beta distribution becomes a point mass
around the mean and Eq. 2.68 has an analytical solution similar to Eq. 2.52.

In the present work, the proposed beta likelihood function is motivated from
the perspective of learning an individual latent representation of the user’s IRF
over the adjustable parameters of a (HA) device with a minimum of observations
while preserving in particular the robustness contained in a pairwise paradigm.
Ultimately, the end goal is to optimize the IRF—not to predict outcomes of
the bounded observed variable. Hence, the described issues mentioned above
concerning the predictive distribution of relations—both binary, x∗r � x∗s, and
bounded, y∗—with the beta likelihood function, are not of particular interest
in the present work. However, a success criterion is that the beta likelihood
function should require fewer observations to obtain a sufficient latent repre-
sentation. In Pap. A, the cumulative Gaussian likelihood is compared to the
beta likelihood on an artificial example with different amounts of observational
noise. A contribution of the present work is the analysis showing that the beta
likelihood function is always ahead of the cumulative Gaussian likelihood given
the same number of observations. Moreover, the beta likelihood function is used
to optimize settings of hearing aids in Pap. D, G and H.

As a final remark, it should be noted that the IRF, f(x)—together with a spe-
cific active learning criterion (see Chapter 3)—is used to optimize parameters,
x. However, individual IRFs can neither be compared across users, likelihood
functions nor data sets. A valid approach to make comparisons across users or
data is to do it in observational space, in which case the predictive distribution
of the observations enters.

2.3.4 Pairwise Judgment Kernel

Recently, Huszár [2011], Houlsby et al. [2012] proposed a pairwise-judgment (PJ)
kernel suitable for relational learning. Seen from a GP perspective, the PJ kernel
circumvents the pairwise problem into a single-instance problem, by using the
GP prior to model the difference between the function vales, g(xv,xu) = f(xv)−
f(xu) ∼ GP (0, kPJ((xv,xu), (x′v,x

′
u))). Hence from the GP perspective, an

input now contains two instances, u and v, which changes the computational cost
compared to the pairwise framework outlined in the present work. Two extreme
pairwise cases can be identified if only unique comparisons exist, meaning that
a comparison between any two instances is only made once. In the first extreme

case, all possible relations among instances are observed whereby m = n2−n
2 .

In the other extreme case, all instances are only compared to exactly one other
instance, whereby m = 2n. Hence, n is generally neither larger nor smaller than
m, but for all pairwise problems with only unique comparisons, n and m are
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limited by each other by

n ≤ 2m ≤ n2 − n. (2.69)

The covariance matrix for the outlined framework is n × n and m ×m for the
PJ kernel formulation. When m >> n, the computational training cost of the
PJ kernel formulation is dominated by the O(m3) inversion of the covariance
matrix. In this case, the framework outlined in the present work has a large
computational advantage because it only has computational costs composed of
O(nm2) and O(n3). As seen from the right-hand side inequality 2.69, m >> n is
a likely scenario. When n >> m, the computational training cost of the outlined
framework is dominated by the O(n3) inversion of the covariance matrix. This
gives the computational advantage to the PJ kernel formulation, because it only
has computational costs composed of O(mn2) and O(m3). This however is not
a likely scenario, since from the left hand-side inequality 2.69, n can only be
twice as large as m, which is not an order of magnitude.

Besides the above computational considerations, the PJ kernel formulation and
the framework outlined in the present work are equally applicable to different
pairwise problems, and active learning (Chapter 3) is applicable for both as well.
Hence, besides the possible computational advantage with one formulation or the
other, which to use is basically a matter of taste. Nevertheless, for the problem
in this work where the end goal is to find the maximum of the latent function,
f , the outlined framework is more appealing in practice as it constitutes a more
direct route to the function, f , itself, and thus to the inputs, x.
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Chapter 3

Active Learning

In classical machine learning, observations are given beforehand and
the task is to learn an appropriate model. In (discriminative) Bayes-
ian modeling, this—loosely speaking—boils down to inferring the pos-
terior distribution under the assumptions implied in the likelihood
concerning the observational noise and in the prior concerning the
model.

In active learning, all observations are not given beforehand and new
observations are expensive to obtain. Consequently, only informative
new observations should be queried. A variety of active learning
settings exist. In the present work, active learning is used to find
the more informative next input for which to query a label from the
user (new observation). For this, the probabilistic modeling approach
described in Chapter 2 is utilized.
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3.1 Introduction to Active Learning

For some problems, it is expensive—for instance with respect to time, cost
and/or computation—to obtain new observations. This is particular the case
in the present work, where a new observation requires that a user listens care-
fully to one ore more input instance(s) and make a specific type of assessment
based on the user’s own perception. This is both tiring and time consuming
for a user to do. Consequently, the number of total assessments that each user
needs to perform in order to obtain a personalized device setting must be min-
imized. This problem is addressed by adopting a sequential approach in which
the model is trained after each assessment, where after active learning is used to
answer the question: ”Where to measure next in order to improve the current
model (ideally, as much as possible)?”. Active learning is typically based on an
approach where the horizon is only one step into the future, due to an otherwise
extensive computational burden of propagating uncertainty multiple steps into
the future. A one-step approach is also used in the sequential design applied in
the present work.

Typically, model improvement refers to the generalization performance of a
model for all future inputs. For this the expected reduction in posterior Shan-
non entropy Mackay [2003] is a suitable criterion taken from information the-
ory, and for standard GP regression or classification it corresponds to selecting
the point with the largest predictive variance [Rasmussen and Williams, 2006,
Sec. 8.3.3]. For the preference model from Sec. 2.3.2, the posterior Shannon
entropy criterion is considered by Houlsby et al. [2011, 2012], which obtain an
approximate expression for the intractable expected posterior entropy change.

In the present work, the generalization performance of the GP model is not the
key motivation for applying active learning. Conceptually, improving the pre-
dictive performance of the latent function in input regions that turn out to be
less preferred than other regions is suboptimal. Thus, an active learning crite-
rion that emphasizes global optimization [Jones, 2001, Rasmussen and Williams,
2006] instead of generalization is favorable. A criterion which utilizes the prob-
abilistic GP framework is Expected Improvement (EI) [Jones, 2001], although
EI in its definition utilizes only the predictive mean and variance of the latent
function values—not the covariance. In Sec. 3.2, a bi-variate version of EI (bEI)
is proposed which benefits from utilizing also the covariance of the GP predic-
tions. Finally, the sequential design approach adopted in the present work is
described in Sec. 3.3.
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Figure 3.1: Conceptual overview of machine learning and active learning. Given
a set of n observations, machine learning is concerned with the observations, y,
and the input set, X , in order to obtain the best predictive performance at new
inputs, x∗. Active learning on the other hand is concerned with querying new
observations, y∗, actively, to refine the current model in order to improve pre-
dictions. Thus generally speaking, machine learning is used for all the currently
observed data up to instance n, where active learning is used for unseen data
after instance n.

3.2 Expected Improvement

In the remainder, the random variable f̂ denotes the function value of the input
xî ∈ X , that given the current GP model has the largest predicted mean value
denoted by µ̂. For each possible query, x∗l ∈ RD, with a corresponding function
value, f∗l , modeled by a GP, the Improvement, Il, is simply given following Jones
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Figure 3.2: Illustration of the differ-
ence between the uni-variate and bi-
variate EI. The current maximum in-
dicated by a circle is at l = 1, which
is also a possible query. Top: EI for
the standard (uni-variate) version, a
bi-variate version neglecting covari-
ance (⊥Bivariate) and the bi-variate
version incorporating covariance (Bi-
variate). Middle: mean and vari-
ance of queries. Bottom: covari-
ance used for the bi-variate EI be-
tween query x∗l and maximum at
l = 1. [Fig. 4, Pap. H]

1 20 40 60 80 100

0.1

0.4

0.7

l

 

 
Univariate ⊥Bivariate Bivariate

1 20 40 60 80 100

1

4

7

l

 

 

µ
∗

l
Σ
∗

l,l µ̂i,Σî,̂i
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[2001] as

Il ≡ f∗l − f̂ . (3.1)

Now, the Expected Improvement (EI) is given by [Jones, 2001]

EI l ≡ Ep(Il) {max(Il, 0)} =

∫ ∞

0

Ilp(Il)dIl, (3.2)

where Il ∼ N
(
µ∗l − µ̂,Σ∗l,l

)
when f̂ is not considered to be stochastic, which

is the case in traditional (uni-variate) EI (uEI) [Jones, 2001]. The integration
corresponds to the expected value of a single-sided truncated normal distribution
and is given by

EI l = µIlΦ

(
µIl
σIl

)
+ σIlN

(
µIl
σIl

∣∣∣∣ 0, 1
)
, (3.3)

where µIl and σIl are the mean and standard deviation of the normal distributed
random variable Il implying Il ∼ N

(
µIl , σ

2
Il

)
. One problem with the uEI is that

it neglects that queries, x∗l , close to the location of the maximum, x̂, have corre-
lated function values (non-zero covariance) under the predictive distribution of
the GP. Consequently, the uEI is often maximized by points arbitrarily close to
the maximum. It is by no means complicated to include the covariance into the
EI framework to obtain a bi-variate EI (bEI) version proposed in Pap. D and

later used in Pap. G and Pap. H. Given the predictive distribution of [f̂ , f∗l ]>

available from the GP, the improvement, Il, is the difference between two de-
pendent normal variables, thus

µIl = µ∗l − µ̂ = µ∗l − µ∗î (3.4)

σIl =
√

Σ∗
î,̂i

+ Σ∗l,l − 2Σ∗
î,l
. (3.5)
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The difference between the uni-variate and bi-variate EI is illustrated in Fig. 3.2.
An important observation is that the bEI goes towards zero as the function
values become ”identical”. In the GP framework, this corresponds to the case in
which the query, x∗l , and maximum, xî, is co-located. When the next observation
is obtained by maximizing the bEI, querying the current maximum point over
and over again is avoided. This is not guaranteed with the uEI version.

Note, that although in the present work the current maximum point, xî, is
restricted to be in the set of the inputs for which an observation has been made
(xî ∈ X ), the previous derivation applies also if xî ∈ RD.

3.3 Sequential Design Approaches

A fundamental concept in active learning targeting global optimization is the
inherent trade-off between exploration and exploitation. Exploration refers to
exploring regions in which the current model is uncertain, whereas exploitation
refers to exploiting the current model to query regions with large predicted
values. Hence, the former effectively reduces model variance whereas the latter
exploits model mean. The upper confidence bound (UCB) [Auer, 2002] addresses
this trade off directly. In a traditional GP regression setting, Srinivas et al. [2010]
give exact regret bounds and show comparable regret between the uEI and UCB
on both artificial and real-world examples.

In the present work, the sequential design builds on the bEI criterion, although
the next observation is not directly obtained by maximizing the bEI from
Sec. 3.2. Instead, a heuristic which effectively applies slightly more empha-
sis on exploration compared to pure maximization is used. The used heuristic is
based on sampling the next observation from a multinomial distribution, where
the probability of querying point x∗l is equal to the corresponding bEI at the
point. This approach reads somewhat similar to Thompson sampling [Thomp-
son, 1933], which has recently been revisited by Chapelle and Li [2011]1. In
practice, though, the multinomial heuristic requires that the bEI is computed
for every possible query, x∗l ∈ X ∗, assigned typically to a uniform grid over a
restricted region of RD. For even a few number of input dimensions (D ≥ 3),
computing the bEI (or even the uEI) in a reasonable grid is infeasible making
the multinomial heuristic inapplicable. In high dimensions (D > 3), the bEI is
therefore maximized with a gradient ascent method, which in its nature does
not generally converge to the global maximum of the bEI (hyper-)surface. By

1One possible implementation of Thompson sampling for global maximization with GPs
would be to draw a function from the predictive distribution of the GP and query the input
with the largest function value from the draw.
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running a finite number of gradient ascent methods (say 5) with random initial-
ization, the resulting heuristic inherently applies more emphasis on exploration
compared to maximizing the bEI globally. The multinomial heuristic is applied
to two-dimensional problems in Pap. D and H, whereas the multi-start gradient
ascent method is applied in Pap. G and Pap. H. The derivatives required for
the gradient ascent method are found in App. I.1.



Chapter 4

Discussion and Conclusion

In this chapter, perspectives and potential of the present work are discussed in
Sec. 4.1 based on results from the papers included in the present thesis [Pap. A-
H], but also from the experience gained during the present work. Sec. 4.2 con-
tains the conclusion of the present work.

The reader is encouraged to read the included papers [Pap. A-H] before reading
this chapter.
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4.1 Discussion

The present work takes us somewhat down the road in obtaining an efficient
interactive personalization system with a simple and robust pairwise interface
proposed in Pap. A for especially HA fine-tuning. The system is intuitive for
users to use and does not impose an inappropriate cognitive load on the users.
In Pap. G and H, the system is used to efficiently optimize two and four pa-
rameters (input dimensions) of a pair of HAs to individual users in a real-world
music context. The results in Pap. G and H thus confirm the apparent promising
performance of the system in a challenging real-world speech-in-noise context
reported in Pap. D. Hence, the proposed personalization system can potentially
have a significant impact on how devices are personalized in the future. Never-
theless, several open questions exist, which have not or have only partly been
addressed in the present work. This chapter serves to highlight some key fields
of future research in this regard.

Currently, the personalization system shows to perform fine-tuning based on the
user’s perception for up to four HA parameters for which ten to twenty user as-
sessments are required for the system to converge to an optimal setting [Pap. H].
Realistically, devices—and especially HAs—easily have more than four tunable
parameters suitable for personalization. Therefore, it is important to investigate
to a greater extend the scaling between the number of required assessments and
the number of input dimensions. Similarly, if and when the modeling frame-
work fails to model the user’s IRF shall be studied. The results in Pap. H do
not show a large scaling difference between two and four-dimensional problems
within the same fixed context. Thus probably, scaling problems occur somewhat
above four dimensions in a fixed context. Currently, no interaction between in-
put dimensions is assumed a priori in the GP prior. For audio devices, multiple
parameters typically arise due to a particular number of frequency bands or
bins, in which similar sets of parameters across bands or bins control the de-
vice output. In these cases, it might for instance be fair to assume adjacent
parameters to be correlated with respect to the user’s IRF, f . Such a priori
assumptions about interactions between input dimensions can be introduced
via the input-covariance matrix, L, in Eq. 2.21 and may reduce the effective
number of assessments required to converge for multi-parameter devices. With
a given parametrization of the input-covariance matrix, L—for instance a low-
rank factorization—the corresponding parameters may be learned by standard
ML-II or MAP-II optimization.

Another important aspect of the present work in relation to a realistic appli-
cation is the context, which refers to the external stimuli for which the devices
are personalized. In the present work, it is assumed throughout, that the used
stimulus is representative for the context in general, hence for a music context
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one minute of a single music track is representative for music in general. Even
if the used music track is chosen carefully such that it for instance is both dy-
namic and broadband, it remains an open question if the personalized setting
generalizes to other stimuli within the same context. This is an aspect that
requires further investigation in the future. The same considerations apply for
other contexts such as for instance quiet speech, speech-in-noise etc. A more
realistic approach is to randomly select a stimulus from the same context for
each new assessment. This introduces noise on each assessment, but an optimal
setting found in this manner will generalize better for the particular context.
The Bayesian framework should be able to deal with the added noise, although
the number of assessments required to converge can grow significantly because
a possibly large amount of noise must be averaged out. Hence, it should be
investigated if the Bayesian framework can obtain a proper optimal setting un-
der these conditions and how these conditions influence the number of required
assessments.

The present work may be applicable in a clinical setting for fine-tuning suitable
parameters in HAs either physically in the clinic or remotely in a home fine-
tuning scenario. For this, the above considerations apply indeed, but in addition
the behavior of the user will have a prominent role during fine-tuning. In the
experiments conducted during the present work, different behavioral effects have
been observed. First of all, the behavior of the test subjects during the exper-
iments indicates a learning effect, where users tent to spent more time assess-
ing the first few assessments compared to the following assessments. Likewise,
they seem to be less consistent in their judgment of the first few assessments.
Generally, these observations are not quantitatively supported significantly in
the experimental results. The first study (two-dimensional optimization) from
Pap. H supports the learning-effect hypothesis somewhat, but not enough to
express anything conclusive considering that the other experiments do not sup-
port the hypothesis. Nevertheless, the clear impression while observing the
subjects conducting the experiments is that, overall, subjects tent to get more
consistent during each experiment and from experiment to experiment. It re-
mains unknown, whether or not it is simply the Bayesian framework that is
more or less unaffected in the current setting by the extra observational noise,
i.e. user inconsistency. Secondly, a few subjects were seen to get bored and
thus distracted during the entire experimental procedure. However, this is not
supported quantitatively by the results either. All the HA experiments were
conducted without informing the subjects that they were actually personalizing
the HAs to them selves. Subjects were only informed to assess each comparison
based on their perception and personal opinion. The reason for this is to avoid
any bias effects—either positive or negative—from subjects knowing that they
were fine-tuning certain parameters of the current HAs to them selves. In prac-
tice, users will be aware that they are optimizing or fine-tuning HAs and will
have worn the actual HAs for a longer period of time prior to the fine-tuning
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procedure. Thereby, the learning effect can be less prominent in this scenario,
although the effect will most certainly still be present. Furthermore, the typical
HA user is most likely inspired and motivated by knowing that he/she is di-
rectly influencing the fine-tuning of the HAs [Dillon et al., 2006, Convery et al.,
2011] as to get them exactly personalized to his/her individual needs. This is
supported by comments from the test subjects when told after the experiments
that they had actually been optimizing the HAs. Hence, in a real-world sce-
nario users may be more motivated to listen carefully without getting bored and
distracted in order to be as consistent as possible.

In the far future, assessments from a vast number of users can become available.
Thereby an opportunity to exploit CF or MT learning in the modeling frame-
work of individual user’s IRF will be present. As mentioned in Sec. 2.1.2 different
possible routes towards CF or MT learning within the GP framework already
exist, which are worth studying if such amounts of data are available. Consid-
ering the size of a data set containing multiple user assessments, the number of
inputs easily exceeds the number of inputs (n > 1000) that can be handle in a
full GP model. Consequently, sparse representations [Sec. 2.1.4, Pap. B & C] are
required in the GP model to overcome computational issues. Other algorithms
more suitable for large amounts of data will be worth studying as well.

In the present work, the focus is mainly on the HA application, but as men-
tioned in Chapter 1 the framework applies to other areas as well, where other
assessment types, such as direct bounded scaling [Pap. E & F], may be prefer-
able.
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4.2 Conclusion

In the present work, a machine-learning based interactive personalization system
is proposed and developed to constitute efficient optimization of devices—in par-
ticular of HAs—driven directly on user feedback that closely reflects the user’s
perception. Special observational models [Pap. A & E] are proposed and imple-
mented in a Gaussian process Bayesian optimization framework. The framework
includes an active-learning criterion referred to as bi-variate Expected Improve-
ment [Pap. D, G & H], that unlike standard EI exploits the full predictive
distribution of the GP framework.

On a synthetic example, the developed bounded-and-continuous pairwise likeli-
hood [Pap. A] embedded in the personalization system, is shown to reduce the
number of assessments required to learn the user’s IRF compared to state-of-
the-art—also under adverse noise conditions.

Real-world experiments show that the personalization system obtains personal-
ized settings of devices for individual users with only few user assessments and
without imposing an inappropriately high cognitive load on the users for each
assessment [Pap. D, G & H]. Generally, settings obtained with the personal-
ization system are significantly preferred by the users over settings given by a
current state-of-the-art prescriptive method [Pap. G & H].
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Errata

• The second sentence of Section 3.1 should be “... and A is the Hessian of
the negative log posterior at the mode.”

• Eq. (6) should be

fnew = (K−1 + W − λI)−1[(W − λI)f +∇ log p(Y|f ,X ,θL)]

• The equation before Eq. (13) should be

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − k>t (I + WK)−1Wkt
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Abstract

Human preferences can effectively be elicited using pairwise comparisons
and in this paper current state-of-the-art based on binary decisions is ex-
tended by a new paradigm which allows subjects to convey their degree
of preference as a continuous but bounded response. For this purpose, a
novel Beta-type likelihood is proposed and applied in a Bayesian regres-
sion framework using Gaussian Process priors. Posterior estimation and
inference is performed using a Laplace approximation.

The potential of the paradigm is demonstrated and discussed in terms
of learning rates and robustness by evaluating the predictive performance
under various noise conditions on a synthetic dataset. It is demonstrated
that the learning rate of the novel paradigm is not only faster under ideal
conditions, where continuous responses are naturally more informative
than binary decisions, but also under adverse conditions where it seem-
ingly preserves the robustness of the binary paradigm, suggesting that the
new paradigm is robust to human inconsistency.

Pairwise Comparisons, Continuous Response, Gaussian Processes, Laplace Ap-
proximation

1 Introduction

Traditionally, various aspects of human perception and cognition are assumed to
be related to absolute psychological magnitudes or intensities. This includes the
classical findings by Weber, Fechner and Stevens who, for example, investigated
the perception of light intensity. However, recently Lockhead [1] has argued that
every aspect of perception is relative, even those apparently absolute aspects
investigated by Weber, Fechner and Stevens. In accordance with the theory
in [1], we investigate human perception from a relative viewpoint and examine
one such highly relative aspect, namely preference.

1
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Formal treatment of relative aspects goes back to the ideas of Thurnstone [2]
and the principle of comparative judgments. In the present context it was
revisited by Chu et al. [3] who formulated a Bayesian approach to preference
learning using Gaussian Process (GP) priors. This formulation has initiated a
number of related studies and applications, such as audiological preference [4],
multi-subject food preference [5] and an extension for semi-supervised, active
learning settings [6].

In this work we extend the likelihood model in [3] to support observations
which in effect measure the perceived degree to which one option is preferred over
another. This degree of preference can be obtained from a traditional paired
comparison test, which implies that a subject is asked to give a subjective assess-
ment of the degree to whether A or B is preferred over the other. Specifically, we
model the observed degrees of preferences through a likelihood conditioned on
a functional value difference and support inconsistent observations by applying
a re-parameterized Beta distribution.

In a traditional setting, users would not be trusted to be able to quantify
such an abstract and difficult aspect as degree of preference. Instead, we would
rely on massive repetitions of a standard binary experiment to estimate the
proportion of A � B using this as an expression of the degree of any preferences.
However, we want to exploit the extra information from continuous responses to
get a faster method for preference elicitation without jeopardizing the robustness
from standard binary responses. The hypothesis is that we are able to learn
faster by (indirectly) observing the perceived probability of A � B as opposed
to a binary decision. Applying appropriate priors and noise modeling should
ensure this to be true also under adverse conditions.

In order to examine this hypothesis, we apply the novel likelihood in a flexi-
ble Bayesian setup similar to [3] in which the prior on the underlying preference
function is defined by a GP with a potentially complex covariance structure. The
Laplace approximation is used for inference and model selection by maximum-a-
posteriori (MAP) estimates. This provides a consistent probabilistic framework
for making predictions and evaluating the predictive uncertainty. We use sim-
ulations with different synthetic noise scenarios in order to compare a standard
binary decision with the novel model. The performance of both methods is
evaluated using the predictive performance.

2 Models for Pairwise Observations

In the previous section, we motivated pairwise comparisons from a cognitive per-
spective, yet pairwise comparisons can be considered more broadly. It is usually
possible to describe any aspect of a pairwise comparison, such as preference,
real difference, or perceived similarity in terms of a latent function [2].

In the following we will model the preference of two distinct inputs, u ∈ X
and v ∈ X , in terms of the difference between two functional values, f(u) and
f(v). This implies a function, f : X → R, which defines an internal, but latent
absolute preference.

The general setup is as follows: We consider n distinct inputs xi ∈ X denoted
X = {xi|i = 1, ..., n}, and a set of m responses on pairwise comparisons between
any two inputs in X , denoted by

Y = {(yk;uk, vk)|k = 1, ...,m} ,

2
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where yk ∈ Y. uk ∈ X and vk ∈ X are option one and two in the k’th pairwise
comparison, respectively. The main topic of this paper is how the domain of the
response variable influences the learning rate of the latent function f in relation
to the number of paired comparisons. As previously indicated, we will consider
two cases:

• binary where yk = dk, dk ∈ {−1, 1}
• continuous and bounded where yk = πk, πk ∈ ]0, 1[.

In both cases we consider y a stochastic variable, informally implying the defini-
tion of the conditional density given by p (yk|fk (uk) , f (vk)), denoted by p(yk|fk)

with fk = [f (uk) , f (vk)]
>

.

2.1 Binary Response

When restricting the response variable to be a discrete, two-alternatives, forced
choice, paired-comparison between the two presented options, we define the
response variable as dk ∈ {−1, 1}. A preference for either uk or vk is indicated
by −1 or +1, respectively.

When considering noise on the forced decisions the resulting random variable
can be modeled by a classic choice model such as the Logit or Probit [7, chapter
6]. In the current setting we restrict ourself to the Probit model mainly for
analytical reasons.

Given a function, f , we can define the likelihood of observing a discrete
choice dk directly as the conditional density.

p (dk|fk,θL) = Φ

(
dk
f (vk)− f (uk)√

2σ

)
, (1)

where Φ(x) is the cumulative Gaussian (with zero mean and unity variance) and
θL = {σ}. This classic Probit likelihood is by no means a new invention and
can be dated back to Thurstone and his fundamental definition of The Law of
Comparative Judgment[2]. However, it was first considered with GPs in [3] and
later in e.g. [5] and [6].

2.2 Continuous Response

The primary contribution of this paper is a novel response model allowing for
more subtle judgments, where the response variable describes the degree to
which the prevailing option is preferred.

For this purpose we formally define a continuous but bounded response π ∈
]0; 1[ observed when comparing u and v. The first option, u, is preferred for
π < 0.5. The second option, v, is preferred for π > 0.5 and none is preferred for
π = 0.5. Hence, the response captures both the choice between u and v, and
the degree of the preference.

Instead of using the Probit function directly as the choice model, it is used
as a link function mapping from functional differences to continues bounded
responses. More precisely, the Probit is used as a mean function for a Beta type
distribution with parameterized shape parameters α and β, thus

p (πk|fk) = Beta (πk|α(fk), β(fk)) .

3
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Figure 1: Illustration of the proposed likelihood with p(πk|fk,θL) shown as a
color level. The likelihood parameters θL are σ = 0.1 and left: ν = 3, middle:
ν = 10 and right: ν = 30

To express the shape parameters of the Beta distribution as a function of the
Probit mean function µ(fk), we apply a well-known re-parametrization of the
Beta distribution [8].

α(fk) = νµ(fk), β(fk) = ν(1− µ(fk)), (2)

where ν relates to the precision of the Beta distribution and is not parameterized
by f . Finally, our novel likelihood depicted in Fig. 1 is described by

p (πk|fk,θL) = Beta (πk| νµ(fk, σ), ν(1− µ(fk, σ))) , (3)

where θL = {σ, ν} and µ(fk, σ) is given by

µ (fk, σ) = Φ

(
f (vk)− f (uk)√

2σ

)
.

The precision term ν in Eq. (2) and Eq. (3) is inversely related to the observation
noise on the continuous bounded responses. In general, ν can be viewed as a
measure of how consistent the scale is used in a given comparison.

2.3 Gaussian Process Priors

At this point we have not specified any form, order or shape of f , but referred
to f as an abstract function. We maintain the abstraction by considering a
non-parametric approach and use a Gaussian process (GP) to formulate our
beliefs about f .

A GP is typically defined as ”a collection of random variables, any finite
number of which have a joint Gaussian distribution” [9]. Following [9] we de-
note a function drawn from a GP as f (x) ∼ GP

(
0, k(·, ·)θc

)
with a zero mean

function, and k(·, ·)θc
referring to the covariance function with hyper-parameters

θc, which defines the covariance between the random variables as a function of
the inputs X . The fundamental consequence of this formulation is that the GP
can be considered a distribution over functions, i.e., p (f |X ,θc), with hyper-
parameters θc and f = [f(x1), f(x2), ..., f(xn)]T , i.e., dependent on X .

In a Bayesian setting we can directly place the GP as a prior on the function
defining the likelihood. This leads us directly to a formulation given Bayes
relation with θ = {θL,θc}

p (f |Y,X ,θ) =
p (Y|f ,θL) p(f |X ,θc)

p (Y|θ,X )
. (4)
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The prior p(f |X ,θc) is given by the GP and the likelihood p (Y|f ,θL) is either of
the two likelihoods defined previously, with the assumption that the likelihood
factorizes as usual, i.e., p (Y|f ,θL) =

∏
k=1:m

p (yk|f(uk), f(vk),θL)

The posterior of interest, p (f |Y,X ,θ), is directly defined when equipped
with the likelihood and the prior, but it is unfortunately not of any known
analytical form in either the binary nor the continuous case.

3 Inference & Predictions

Since the likelihoods considered in this paper do not result in closed form solu-
tions to the posterior in Eq. (4), we must resort to approximations, such as the
Laplace approximation, Expectation Propagation or sampling. Since the main
focus of this work is to examine the general properties of the likelihood proposed
in Sec. 2.2, we use the well-know and relatively simple Laplace approximation.
The required steps have previously been derived for the binary likelihood [3]
(see [10] for a detailed derivation), and in the following it will be derived for the
proposed likelihood from Sec. 2.2.

3.1 Laplace Approximation

The main idea is to approximate the posterior by a single Gaussian distribution,
such that p (f |Y) ≈ N (f |̂f ,A−1). Where f̂ is the mode of the posterior and A
is the Hessian of the negative log posterior at the mode. The mode is found as
f̂ = arg maxf p (f |Y) = arg maxf p (Y|f) p (f).

The general solution to the problem can be found by considering the unnor-
malized log-posterior and the resulting cost function which is to be maximized,
is given by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f − 1

2
log |K| − N

2
log 2π. (5)

where Ki,j = k(xi, xj)θc . We use a damped Newton method with soft linesearch
to maximize Eq. (5). In our case the basic damped Newton step (with adaptive
damping factor λ) can be calculated without inversion of the Hessian (see [10])

fnew =
(
K−1 + W − λI

)−1
[(W − λI) f +∇ log p(Y|f ,X ,θL)] , (6)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj)
we apply the definition

Wi,j = −∑k∇∇i,j log p(yk|fk,θL). We note that the term∇∇i,j log p(yk|fk,θL)
is only nonzero when both xi and xj occur as either vk or uk in fk. In contrast to
standard binary GP classification the Hessian W is not diagonal, which makes
the approximation slightly more involved.

When converged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |̂f ,

(
W + K−1

)−1)
. (7)
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In the Beta case the required two first derivatives of the likelihood are given by:

∇i log p(πk | fk,θL) = I(xi) · ν · N (fk)

· [log(πk)− log(1− πk)− ψ(α) + ψ(β)] and (8)

∇∇i,j log p(πk | fk,θL) = −I(xi)I(xj) · ν2 · N (fk) ,

·
[
N (fk) ·

(
ψ(1)(α) + ψ(1)(β)

)
+
f(vk)− f(uk)

2νσ2

· (log(πk)− log(1− πk)− ψ(α) + ψ(β))] , (9)

where we for convenience write α and β without the dependency on fk Eq. (2).
ψ(z) and ψ(1)(z) are the digamma function of zero’th and first order, respec-

tively, N (fk) = N
(
f(vk)−f(uk)√

2σ

∣∣∣ 0, 1
)

and I(z) is an indicator function defined

by

I(z) =





1 if z = uk
−1 if z = vk

0 otherwise.
(10)

We refer to [10] for a full derivation and for the required derivatives for the
binary case as first described in [3].

3.2 Hyper-parameter Estimation

So far we have simply considered the hyper-parameters θ = {θL,θc} variables
on which we can condition the primary posterior, and not worried about their
values or distributions. In the following, we consider the hyper-parameters
random variables on which we place a prior and the full posterior would be
p (f ,θ|Y). However, since the focus in this work is p (f |Y,X ,θ) we only use
the prior on θ to make point estimates of the hyper-parameters in terms of
maximum-a-posteriori (MAP) estimates.

We obtain the MAP estimates by iterating between the Laplace approxi-
mation with fixed hyper-parameters, i.e. finding p (f |Y,X ,θMAP), followed by a
maximization step in which θMAP = arg maxθp (θ|Y,X ).

We first consider the standard evidence approach which seeks to optimize
the marginal likelihood given by

p(Y|θ,X ) =

∫
p(Y|f ,θL)p(f |X ,θc)df = p(θ|Y,X )p(Y|X )/p(θ|X ). (11)

Our interest is in the posterior term, p(θ|Y,X ), so considering Eq. (11) in terms
of the log-posterior of θ we obtain log p (θ|Y,X ) = log p (θ|X )+log p (Y|θ,X )−
log p (Y|X ), where p (θ|X ) is the prior and typical considered independent of
X . The evidence term, log p(Y|θ,X ), is analytical intractable in both likelihood
cases, but we can approximate it using the existing Laplace approximation to ob-
tain [10] log p (Y|θ) ≈ log p(Y|̂f ,θL)− 1

2 f̂
TK−1f̂− 1

2 log |I + KW |. Now θMAP is
found by maximizing log p (θ|Y,X ) with respect to θ and noting that p(Y|X ) is
independent of θ. We perform the optimization using a BFGS gradient method.
The required derivatives and details are provided in [10].

The choice of particular priors is left for the simulations in Sec. 4, however,
if p(θ) is the Uniform distribution, we obtain the traditional evidence optimiza-
tion [9] as expected. It is noted that the complexity of the posterior inference
is of the same order as standard GP regression described in [9].
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3.3 Prediction

The main task is to estimate the latent function, f , with the end goal to do
predictions of the observable variable y for a pair of test inputs r ∈ Xt and
s ∈ Xt. In this paper, we are especially interested in the discrete decision, i.e.,
whether r � s or s � r. This can be obtained from both likelihood models, thus
allowing for direct comparison of the two formulations in terms of predictive
performance.

We first consider the predictive distribution of f which is required in both
cases, and for notational convenience we omit the conditioning on X and Xt.
Given the GP, we can write the joint prior distribution between f ∼ p (f |Y,θMAP)

and the test variables ft = [f (r) , f (s)]
T

as
[
f

ft

]
= N

([
0

0

]
,

[
K kt
kTt Kt

])
, (12)

where kt is a matrix with elements k2,i = k(s, xi)θMAP
c

and k1,i = k(r, xi)θMAP
c

with xi being a training input. The conditional p (ft|f) is obviously Gaussian as
well and can be obtained directly from Eq. (12). The predictive distribution is
given as p (ft|Y,θMAP) =

∫
p (ft|f) p (f |Y,θMAP) df . With the posterior approx-

imated with the Gaussian from the Laplace approximation then p (ft|Y,θMAP)
will be Gaussian too and is given as N (ft|µ∗,K∗) with µ∗ = [µ∗r , µ

∗
s]
T = ktK

−1f̂
and

K∗ =

[
K∗rr K∗rs
K∗sr K∗ss

]
= Kt − kTt (I + WK)

−1
Wkt,

where f̂ and W are obtained from Eq. (7). With the predictive distribution for
ft, the final prediction of the observed variable is available from

p (yt|Y,θMAP) =

∫
p (yt|ft,θMAP

L ) p (ft|Y,θMAP) dft (13)

If the likelihood is an odd function, as in both our cases, the binary preference
decision between r and s can be made directly from p (ft|Y). In contrast, evalu-
ation of the integral in Eq. (13) is required for, e.g., soft decisions, reject options
and sequential designs.

3.3.1 Binary Likelihood

If p
(
ft|Y,θMAP

)
is Gaussian and we consider the Probit likelihood, the integral

in Eq. (13) can be evaluated in closed form as a modified Probit function given
by [3]

P (r � s|Y) = Φ ((µ∗r − µ∗s) /σ∗) (14)

with (σ∗)2 = 2σ2 + K∗rr + K∗ss −K∗rs −K∗sr

3.3.2 Continuous Likelihood

In the continuous case the observed variable, π, does not directly define the
discrete observation which is the main focus of this work. However, a bi-
nary preference can be derived from the continuous likelihood via the predic-
tive distribution over π. With the suggested likelihood and mean function in
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Figure 2: The Griewangk function used to evaluate the predictive performance.
Crosses indicate discrete samples. The center peak is slightly higher than the
two others.

Sec. 2.2 the probability of the binary choice is obtained as P (r � s|Y,θL) =∫ π=1/2

π=0
p (πt|Y,θL) dπt, thus

P (r � s|Y,θMAP) =

∫
p(ft|Y,θMAP)Betacdf

(
1

2

∣∣∣α(ft), β(ft)

)
dft (15)

In the ideal case of a noise-free user, i.e., ν →∞, the Beta distribution reduces
to a point mass at the mean defined by the Probit function. Hence, in the
limit of a completely consistent user, the predictions from Eq. (15) reduces to
a classical choice model with predictions that follows Eq. (14).

4 Experimental Results and Discussion

To study the performance of the models in a controlled setting, we use a syn-
thetic dataset generated from the deterministic Griewangk function depicted in
Fig. 2. We use the predictive performance of the binary decision to compare the
learning rates of the binary response (BR) model as the baseline and the contin-
uous bounded response (CBR) model. In each comparison, the two inputs are
drawn randomly among 101 input points sampled uniformly from x = [−8; 8].

The training points πk are drawn from a Beta distribution with the parame-
terization from Sec. 2.2 with the Probit link function in Eq. (4), σ = 1, and the
Griewangk function values as the two inputs. The noise level on the training
data is defined by the parameter νD corresponding to ν in the CBR model. The
binary decision dk is determined by whether πk is smaller or larger than 0.5.
For evaluation, we generate an independent binary test set located equidistantly
in between the training points. Initial experiments showed that in order to
get a robust predictive model for all noise level, it is important to learn the ν
parameter in the CBR model. The initial experiments also indicated that it is
vital not to underestimate the noise, while an overestimation is not as crucial
and provides overall good predictive performance. This suggests a prior with
a monotonic increasing likelihood towards the highest noise level. A natural
choice is a Gamma(1,η) prior with inverse scale parameter η.

The considered models, priors and parameters are listed in Table 1 where the
covariance parameters, θc, are applied in a GP prior with a covariance function
defined by the squared exponential kernel kSE(x, x′) = σ2

f exp(−l−2‖x− x′‖2).
When a specific prior is not a point-mass/constant indicated by δx in Table 1,
the hyper-parameters are estimated (MAP) either for each training set size
(realistic scenario) or for m = 500 (ideal scenario). The latter is indicated by
δideal.
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Simulation Data Noise θL θc

νD σ ν σf l

BR NoiseFree No
Noise

δ1 δidealδideal

BR {3, 10, 30} δ1 U1 U1

CBR Noise-
Free

No
Noise

δ1 δ→∞ δidealδideal

CBR Ideal {3, 10, 30} δ1 δ{3,10,30} δidealδideal
CBR {3, 10, 30} δ1 G(1, η){3,10,30} U1 U1

Table 1: Simulation conditions. δx is a point-mass, thus the parameter is con-
stantly equal to x. The δideal value is learned as m→∞. Ux is an uniform prior
over ]0;∞[ with the parameter initialized to x. G(1, η)x is a Gamma prior with
inverse scale parameter η = 0.05 and initialization x.

Figure 3: Mean error test rates (MER) as a function of the number of experi-
ments over 100 different realizations of the training set generated with different
νD. In the red and top green area MER are worse and better, respectively, than
those obtained with the BR model on the noisy data. In the lower green area
MER are also better than those obtained by the BR NoiseFree, and finally, the
grey area corresponds to unrealistic MER better than those obtained with a
CBR NoiseFree model with ν →∞ evaluated with ν = 103 on a noise-free data
set. The six rows of markers indicate if the MER of the corresponding CBR
model are significantly different from those resulting from the BR (squares) and
from the BR NoiseFree (circles). If solid, the zero-hypothesis of the two means
being equal is rejected at the 5% level using a paired t-test.

The learning curves from Fig. 3 show that under ideal conditions with nearly
noise-free observations and a correct noise setting (Fig. 3, right plot) the CBR
model outperforms the BR models as expected, since a continuous response will
essentially provide more information from each experiment under ideal condi-
tions than a binary response will. Also, in both high and moderate noise condi-
tions (Fig. 3, left and middle plot) the CBR model with a correct noise setting
(CBR Ideal) outperforms the corresponding BR model significantly in terms of
learning rates and actually shows similar learning rates as the BR model un-
der noise-free conditions. Finally and most importantly, the learning rates are
only slightly lower when ν has been inferred from data via the MAP procedure
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(with different initializations) than when it is specified correctly, which suggests
that the parameter inference framework with independent priors is robust in
real-life-scenarios without ideal model and noise conditions.

We have focused on a controlled example to highlight properties of the model
and inference, leaving a real-world validation for future work. Future work also
includes the extension of the mean function, Eq. (4), using a mixture of Probit
functions to account for different user behavior such as centering and contraction
bias. For a real-world setting, a natural extension is a suitable active learning
criteria, such as the expected value of information framework applied recently
in e.g. [5] for the BR model.

5 Conclusion and Perspectives

We have proposed a new model for preference learning with Gaussian Process
priors with the main purpose to increase the learning rate compared to the
standard binary model applied in [3]. We have outlined a robust and flexible
inference framework for the new model based on suitable priors and the Laplace
approximation. Simulations were used to present properties and performance,
which showed a significant information increase from each experiment under
ideal conditions as expected but more importantly also under adverse conditions.
The performance is especially increased in a certain window of opportunity.
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Abstract

In this paper we study pairwise preference learning in a music setting with multi-
task Gaussian processes and examine the effect of sparsity in the input space as
well as in the actual judgments. To introduce sparsity in the inputs, we extend a
classic pairwise likelihood model to support sparse, multi-task Gaussian process
priors based on the pseudo-input formulation. Sparsity in the actual pairwise judg-
ments is potentially obtained by a sequential experimental design approach, and
we discuss the combination of the sequential approach with the pseudo-input pref-
erence model. A preliminary simulation shows the performance on a real-world
music preference dataset which motivates and demonstrates the potential of the
sparse Gaussian process formulation for pairwise likelihoods.

1 Introduction

Preference learning is aimed at eliciting, modeling and eventually predicting human preference for
a given input or normally sets of inputs. In this paper we focus on a relatively robust query type
for human preference elicitation suitable for e.g. music applications, namely pairwise comparisons
modeled by the likelihood function considered in [11, 1]. This basic likelihood model was first put
into the flexible framework of Gaussian processes (GP) priors by Chu et. al. [5]. Furthermore, a
general multi-task extension to the particular preference setup was proposed in Bonilla et. al. [3]
based on the multi-task formalism originally developed by Bonilla et. el. [2] which supports the
inclusion of collaborative or transfer learning between users. GP based models are in turn desirable
models for preference learning, however, they all struggle with an inconvenient O

(
n3
)

scaling in
terms of the number of input instances, n, which makes their use limited for large-scale problems. A
number of suggestions have been proposed to resolve this issue for the standard GP regression case.

Our objective is to extend the well-known pairwise likelihood model to allow for explicit sparsity
in the input space. This is achieved by extending the pairwise likelihood model in terms of a set of
pseudo-inputs (of size l << n) which are essentially used to integrate out the function values of the
original inputs using the ideas proposed in Snelson et. al. [10] for the standard regression case. In
effect the multi-task GP prior is now placed over the function values of the pseudo points. Poste-
rior inference relies on a Laplace approximation, and the pseudo-inputs can be found by evidence
optimization or be fixed and determined by, e.g., k-means initialization. Secondly, we outline to
combine the model with the ideas of Bonilla et. al. [3] and include sequential experimental design to
ensure that sparsity also persists in terms of the number of actual pairwise comparisons, m, besides

Revision: 2011/12/12. Acknowledgment: This work was supported in part by the IST Programme of the
European Community, under the PASCAL2 Network of Excellence, IST-2007-216886. This publication only
reflects the authors’ views.
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the sparsity in the associated number of input instances, n. Finally, we evaluate the pseudo-input
model on a real-world music preference dataset, examine the multi-task transfer and learning rates
and discuss limitations and further improvements of this initial evaluation.

The paper is organized as follows: In Section 2 we review the basic model, provide the pseudo-
input extension and discuss option of sequential experimental design. In Section 3 we consider a
toy example and present the preliminary results on the music dataset. In Section 4 we discuss the
overall findings and outline a number of future research steps.

2 Model & Extensions

We describe the general setup and model in terms of

• a setA of na input instances, e.g. audio tracks, where each input instance i is described by one
feature vector x(a) ∈ Rda , i.e., A = {x(a)

i |i = 1, ..., na}.
• a set U of nu users, where each user j is described by a feature vector x(u) ∈ Rdu , i.e.,
U = {x(u)

j |j = 1, ..., nu}.

The task for a specific user j is to perform a forced choice between two input instances, x(a)
u ∈ A

and x(a)
v ∈ A, where u 6= v, resulting in a response y ∈ {−1,+1}, where y = +1 corresponds to

a preference for the u’th input, and −1 corresponds to a preference for the v’th input. We acquire
m such pairwise comparisons between any two input instances in A and with any user in U , which
results in the set of observations Y =

{
(yk;x

(a)
uk , x

(a)
vk , jk)|k = 1, ...,m

}
.

Given the two latent function values fk =
[
fjk

(
x

(a)
uk

)
, fjk

(
x

(a)
vk

)]
(associated with a particular

user) at the two inputs, we model the observations by a likelihood function p (yk|fk,θL). The
likelihood function is defined by additional parameters θL. The function fjk is an absolute, latent
function preserving the preference information over the input space for a particular user j. The
function parametrization admits that we directly place a Gaussian process prior on fjk allowing
for a flexible predictive model for the pairwise responses of a particular user. A multi-task setting
can be constructed by exploiting an observed feature vector per user. Consequently, we can think
of a global latent multi-task preference function f(x(a), x(u)) instead of several individual single-
task preference functions fj(x(a)). The multi-task kernel formulation of a GP [2] can hence be
formulated as:

fj(x
(a)
i ) = f(x

(a)
i , x

(u)
j ) ∼ GP

(
0, k(x

(a)
i , ·)k(x

(u)
j , ·)

)
= GP (0, k(xi,j , ·)) , (1)

where we have joined the audio and user feature into one input instance, x = {x(a), x(u)}, and
thereby defined the unique set of inputs as X = {{x(a)

i , x
(u)
j }|i = 1...na, j = 1...nu}. Thus, the GP

framework constitutes a non-linear, yet very flexible alternative to the more traditional models such
as (Generalized) Linear Models. Also, this formulation addresses the multi-task kernel only in the
definition of the covariance function - everywhere else, we only think of one input x containing both
user and task features simultaneously with a corresponding function value f(x). This definition will
be convenient later.

Given a standard Bayesian framework and assuming the likelihood factorizes we now obtain the
posterior over the function, i.e.,

p (f |X ,Y,θ) ∝ p (f |X ,θGP )
∏m

k=1
p (yk|fk,θL)

with f = [f(x
(a)
1 , x

(u)
1 ), f(x

(a)
1 , x

(u)
2 ), ..., f(x

(a)
1 , x

(u)
nu ), ..., ..., f(x

(a)
na , x

(u)
nu )]>, θGP contains the

GP hyper-parameters and θ = {θL,θGP }. The main computational issue in the single task GP
is to calculate/approximate the posterior which poses a O

(
n3
a

)
scaling challenge due to the inver-

sion of the kernel matrix. Coupling nu single task GPs in the covariance structure will further scale
this to O([nanu]3). In practical preference applications, this is of course a problem and to remedy
this we first consider the (standard) pairwise likelihood in Section 2.1.1 and then a sparse extension
in Section 2.1.2 allowing for a sparse GP prior with less than (na)(nu) inputs. Finally, we suggest
the sequential extension in Section 2.3.
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2.1 Likelihood

2.1.1 Pairwise Likelihood (Standard)

Pairwise comparisons are typically modeled by the classic Probit choice model [11, 1], constituting
the basis for the so-called pairwise likelihood function given by

p (yk|fk,θL) = Φ


yk

fjk

(
x

(a)
uk

)
− fjk

(
x

(a)
vk

)

√
2σ


 , (2)

where Φ(x) defines a cumulative Gaussian (with zero mean and unity variance), and θL = {σ}.
The use of a GP prior in connection with this likelihood was first proposed in [5].

2.1.2 Pairwise Likelihood with Pseudo-Inputs

We extend the standard preference model in Eq. 2 to obtain sparsity in the input space in terms of
the effective number of points in the prior and posterior. We generally follow the ideas in [10], i.e.,
given a set of pseudo-inputs X̄, their functional values f̄ must come from a Gaussian process like
the real latent data f . Therefore, we can directly place a Gaussian process prior over f̄

p
(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
(3)

where the matrix KX̄X̄ is the covariance matrix of the l pseudo-inputs collected in the matrix X̄ =
[x̄1, ..., x̄l]. Recall, that we have formulated our multi-task problem only in terms of the covariance
function. Therefore, each pseudo-input x̄ defines both a task vector x̄(a) ∈ Rda and a user vector
x̄(u) ∈ Rdu , which are stacked to form each of the pseudo-input vectors used in KX̄X̄. Then
the covariance matrix, KX̄X̄, is again found by the use of the same multi-task covariance function
k (·, ·) from Eq. 1, i.e., [KX̄X̄]i,j = k(x̄i, x̄j)

1. The overall idea of the pseudo-input formalism is
now to refine the likelihood such that the real f values that enter directly in the original, non-sparse
likelihood function (through fk), exist only in the form of predictions from the the pseudo-inputs
f̄(X̄). Given the listed assumptions, we formally have that f and f̄ are jointly Gaussian, i.e.,

[
fk

f̄

]
= N

([
0

0

]
,

[
Kxkxk

KX̄xk

>

KX̄xk
KX̄X̄

])
, (4)

where we define the following matrices and vectors

Kxkxk
=

[
k(xuk,jk , xuk,jk) k(xuk,jk , xvk,jk)
k(xvk,jk , xuk,jk) k(xvk,jk , xvk,jk)

]
,KX̄xk

= [kuk
,kvk ]

with [kuk
]i = k(x̄i, xuk,jk) and [kvk ]i = k(x̄i, xvk,jk). Note, that we have now formally stacked the

task and user feature into one input, such that xuk,jk and xvk,jk contain the task feature for option u
and v, respectively, together with the user feature.

From Eq. 4 it is trivial to find the conditional distribution of fk given f̄ , hence the likelihood can be
derived in terms of f̄ , i.e. p

(
yk|f̄ , X̄

)
, by integrating over fk

p
(
yk|xuk,jk , xvk,jk , X̄, f̄ ,θ

)
=

∫

fk

p (yk|fk,θL) p
(
fk |̄f , X̄

)
dfk (5)

=

∫

fk

Φ


yk

fjk

(
x

(a)
uk

)
− fjk

(
x

(a)
vk

)

√
2σ


N (fk|µk,Σk)dfk (6)

= Φ

(
yk
µuk
− µvk
σ∗k

)
(7)

1Notice, that now we have introduced one more use of i and j, besides to index input and users, namely
to index element of a matrix. In the following we will keep using both, but when i and j are used to index
matrices and vectors, it will be clear from the notation

3

On Sparse Multi-Task Gaussian Process Priors for Music Preference
Learning 67



where µk = [µuk
, µvk ]>, µuk

= kTuk
K−1

X̄X̄
f̄ , µvk = kTvkK−1

X̄X̄
f̄ and

Σk =

[
σukuk

σukvk
σvkuk

σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 + σukuk
+ σvkvk − σukvk − σvkuk

, which all together results in the
pseudo-input likelihood

p
(
yk|xuk,jk , xvk,jk , X̄, f̄ ,θ

)
= Φ (zk) , where zk = yk

(
kTu − kTv

)
K−1

X̄X̄
f̄/σ∗k (8)

2.2 Posterior - Inference & Predictions

Both likelihoods described in Section 2.1 lead to untractable posteriors and call for approximation
techniques or sampling methods. Our goal in this initial study is to examine the model and its
properties - not to provide the optimal approximation - and we will only explore inference based on
the Laplace approximation.

2.2.1 Posterior Approximation

Inference using the Laplace approximation has also been applied in [4] for the standard model.
The general solution to the approximation problem can be found by considering the unnormalized
log-posterior and the resulting cost function (to be maximized) is given by

ψ
(
f̄ |Y,X , X̄,θ

)
= log p

(
Y|f̄ ,X , X̄,θ

)
− 1

2
f̄TKX̄X̄

−1f̄ − 1

2
log |KX̄X̄| −

N

2
log 2π. (9)

where [KX̄X̄]i,j = k(xi, xj)θGP . We use a damped Newton method with optional linesearch to
maximize Eq. (9). The basic damped Newton step (with adaptive damping factor λ) can in this case
be calculated without inversion of the Hessian (see [7])

f̄new =
(
K−1

X̄X̄
+ W − λI

)−1 [
(W − λI)− f̄ +∇ log p(Y|f̄ ,X , X̄,θ)

]
, (10)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj) we apply the definition Wi,j =

−∑k∇∇i,j log p(yk|xuk,jk , xvk,jk , X̄, f̄ ,θ). When converged, the resulting approximation

can be shown to be p
(
f̄ |Y,X , X̄,θ

)
≈ N

(
f̄ |̂f ,

(
W + KX̄X̄

−1
)−1
)
. The damped Newton step

requires the Jacobian and Hessian of the new pseudo-input log-likelihood, which requires the
following derivatives

∂

∂ f̄
p (yk|...) = yk

N (zk)

σkΦ (zk)
K−1

X̄X̄
(ku − kv) (11)

∂2

∂ f̄ f̄>
p (yk|...) = −y2

k

N (zk)

σ2
kΦ (zk)

[
zk +

N (zk)

Φ (zk)

]
·K−1

X̄X̄

(
ku − kv

) (
ku − kv

)>
K−1

X̄X̄
. (12)

2.2.2 Evidence / Hyperparameter Optimization

Hyperparameters are optimized based on a regularized variant of traditional evidence or maximum
likelihood II (ML-II) optimization allowing for simple regularizing priors on the hyperparameters.
The reguralization is primarily included for robustness and is in spirit similar to regularized EM
algorithms. The details are available in [7], but for completeness we shortly review the process of
evidence optimization and comments on the case of the pseudo-input model.

So far we have simply considered the hyper-parameters θ = {θL,θGP} and pseudo-inputs X̄
as fixed paraments. However, they have a crucial influence on the model and we will resort
to point estimates by iterating between the Laplace approximation with fixed hyper-parameters,
i.e., finding p

(
f̄ |Y,X , X̄,θ

)
, followed by an evidence maximization step in which (θ, X̄) =

arg max(θ,X̄)p
(
Y|θ, X̄

)
. The log-evidence, log p(Y|θ, X̄), has to be approximated in our case,

which in terms of the existing Laplace approximation yields log p
(
Y|θ, X̄

)
≈ log p(Y|̂f , X̄,X ,θ)−

1
2 f̂TKX̄X̄

−1f̂ − 1
2 log |I + KX̄X̄W|. We perform the optimization step using a standard BFGS

method.
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The pseudo-input model poses a number of difficulties since X̄ are also to be considered hyperpa-
rameter, and the input locations can thus be optimized as outlined above. Typically, this will, as
noted in [10][9], lead to a large number of local maxima providing potentially suboptimal solutions,
at least when using the proposed gradient method. It is not our aim to resolve nor document this
issue, and we will take a pragmatic view and simply accept evidence optimization methods as is.
The pseudo-input approach can in some sense be seen as a supervised clustering of the input space,
but the optimization of X̄ is heavily influences by the initializations. We recommend starting out
with a fixed set of pseudo-inputs initialized by a standard unsupervised clustering, such as k-means
like [9], and then attempt an evidence optimization of X̄. We will provide a demonstration of this
approach.

2.2.3 Predictions

Predictions of the pairwise judgments for a new experiment η = {x(a)∗
u , x

(a)∗
v , x(u)∗} with x(a)∗

u ∈
Rda , x(a)∗

v ∈ Rda and x(u)∗ ∈ Rdu is given by p(y|η,Y,X ). Given the approximated posterior of
interest, p

(
f̄ |Y,X ,θ

)
, the prediction can be made in closed form (see e.g. [5] in the standard case

and [7] for the pseudo-input case).

2.3 Sequential Experimental Design

Sequential experiential design - also known as active learning, selective or uncertainty sampling -
includes datapoints/queries in a sequential manner by selecting only the most informative experi-
ments/instances in terms of some gain. If the gain is relevant to the task, this effectively reduces the
number of real input instances, n, and the number of pairwise comparisons, m, required to obtain
a certain performance level compared to random selection of datapoints. Together with the pseudo-
input model proposed in Section 2.1.2 this will ensure that we obtain a sparse and close to optimal
model in terms of m,n and the effective number of pseudo-inputs l. We formulate the problem as a
Bayesian sequential design problem (see e.g. [8]) in terms of a gain function, G(·), the expectation
of this gain and the currently observed data D = {X ,Y}, i.e.,

ηy = arg max
η

∑

y∈Y
p(y|η,D)G

(
y, η, p

(
f̄D∪η|y, η,D

)
, p
(
f̄D|y, η,D

))
(13)

If the aim is to find the instance for which the user(s) has/have highest preference, the gain can e.g.
be defined as expected improvement [3]. If the aim is a generalization of the preference model for
all instances and users, entropy change (reduction) is the natural choice (but not guaranteed to be
optimal). The multi-task (-user) and collaborative setting does support specialized gain functions
depending, e.g., on user experience, consensus and knowledge, but it is not the aim to develop such
concepts here. Since the main focus of the paper is the pseudo-input formulation of the pairwise
likelihood, we leave the evaluation of the sequential extension to future research, but consider it a
natural part of the general sparse framework outlined.

3 Simulations & Experimental Results

3.1 Example I: Pseudo-Input in 1D

This example is primarily intended to illustrate the basics of the pseudo-input principle in the pair-
wise case (in a single task setting). The example is based on a deterministic function which defines
the pairwise relations, specifically a cosine in [−2π; 2π] illustrated at the top-left in Figure 1. The
seventeen input points are distributed equidistantly throughout the interval. The pairwise dataset
Y is then generated as a complete set of pairwise relations for all input combinations. To model
this dataset, we consider three case: A standard model (Section 2.1.1), a sparse model with fixed
pseudo-inputs (Section 2.1.2) and a sparse model with optimized pseudo-inputs (Section 2.1.2). The
five pseudo-inputs are initialized to X̄ = [−5,−2, 0, 2, 5], i.e. not in the training set. For direct com-
parison between the three models, we fix the other parameters, i.e., θL and θGP , and use a Squared
Exponential covariance function in all three cases with variance σf = 1 and lengthscale ` = 1. The
results are presented in Figure 1.
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Figure 1: Top (left) panel shows a graph of the function from which the true underlying relations
are defined. Top (right) panel shows the convergence of the evidence optimization. Bottom (left)
panel shows the input points as markers used the three considered models and the predictive mean
(Epred) of the model as dotted graphs.

Given the equidistantly distributed input points and the full pairwise design, the standard model is
almost capable of modeling the underlying function, however, the fixed model parameters limits the
fit to the original model. Yet, the standard model is the best model we can expect in this case. The
sparse model with fixed parameters generally has problems due to the suboptimal placement of the
five pseudo-inputs. The optimized version converges to a (possible local) maximum as seen in the
right panel of Figure 1 and solves the problem by moving the pseudo-inputs. This provides a better
- and almost close to the standard - model despite only requiring 5 points as compared to 17.

3.2 Example II: Music Preference Data

In order to provide some initial insight into pairwise music preference learning, we consider a pub-
licly available dataset [6]. Specifically, it consist of 10 test subjects, but only 9 with full user meta-
data, 30 audio tracks with 10 audio tracks per genre 2. The genres are Classical, Heavy Metal and
Rock/Pop. The design of the experiment is based on a partial version of a complete pairwise design,
hence only 155 out of the 420 combinations was evaluated by each of the 10 subjects. We extract
standard audio features from the audio tracks, specifically the Mel-Frequency Cepstral Coefficients,
MFCCs, (26 dimensions, including delta coefficients), which we project to a 6 dimensional space us-
ing PCA. Each track is subsequently modeled by a Gaussian with mean vector, µ(a), and covariance
matrix, Σ(a). The feature vector is then constructed as x(a) =

[
µ(a), diag

(
Σ(a)

)]>
.

We define the correlation structure of tracks by considering a general purpose covariance function
for audio that easily integrates user features and metadata types for the audio, such as audio features,
tags, lyrics etc. It is defined as

k (x, x′) =

(∑Ka

`=1
k`

(
x(a), x(a)′

))
ku

(
x(u), x(u)′

)
, (14)

The first factor is the sum of all the Ka covariance functions defining the correlation structure of the
audio inputs, x(a). The second factor, or multi-task part, is a general covariance function defining
the covariance function for the user metadata part, x(u). We include only audio features, and e.g. not
tags and lyrics, thus Ka = 1 and apply a standard squared exponential isotropic covariance function
for the audio part. The user kernel is defined by a standard squared exponential kernel between the
user features (age and the three prior genre preferences) available in vector form.

2The small-scale nature of the dataset is not optimal, yet it has not been possibly to obtain a larger dataset
containing both features (or audio) and ratings, and especially the desire to consider pairwise comparisons of
music tracks seems to be a novel consideration in music preference modeling.
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Figure 2: Learning curves averaged over 10 repetitions and 5-folds. X̄ is learned once on the full
training set in each fold. A fraction of one corresponds to 80% of all comparisons. Sparse models
are limited to 10% of the original number of inputs

3.2.1 Results

We concentrate on two of the most imminent questions which are the performance difference be-
tween (sparse) pseudo-input Model versus (dense) standard model, and the difference between indi-
vidual modeling versus multi-task modelling.

We include a typical example of the learning curves by fixing all model parameters except the
pseudo-inputs. Based on initial experiments, we fix the covariance parameters to: σ(a) = 3, `(a) =
4, σ(u) = 1.5, and σ(u) = 1.5. and the likelihood parameter, σL = 1.

We consider the specific case of 27 pseudo-inputs (10% of total inputs points) in the 2 ∗ 6 + 4 = 16
dimensional input. This is based on a pure genre assumption, i.e., each of the nine users track
preference can be described by single value pr. genre (9 · 3). Multi-task models effectively implies
more points per genre if transfer can be exploited between users. The pseudo-inputs are initialized
by k-means in the full input space (all audio tracks, all user features).

To provide some insight into the generalization properties of the relatively small dataset, we use a 5-
fold cross-validation (CV) scheme. In each of the five CV we use one fold as test (279 observations),
and 4 fold for training (837 observations). We evaluate the learning curves for a number of training
set sizes, m, by selecting a random subsets of the full set. This is done 10 times for each m.

The preliminary results presented in Fig. 2 yields a few noticeable observations. Comparing the stan-
dard multi-task versus standard individual, we observe a minor benefit in the multi-task/collaborative
model versus modeling users individually, thus some (useful) transfer is present. We furthermore
observe that as more and more data is observed the individual model performs almost equally well
as the multi-task. This is expected and individual models will in the limit outperform a multi-task
model, but the exact point at which the individual models outperforms a multi-task model is difficult
to estimate beforehand.

The second point to notice is the difference between the standard multi-task and the sparse multi-
task. From a m-fraction of 0.0125 the sparse model contains less points than standard model (on
average) and with approximately less than a 20% of the training set, the sparse model is fully capable
to compete with the standard multi-task model. After 20% of the pairwise comparisons (m = 0.2)
approximately 80% of all real inputs points has been observed. After this point the sparse model
seems to lack the flexibility to fully describe the preferences. Whether this is due to a general
characterize of the music preference problem or the fixed hyperparameters is so far unexplored,

7

On Sparse Multi-Task Gaussian Process Priors for Music Preference
Learning 71



but we speculate that a full hyperparameter optimization will further minimize the gap between the
sparse and the non-sparse model in this pairwise case.

The exact shape and absolute level of the learning curves are found to be sensitive to the exact prior
parameters including X̄, and a robust scheme is to be derived to ensure robust and generalizable
results. Despite its limitations the included case study suggests that the sparse pairwise model can
provide some computation relief without scarifying all of the performance - also in the multi-task
case - but there is a large number of model combinations still to be evaluated in future work.

4 Discussion & Conclusion

We derived a sparse version of the pairwise likelihood model using the pseudo-input formulation,
and applied the Laplace approximation. We suggest to examine Expectation Propagation and (se-
quential) MCMC methods for more efficient and exact approximations. The pseudo-inputs are
optimized using an evidence optimization approach which in general is challenging due to local
maximum of the evidence, which is to be examined in the future. For now we rely on a ”good” ini-
tialization. In the final step we suggested that the pairwise pseudo-input model should be combined
with a sequential experimental design to reduce the actual number of pairwise experiments.

A synthetic example was used to show the effect of the pseudo-inputs and evidence optimization. As
motivating example we presented a multi-task problem, namely a music preference problem. This
typically requires a sparse approximation both in terms of input (tracks) as evaluated and in terms of
the number of comparisons users have to perform, but the evaluation of the latter is considered future
work on a larger dataset. We see the pseudo-input model as a useful tool in examining clustering
properties of features and users in GP based preference learning, but this will probably require more
elaborate inference methods and kernels.

In conclusion this workshop contribution serves primarily as a presentation of the pairwise likelihood
in a pseudo-input formulation with the sequential design as an additional suggested option.
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Abstract

We consider learning and prediction of pairwise comparisons between
instances. The problem is motivated from a perceptual view point, where
pairwise comparisons serve as an e�ective and extensively used paradigm.
A state-of-the-art method for modeling pairwise data in high dimensional
domains is based on a classical pairwise probit likelihood imposed with
a Gaussian process prior. While extremely �exible, this non-parametric
method struggles with an inconvenient O

(
n3

)
scaling in terms of the n in-

put instances which limits the method only to smaller problems. To over-
come this, we derive a speci�c sparse extension of the classical pairwise
likelihood using the pseudo-input formulation. The behavior of the pro-
posed extension is demonstrated on a toy example and on two real-world
data sets which outlines the potential gain and pitfalls of the approach.
Finally, we discuss the relation to other similar approximations that have
been applied in standard Gaussian process regression and classi�cation
problems such as FI(T)C and PI(T)C.

1 INTRODUCTION

The pairwise learning setting has several application areas such as preference
learning and ranking [1], metric learning [2] and general pairwise comparison
paradigms. Pairwise comparisons are naturally motivated from a perceptual
point of view, where human subjects make a sequence of pairwise (subjective)
preference decisions in relation to sound quality, music taste, etc. The main
advantage is that pairwise relations are relatively easy for subjects to convey
consistently since subjects do not need an internal reference.

The theory underlying pairwise comparisons was �rst formulated in a prin-
ciple manner in [3] stating The Law of Comparative Judgments building on
cognitive and perceptual ideas. The basic idea is that a choice is determined
by the di�erence in the response from a latent stochastic process. The resulting
likelihood function in its simplest form�which is also by far the most common
one�was �rst put into the �exible framework of Gaussian processes priors in
[4].
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Gaussian process based models are �exible and thus desirable for pairwise
learning, but struggle with an inconvenient O

(
n3
)
scaling in terms of the num-

ber of input instances n. This makes their use impractical for large-scale prob-
lems. Several suggestions have been proposed to remedy this issue for the stan-
dard Gaussian process regression case by using a smaller set of inputs that is
either a subset of the original input set [5, 6] or a completely new set of pseudo
inputs [7, 8, 9]. An unifying view of the latter family of models is given in [10]
and extended in [11] leading to the well-known FI(T)C and PI(T)C approxima-
tions for standard regression and classi�cation models.

In the standard case the explicit formulation of pseudo inputs can easily and
without further considerations be turned into a conditional Gaussian process
prior with an easy to invert covariance matrix. However, in the pairwise case the
likelihood function depends on two variables. Therefore, we cannot immediately
and without consideration use the standard approximations in the covariance
as done in [12]. Instead, our quest to derive a sparse approximation for pairwise
problems starts from the original pseudo-input formulation presented in [7].
Using this direct approach, our objective is to extend the pairwise likelihood
model to allow for explicit sparsity in input space achieved by extending the
model by a set of pseudo inputs�or inducing points�of size l� n. Essentially,
the pseudo inputs are used to integrate out the two original variables of the
classical pairwise likelihood function. In e�ect the Gaussian process prior is
now placed over the function values of the pseudo inputs often resulting in a
considerably lower computational load. Posterior inference relies on a Laplace
approximation and the pseudo inputs can be found by evidence optimization
for example initialized by k-means.

We give insight and intuition about the behavior and performance of the
sparse model compared with the standard model by considering the Boston
housing data set and a wine-quality data set. Examination of the out-of-sample
error rates is the basis for discussing the potential and limitations of the sparse
model.

2 MODEL & EXTENSIONS

In this section we describe the general setup and frame the pairwise model in
a Bayesian non-parametric setting. Each input instance i is described by a
feature vector x ∈ Rd and X = {xi|i = 1, ..., n}. Next, we consider a data
set Y = {yk;uk, vk|k = 1, ...,m} of pairwise relations y ∈ {−1,+1} between
the u'th and the v'th instance of X , hence xuk

,xvk ∈ X 1 . The two opposite
choices picking either the u'th or the v'th instance are denoted by y = −1 and
y = +1, respectively.

Given two latent function values fk = [f(xuk
), f(xvk)]

>
, the observations

are modeled by a pairwise likelihood function p (yk|fk,θL) with parameter(s)
θL. The function f is an latent function, which in a Thurstonian context [13],
models the mean absolute response from the internal cognitive process when the
subject is exposed to an input instance. The function parametrization admits
that we directly place a zero-mean Gaussian process [14] prior on f allowing for a
�exible predictive model for the pairwise responses. Formally, we write f(xi) ∼

1We will without loss of generality assume that the set Y involves all n inputs instances in
X .
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GP (0, kθGP (xi, ·)) , where k(·, ·) denotes a covariance function, or kernel, with
parameter(s) θGP , which generally speaking restricts the smoothness of the
function. The fundamental consequence of a Gaussian process is that the joint
distribution of a �nite set of function values f = [f(x1), f(x2), f(x3), ..., f(xn)]>

has a multivariate Gaussian distribution de�ned by p (f |X ,θGP) = N (0,KXX ),
where the elements of the covariance matrix are given as [KXX ]i,j = kθGP (xi,xj).
Given a standard Bayesian framework and assuming i.i.d. comparisons we now
obtain the posterior over the function values

p (f |X ,Y,θ) ∝ p (f |X ,θGP)
∏m

k=1
p (yk|fk,θL)

with θ = {θL,θGP}. The main computational issue in the Gaussian process
framework is to calculate/approximate the posterior posing a O

(
n3
)
scaling

challenge due to the inversion of the kernel matrix.

2.1 Standard Pairwise Likelihood Function

The pairwise likelihood function described in a general pairwise context by [13]
and used with Gaussian processes by e.g. [4] and [15] is given by

p (yk|fk,θL) = Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
, (1)

where Φ(·) de�nes a cumulative Gaussian (with zero mean and unity variance)
and θL = {σ}. The use of a Gaussian process prior in connection with this
likelihood function was �rst proposed in [4].

2.2 Sparse Pairwise Likelihood Function

To obtain sparsity in input space, we generally follow the ideas in [7]. Hence,
given a set of pseudo inputs X̄, their functional values f̄ must originate from the
same Gaussian process that was used for f . Therefore, we can directly place a
Gaussian process prior over f̄ , i.e., p

(
f̄ |X̄

)
= N

(
f̄ |0,KX̄X̄

)
, where the matrix

KX̄X̄ is the covariance matrix of the l pseudo inputs collected in the matrix
X̄ = [x̄1, ..., x̄l].

The overall idea of the pseudo-input formalism is now to re�ne the likelihood
function from Eq. (1) such that the real f values that enter directly in the
original, non-sparse likelihood function (through fk), exist only in the form of
predictions from the pseudo inputs f̄(X̄). Given the listed assumptions, we
formally have that f and f̄ are jointly Gaussian, hence

[
fk

f̄

]
= N

([
0

0

]
,

[
Kxkxk

KX̄xk

>

KX̄xk
KX̄X̄

])
, (2)

where we de�ne the following matrices and vectors

Kxkxk
=

[
k(xuk

,xuk
) k(xuk

,xvk)
k(xvk

,xuk
) k(xvk ,xvk)

]
(3)

KX̄xk
= [kuk

,kvk ] (4)
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with [kuk
]i = k(x̄i,xuk

) and [kvk ]i = k(x̄i,xvk). From Eq. (2) it is trivial to �nd
the conditional distribution of fk given f̄ , hence the sparse likelihood function
can be derived in terms of f̄ by integrating over fk, thus

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

=

∫
p (yk|fk,θL) p

(
fk |̄f , X̄

)
dfk

=

∫
Φ

(
yk
f (xuk

)− f (xvk)√
2σ

)
N (fk|µk,Σk) dfk = Φ

(
yk
µuk
− µvk

σ∗k

)

where µk = [µuk
, µvk ]>, µuk

= k>uk
K−1

X̄X̄
f̄ , µvk

= k>vkK−1
X̄X̄

f̄ and

Σk =

[
σukuk

σukvk

σvkuk
σvkvk

]
= Kxkxk

−K>X̄xk
K−1

X̄X̄
KX̄xk

Furthermore, (σ∗k)2 = 2σ2 + σukuk
+ σvkvk − σukvk

− σvkuk
, which all together

results in the pseudo-input likelihood

p
(
yk|xuk

,xvk , X̄, f̄ ,θ
)

= Φ (zk) , (5)

with zk = yk
(
kT
uk
− kT

vk

)
K−1

X̄X̄
f̄/σ∗k.

2.3 Inference & Predictions

The likelihood functions described in Section 2.1 and 2.2 lead to intractable
posteriors and call for approximation techniques or sampling methods. Our
goal in this initial study is to examine the sparse model and its properties�not
to provide the optimal approximation�hence, we only explore inference based
on the Laplace approximation.

2.3.1 Posterior Approximation

Inference using the Laplace approximation has also been applied in [16] for the
standard model. The general solution to the approximation problem can be
found by maximizing the unnormalized log-posterior
ψ
(
f̄ |Y,X , X̄,θ

)
= log p

(
Y|f̄ ,X , X̄,θ

)
− 1

2 f̄TK−1
X̄X̄

f̄− 1
2 log |KX̄X̄|− l

2 log 2π with

regards to f̄ . For the maximization we use a damped Newton method in which
the damped step (with adaptive damping factor λ) can be calculated without
inversion of the Hessian

f̄new =
(
K−1

X̄X̄
+ W − λI

)−1 [
(W − λI) f̄ +∇ log p(Y|f̄ ,X , X̄,θ)

]
. (6)

Using the notation ∇∇i,j = ∂2

∂f(xi)∂f(xj) we apply the de�nition

Wi,j = −∑k∇∇i,j log p(yk|xuk
,xvk , X̄, f̄ ,θ). When converged, the resulting

approximation can be shown to be p
(
f̄ |Y,X , X̄,θ

)
≈ N

(
f̄ |̂f ,

(
W + K−1

X̄X̄

)−1
)
.

The damped Newton step requires the Jacobian and Hessian of the new pseudo-
input log-likelihood from Eq. (5), which require the following two derivatives

∂

∂ f̄
p (yk|...) = yk

N (zk)

σ∗kΦ (zk)
K−1

X̄X̄
(kuk

− kvk) (7)

∂2

∂ f̄ f̄>
p (yk|...) = −y2

k

N (zk)

(σ∗k)2Φ (zk)

[
zk +

N (zk)

Φ (zk)

]

·K−1
X̄X̄

(kuk
− kvk) (kuk

− kvk)
>

K−1
X̄X̄

. (8)
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2.3.2 Evidence / Hyperparameter Optimization

So far we have simply considered the hyperparameters θ = {θL,θGP} and
pseudo inputs X̄ as �xed parameters, but their values have a crucial in�uence
on the model performance. Here, we resort to point estimates and �nd (possible
locally) optimal values by iterating between the Laplace approximation with
�xed hyperparameters, i.e., �nding p

(
f̄ |Y,X , X̄,θ

)
, followed by an evidence

maximization step in which (θ, X̄) = arg max(θ,X̄)p
(
Y|θ, X̄

)
. The log-evidence

log p(Y|θ, X̄) has to be approximated in our case, which in terms of the existing
Laplace approximation yields

log p
(
Y|θ, X̄

)
≈ log q

(
Y|X̄,θ

)
= log p(Y|̂f , X̄,X ,θ)

− 1

2
f̂TK−1

X̄X̄
f̂ − 1

2
log |I + KX̄X̄W| . (9)

We further allow for �xed hyperpriors on the individual hyperparameters serv-
ing as regularization, which results in a procedure referenced to as MAP-II
which provides more robust estimation. Consequently, the MAP-II is given by
log qMAP-II

(
Y|X̄,θ

)
= log q

(
Y|X̄,θ

)
+ log p

(
θ, X̄|ξ

)
, where ξ is a set of �xed

parameters in the hyperprior.
The optimization requires the derivatives of the evidence approximation.

These turn out to be rather tedious and involved, and we refer to the appendix
for details. The pseudo-input model poses a number of di�culties since X̄ are
also to be considered hyperparameters. Typically, this will�as noted by [7] and
[17]�lead to a large number of local maxima providing potentially suboptimal
solutions. It is not our aim to resolve nor document this issue, and we will take
a pragmatic view and simply accept evidence optimization methods as is. Like
[17] we recommend starting out with a �xed set of pseudo inputs initialized by
a standard unsupervised clustering, such as k-means with restarts, followed by
evidence optimization.

2.3.3 Predictions

The main task is to infer the latent function values f̄ with the end objective to
make predictions of the observable variable y for a pair of test inputs xr ∈ Xt and
xs ∈ Xt denoted xt = [xr,xs]

T . We consider the joint distribution between f̄ ∼
p
(
f̄ |Y,θ

)
and the test variables ft = [f (xr) , f (xs)]

T
. With the posterior of f̄

approximated with the Gaussian from the Laplace approximation, the predictive
distribution p (ft|Y,θ) will also be Gaussian given by N (ft|µ∗,K∗) with µ∗ =
[µ∗r , µ

∗
s]T = ktKX̄X̄

−1f̄ and

K∗ =

[
σ∗rr σ∗rs
σ∗sr σ∗ss

]
= Kt − kT

t (I + WKX̄X̄) kt,

where kt is the kernel between the test points and the pseudo inputs. With
p (ft|Y,θ), the prediction distribution of the observed variable is given as

p (yt|Y,θ) =

∫
p (yt|ft,θL) p (ft|Y,θ) dft.

The integral can be calculated in closed form as

P (xr � xs|Y,θ) = Φ ((µ∗r − µ∗s) /σ∗)

with (σ∗)2
= 2σ2 + σ∗rr + σ∗ss − σ∗rs − σ∗sr.
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3 SIMULATIONS & EXPERIMENTAL

RESULTS

In this section we demonstrate the performance of the pseudo-input method
on a toy example and provide predictive performance on two real-world data
sets: Boston housing and wine quality. The main objective is not to achieve
the overall best performance, but to compare the standard (GP) and the sparse
(SPGP) formulations.

3.1 Toy Example

To illustrate the basics of the SPGP model, we draw a deterministic function
freal (see Fig. 1(a)) from a zero-mean Gaussian process with a squared exponen-
tial covariance function. This function is then used to generate a pairwise data
set consisting of all possible pairwise comparisons using the function values at
equidistantly distributed locations marked with black crosses in Fig. 1(a). To
model this data, we consider the two models: The GP model (Sec. 2.1) and
the SPGP model with optimized pseudo inputs (Sec. 2.2). The l = 9 pseudo
inputs are initialized equidistantly in the input interval, the length scale of the
covariance function θGP = {σ`} and the likelihood parameter θL = {σ} are
learned by evidence optimization whereas σf = 1 of the covariance function is
�xed. The results are presented in Fig. 1(a).

We notice that the SPGP model is capable of modeling the mean and thereby
the actual pairwise relationships, whereas the predictive variance di�ers signi�-
cantly from the GP variance. This is a characteristic and expected artifact also
seen in connection with the pseudo-input models for standard classi�cation and
regression.

3.2 Real World Examples

We compare the performance of the SPGP model to the GP model on two
di�erent real-world data sets.

The �rst data set is the well-known Boston housing2 where we have con-
structed a full pairwise version by using all m = 127765 pairwise combinations
of the n = 506 inputs base on the house price. For each input we use all available
features except RAD, CHAS and NOX, thus d = 10.

The second data set is a subset of the wine quality3 which is based on user
ratings of wines. The subset is based on n = 600 instances of wines described
by d = 11 features. We construct the set of unique pairwise comparisons from
the ratings resulting in m = 179700 comparisons.

We use a squared exponential covariance function for both data sets which
(based on initial experimentation) is initialized with σf = 1 and σ` = 1. The
covariance parameter σf is �xed, whereas the likelihood parameter initialized
as θL = {σ = 1} and θGP = {σ`} are learned by MAP-II optimization using a
uniform hyperprior and a half-student-t hyperprior with scale 6 and 4 degrees
of freedom, respectively. Pseudo inputs are initialized with k-means (selecting

2archive.ics.uci.edu/ml/datasets/Housing
3archive.ics.uci.edu/ml/datasets/Wine+Quality
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(b) Toy: d = 1, n = 31, m = 465
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(c) Boston Housing: d = 10, n = 506, m =
127765
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(d) Wine Quality: d = 11, n = 600, m =
179700

Figure 1: In general, blue graphs indicate the full model (GP) and red indicate
the sparse model (SPGP). In Fig. (a) thick graphs indicate means and thin
graphs indicate one standard deviation. The black graph indicates the real
(deterministic) function used to generate the full pairwise data set between the
instances marked with black crosses in the bottom. The two other colors sketch
the predictive distribution of the GP and SPGP models using the (pseudo)
inputs at the locations marked with the corresponding color in the bottom.
Fig. (b)-(d) display the performance of the sparse model (SPGP) evaluated
on the toy example and on the two real-world data sets as a function of the
number of pseudo inputs for the sparse model (red). The performance of the
standard model is included as a baseline. The solid and dashed red graphs
show the average test error rate for the optimized and non-optimized SPGP
model, respectively. The two rows of markers indicate whether the optimized
(triangle) and non-optimized (diamond) SPGP models are signi�cant di�erent
from the GP model using the McNemar test. The markers are solid if the null
hypothesis that they are equal can be rejected at the 5% signi�cance level.

the solution with minimum total squared distance out of �ve random initial-
izations). We compare two SPGP models: one where the pseudo inputs are
kept �xed following the k-means initialization (this model is identi�ed with the
No-Opt tag) and one where they are further �tted using MAP-II with a uniform
hyperprior. With both data sets we use 20-fold cross validation on instances,
such that a minimum of two instances are held out for testing and a randomly se-
lected quarter of all remaining pairwise comparisons between training instances
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are used for training. Consequently, predictions are only performed on compar-
isons between instances that do not appear in the training data and the setting
is thus a true predictive ranking scenario. In Fig. 1(c)-(d) we report the average
error rate on the test set as a function of the number of pseudo inputs for the
two SPGP models. The GP model is included as a baseline.

4 DISCUSSION

In the toy example (Fig. 1(a)) we see that the mean is well modeled by both
the GP model and the SPGP model with l = 9 pseudo inputs, suggesting
that the SPGP model performs nearly as good as the GP model. The main
di�erence between the two models seems to be the predictive variance which
di�ers signi�cantly, yet this is an expected property of the sparse model. A way
to improve the estimation of the predictive variance is by allowing the input
instances and pseudo inputs to have di�erent length scales [8][17].

Focusing on the predictive mean performance of the optimized SPGP model
on the two real-world data sets (Fig. 1(c)-(d)), we see that a SPGP model
with few pseudo inputs (as low as 1-5) performs only slightly worse than or
equal to the GP model. This indicates that the two real-world problems do
not constitute very complex pairwise problems. The performance is, however,
highly dependent on the optimization of the locations of the pseudo inputs, seen
since the non-optimized SPGP model requires more pseudo inputs due to the
�xed locations. This illustrates the importance and power of the optimization.

By further adding pseudo inputs we can obtain better performance than the
GP model. We believe that two e�ects come into play. The �rst e�ect is that
the constraints induced in the SPGP model provide better regularization com-
pared to the full Gaussian process prior meaning that it generalizes better. The
second e�ect stems from the fact that the arbitrary placement of the pseudo
inputs provides added �exibility, which e�ectively renders it more adequate for
capturing the important regions of the underlying function when these loca-
tions are optimized appropriately. We speculate that the observed behavior is
a combination of the two e�ects of course dependent on the application.

A further aspect to be investigated is the capability of the SPGP model to
capture and approximate higher order moments of the predictive distribution. In
line with previous work on the topic and with the variances observed in the toy
example, we have observed �uctuating behavior of the predictive likelihoods as
a function of l for the SPGP models in the two real-world examples. Whether
the behavior is due to the pairwise setting, speci�c application or a general
property of the pseudo-input formulation is an open question.

In the current sparse formulation the original function values are dependent
in pairs given the exact comparisons, whereas in FI(T)C all the original function
values are independent given the pseudo inputs. We plan to investigate if this
di�erence have any practical importance and to compare the current approxima-
tion to other traditional approaches�in particular the PI(T)C approximation.

8
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5 CONCLUSION

In this paper we have derived a sparse version of the pairwise likelihood model
using the pseudo-input formulation. We applied the Laplace approximation for
both posterior and evidence approximation. We observe competitive predictive
performance with the sparse model using only few pseudo inputs on a toy ex-
ample and on two real-world data sets. A noticeable observation is the fact that
we by adding more pseudo inputs are able to obtain better performance than
the full GP model in the studied applications.
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6 Appendix - Evidence Derivatives

The derivatives of Eq. (9) are slightly di�erent compared to the standard classi�-
cation case [14, Sec 5.5.1] due to the pseudo-input model because the covariance
parameters enter into the likelihood, and the fact that the covariance function
also depends on X̄. We outline the derivations by noting that the Eq. (9) de-

pends both explicitly and implicitly (due to the solution of f̂) on the parameters
θ. We do not di�erentiate between likelihood and covariance parameters and
X̄. Here, we simply denote a parameter by θj . We can split the derivatives into
an explicit and implicit part

∂ log q (Y|...)
∂θi

=
∂ log q (Y|...)

∂θ

∣∣∣∣
explicit

+
∑

j

∂ log q (Y|...)
∂fj

∂fj

∂θi
.

Referring to the explicit term we obtain the following terms

∂

∂θi
log p

(
Y|f̂ ,θ

)

∂

∂θi
f̂>Kθ

−1
f̂ = −f̂>

(
Kθ
−1 ∂Kθ

∂θi
Kθ
−1
)
f̂

∂

∂θi
log |I + WθKθ | = Tr

[
(I + KθWθ)−1

(
∂Wθ

∂θi
Kθ + Wθ

∂Kθ

∂θi

)]

Referring to the implicit term we have (without any assumptions regarding
the type of parameter)

∂ log q
(
Y|X̄,X ,θ

)

∂fj
= −1

2
Tr

[
(I + KθWθ)−1

(
Kθ

∂Wθ

∂fj

)]

∂fj
∂θi

is found by exploiting that f̂ = Kθ∇ log p
(
Y|f̂ ,θ

)
at the current solution

leading to the following result

∂fj

∂θi
= (I + KθWθ)−1

(
∂Kθ

∂θi

) ∂ log p
(
y|f̂ ,θ

)

∂f
+ (I + KθWθ)−1Kθ

∂

∂θi



∂ log p

(
y|f̂ ,θ

)

∂f




We may exploit that the inverse of the common factor (I + KθWθ) can be
computed using the Cholesky decomposition which enters robustly into the in-
dividual expressions for added numerical stability. The expression above is a
general result and valid for both likelihood parameters, covariance parameters
and pseudo inputs. In addition, the derivatives of the likelihood, Jacobian, Hes-
sian and covariance function are required. One should be aware that some of the
derivatives are zero depending on the actual parameter type (e.g. ∂Kθ/∂θL).
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The gradients are based on the current Laplace approximation. Even though
we take into account implicit dependencies, there is in general no guarantee for
strictly monotonic behavior, thus a robust optimization method is required. In
practice we have found the BFGS implementation in the immoptibox4 robust.

4www2.imm.dtu.dk/%7Ehbn/immoptibox/
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Abstract

Due to the large amount of options offered by the vast number of
adjustable parameters in modern digital hearing aids, it is becoming in-
creasingly daunting—even for a fine-tuning professional—to perform pa-
rameter fine tuning to satisfactorily meet the preference of the hearing aid
user. In addition, the communication between the fine-tuning professional
and the hearing aid user might muddle the task. In the present paper, an
interactive system is proposed to ease and speed up fine tuning of hearing
aids to suit the preference of the individual user. The system simultane-
ously makes the user conscious of his own preferences while the system
itself learns the user’s preference. Since the learning is based on proba-
bilistic modeling concepts, the system handles inconsistent user feedback
efficiently. Experiments with hearing impaired subjects show that the
system quickly discovers individual preferred hearing-aid settings which
are consistent across consecutive fine-tuning sessions for each user.

Hearing aid personalization, Bayesian learning, Gaussian processes, Active learn-
ing, Preference learning

1 INTRODUCTION

Modern digital hearing aids (HAs) contain a vast number of adjustable param-
eters that offer an almost infinite number of possible settings. Different settings
make the hearing aids emphasize parts of the incoming sound to make it more
or less comfortable, audible, intelligible etc. for the hearing impaired (HI). The
procedure of fitting the HAs to the user is performed by skilled professionals
like an audiologist.

Having fitted a set of HAs to the hearing loss of the HI user to ensure
audibility and intelligibility of incoming sounds, several options are still left for
the audiologist to choose from. Some of those are related to the preference of the
user. Fine tuning of these parameters is normally done manually by adjusting a

1
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number of handles available in the supplied fitting software. At this point, two
aspects should be considered. First, due to the large number of parameters—
and thus the number of settings—a manual procedure may not be adequate
for finding optimal settings for all parameters even for a fine-tuning expert like
an audiologist. Secondly, the success of the fine-tuning process depends on the
communication between the HA user and the audiologist. Typically, the HA
user has not recognized his own preference beforehand, which may muddle the
communication and result in an inadequate fine tuning.

To take full advantage of modern digital hearing aids, more sophisticated
fine tuning tools are needed. These should discover the best setting for each
individual in robust and time-efficient procedures to take full advantage of the
flexibility of the HAs.

In this paper, an interactive system is considered that lets the HA user
recognize his own preference by comparing different settings simply by listening
to the resulting sounds. By letting the user report how much one setting is
preferred over another in a sequence of such comparisons, the interactive system
starts to learn the preference of the user. At the end, the interactive system
is able to suggest which setting (or subset of settings) that is preferred by
the HA user. The system builds on the assumption that each user has an
unobserved internal representation of preference (IRP), which is a stochastic
function (or process) of hearing aid settings. In the interactive system, the
mean response of the IRP is modeled by a Gaussian process (GP) [1], which
loosely speaking defines a distribution of functions and thus of possible mean
responses of the IRP. In the remainder of the article the IRP is used to refer to
the mean response of the IRP. The distribution of IRPs is updated iteratively
each time the user compares and chooses between two HA settings using the
GP framework previously proposed in [2]. To reduce the required number of
comparisons needed for the system to learn the user’s preference, the distribution
of IRP provided by the GP is used to decide the next setting pair to compare. In
the literature, this is referred to as active learning, and in this paper, a bivariate
version of Expected Improvement (EI) [3] is used.

Several directions have been pursued to develop systems capable of fine-
tuning settings of HAs and other devices. Some of the very first attempts used
a modified simplex procedure [4], but required an unrealistic amount of pref-
erence assessments to converge. Other tournament based attempts have used
genetic algorithms [5, 6], but the convergence time tend to scale badly with the
number of tunable parameters. One of the most promising suggestions [7] is also
probabilistic and contains at least two ideas that are similar to the ideas under-
lying the work presented here. Firstly, the method is also based on probabilistic
modeling of the user’s IRP, but does not use state-of-the-art GPs for this. These
are included later in a slightly different context in for instance [8]. Secondly, the
two methods also rely on probabilistic choice models that directly address the
fact that humans are in general not completely consistent performing perceptual
evaluations. However, the two methods are based only on forced choices (dis-
crete decisions) using the choice model and framework from [9, 10, 11], in which
subjects only select the option they prefer (discrete choice). This is in contrast
to the choice model proposed in [11], in which subjects also decide how much
they prefer the selected setting (continuous decision). The results in [2] give rea-
son to believe that the additional information contained in continuous decisions
reduces the number of required comparisons needed to learn a user’s preferred
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setting. This is really the key for the application considered in this work. It
is, however, beyond the scope of this work to actually compare results obtained
with discrete choices to those obtained with continuous decisions. Nevertheless,
this is definitely of great interest for future research. Instead, the focus is to
investigate the variability between IRP and thus the preferred setting suggested
by the system using continuous decisions.

To test the fine-tuning abilities of the proposed interactive system, two ad-
justable parameters of a HA were fine-tuned individually to five different HI
users. By comparing the results from two similar sessions with each subject,
the variability of the found best setting can be investigated. The two HA param-
eters that were adjusted in the experiments changed how both noise reduction
and speech enhancement algorithms should react to the incoming sound.

This article is organized as followed: In section 2, the interactive system is
outlined and an explanation of the experiments is provided in section 3. Results
are presented in section 4, and finally, section 5 contains the discussion.

2 MODELING FRAMEWORK

A user’s internal representation of preference (IRP)—referred to as f : X →
R—is modeled by a (zero-mean) Gaussian process (GP) [1]. The set X =
{xi ∈ Rd : i = 1...n} is the entire set of the n possible settings of the d = 2
HA parameters. A GP is a non-parametric—and thus flexible—discriminative
Bayesian approach, which defines a distribution of entire functions, ”any finite
number of which have a joint Gaussian distribution” [1, Def. 2.1]. This simply
implies that any finite number of function values, f = [f(x1), ..., f(xn)]>, have
a distribution given by a multivariate Gaussian distribution as

p(f) = N (0,K), (1)

with the elements of K given by [K]i,j = k(xi,xj), where k(·, ·) is a covariance
function (or kernel), which generally speaking defines the smoothness of the
functions. For an introduction to kernels, see [1, Chap. 4] or [12, Chap. 6].

The fundamental benefit from the GP is that Eq. 1 can be used as a prior
distribution of a user’s IRP before any preference assessments have been per-
formed by the user. In the Bayesian framework, the distribution of the user’s
IRP is re-calculated conditioned on the preference assessment(s) that have been
observed to give the posterior distribution of the user’s IRP as

p(f |Y) ∝ p(Y|f)p(f), (2)

where p(Y|f) is the likelihood which is defined by a specific observational model
(choice model). In this work, users assess their degree of preference (continuous
decision) between two particular HA settings. To update the posterior (and
predictive) distribution in the GP framework at any given point in the experi-
ment with a particular number of performed preference assessments, the model
proposed in [2] is used. The specific functional form of that observational model
as well as details about inference and predictions are provided in [2] and will
therefore not be presented here.

To reduce the number of preference assessments required to discover the
optimal setting, active learning is used. Active learning can be formulated
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in several ways, but the statistics provided by the GP framework makes it
possible to use a slightly modified version of Expected Improvement (EI) [3].
In contrast to the original formulation [3], the modification also includes the
correlation between function values when calculating the (modified) EI. The
added correlations are directly available from the GP framework. The EI for a
possible new setting xi is thus calculated in closed form as

EI(xi) = σEI · φ
(
µEI

σEI

)
+ µEI · Φ

(
µEI

σEI

)
, (3)

where φ(·) and Φ(·) is the standard normal distribution and standard normal
cumulative distribution functions, respectively, µEI = µi − µmax and σ2

EI =
σ2
i +σ2

max−2 · covi,max. Here, the max index refers to the point with the current
largest predicted IRP and the notation

p

([
fmax

fi

])
= N

([
µmax

µi

]
,

[
σ2
i covi,max

covi,max σ2
max

])
(4)

has been used for the two-variate marginal of the predictive normal distribution
given by the GP framework.

Typically in active learning theory, an explicit trade-off between exploration
(of unseen regions of input space) and exploitation (of ”known” regions of in-
put space) must be made. Generally, a system will exhibit slow convergence
with too much emphasis on exploration, but will quickly get stuck in a sub-
optimal solution, if too much emphasis is put on exploitation. In this work, the
next proposed setting to compare with the current best one is sampled from
a multinomial distribution, where the probability of a given setting is propor-
tional to its EI given by Eq. 3. This was done to put slightly more emphasis on
exploration.

3 Measurement Procedure

To illustrate the behavior of the suggested interactive fine-tuning system, an
experiment with five (native danish) HI subjects was conducted. To obtain an
indicate of the expected variability in the proposed settings for individual HI
users between consecutive fine-tuning sessions, the experiment consisted of both
a test session and a re-test session. The two sessions were conducted on two
separate days.

In each of the two sessions, each subject conducted thirty comparisons be-
tween pairs of HA settings. Subjects wore (experimental) hearing aids fitted
(binaurally) in advance to compensate for each individual’s hearing loss, and
listened to running speech in car noise played back over loudspeakers. Via a
graphical user interface (see Fig. 1), the user could switch between the two
current HA settings and report their degree of preference. The users were not
instructed to focus on particular parts of the sound or on particular attributes,
but were only provided with an introduction to the acoustical scene reflected in
the sound file. The hearing loss of each individual subject is found in Fig. 2

4

92 Appendix D



Figure 1: The (danish) graphical user interface used in the experiments. The
buttons, ’A’ and ’B’, were used to switch between the two current settings.
The slider—currently positioned far to the left—was used to indicate the degree
of preference between the two settings by how far it was positioned towards
either of the two settings, ’A’ or ’B’. No preference was indicated by leaving the
slider at the center. After positioning the slider, the user continued to the next
comparison be clicking the button in the lower-right corner.

4 Results

In Fig. 3, the predictions of the IRP for both the test and re-test sessions for
each of the five test subjects are depicted. Since the IRPs are unit free, the
reader should be aware that the colors cannot be compared across subjects, and
similarly, high-preference regions should in general not be interpreted as being
”good”, but only as being ”better than” blue or green. Hence, the predicted
IRP only reflects relative properties.

Considering that a parameter change from one end of the space to the other
is extremely subtle, the predicted high- and low-preference regions between test
and re-tests within each subject are consistent, except for subject 5. The results
with subject 5 do, however, coincide with what subject 5 expressed after the
sessions, namely that the subject was unable to hear any differences between
any of the pairs of presented settings. For this reason, subject 5 chose only
occasionally to move the slider, and when the subject did, the subject moved it
as little as possible.

A statistic significance test using forced choices was performed to prove
significance between the most and least preferred settings discovered by the
system in the two sessions. Options 1 and 2 were mixed randomly in eleven
trials, yet this only proved significance (p < 0.005) for subject 3.

5
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Figure 2: Audiograms of each individual subject. Crosses and circles correspond
to the left and right ear, respectively.

The number of assessments that each subject needs to perform before the
algorithm discovers a steady preferred setting is visualized in Fig. 4 (see caption
for an explanation). Note, that subject 5 has not been included, since subject
5 did not prefer any setting over others and hence did not convergence.

5 Summary and Discussion

Overall, the reproducibility of the found preferred settings is satisfactory given
the subtle differences between parameter settings and is found well before the
30th assessment. However, since the perceptual differences between settings
are very subtle, it was not possible to prove or to reject significance of the
preferred settings overall. However, the apparent good reproducibility indicates
that the found preferred settings are actually a result of the subjects’ individual
preferences and not a results of a random effect.

The variability in the preferred settings across users from the results in Fig. 3
corroborates previous findings in the literature [13] that individual preferences

6
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(a) Subject 1 - test (b) Subject 1 - retest

(c) Subject 2 - test (d) Subject 2 - retest

(e) Subject 3 - test (f) Subject 3 - retest

(g) Subject 4 - test (h) Subject 4 - retest

(i) Subject 5 - test (j) Subject 5 - retest

Figure 3: IRP as a function of the two HA parameters, x1 and x2, predicted
by the fine-tuning algorithm after 30 comparisons for the test (left column)
and re-test (right column) sessions. Red and blue colors indicate high and low
preference regions, respectively. Crosses connected with a dashed line indicate
comparisons. Note, the IRPs are unit-free.7

Efficient Individualization of Hearing Aid Processed Sound 95



5 10 15 20 25 30

number of loop iterations k

C
u
m
u
la
ti
v
e
ch
a
n
g
e
in

x
Convergence

 

 

subj. 1
subj. 2
subj. 3
subj. 4
average

Figure 4: The cumulative euclidean change in the location of the maximum
point of the predicted IPR after a each new assessment as a function of the
number of assessments.

among HA users do exist, and the system proposed here discovers such prefer-
ences before the subjects have performed twenty comparisons in a worst case
scenario (see Fig. 4). In case of parameter settings that are perceptually easier
to distinguish, the required number of comparisons would presumably be even
smaller.

The results presented here are preliminary and serve merely to visualize how
the system works. In future work, especially the scaling issue with respect to
the number of required comparisons in relation to the number of adjustable
parameters is of interest. Also, a similar experiment should be conducted in
the future, but with parameter settings that are easier to distinguish from each
other, to verify that settings that are suggested by the system to be preferred
are significantly different from settings that are not suggested to be preferred.
Next, better convergence measures based on the actual statistics provided by the
probabilistic modeling framework should be studied. One possible suggestion
could be the mean of the EI across settings. Finally, investigation of suitable
metrics for expressing the similarity between test/re-test results would be inter-
esting. One (Bayesian) suggestion could be based on the likelihood of the test
data given the re-test data or vice versa.

8
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Errata

• In the equation before Eq. (7), the denominator should be

N
(
Φ−1(y∗)

)
,

and not Φ(Φ−1(y∗)).
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Abstract

We extend the Gaussian process (GP) framework for bounded regres-
sion by introducing two bounded likelihood functions that model the noise
on the dependent variable explicitly. This is fundamentally different from
the implicit noise assumption in the previously suggested warped GP
framework. We approximate the intractable posterior distributions by
the Laplace approximation and expectation propagation and show the
properties of the models on an artificial example. We finally consider two
real-world data sets originating from perceptual rating experiments which
indicate a significant gain obtained with the proposed explicit noise-model
extension.

1 Introduction

Regression is typically defined as learning a mapping from a possible multi-
dimensional input to an effectively unbounded one-dimensional observational
space, i.e., the space of the dependent variable. However, in many regression
problems the observational space is clearly bounded. Examples of such problems
include prediction of betting odds, data compression ratios and ratings from
perceptual experiments. When the observational space is bounded, modeling the
observations with a distribution having infinite support such as the Gaussian
distribution, is clearly incorrect from a probabilistic point of view. In this
work we will extend the GP framework to allow for principle modeling of such
observations.

Gaussian processes (GPs) are currently considered a state-of-the-art Bayesian
regression method due to its flexible and non-parametric nature. However,
bounded regression with GPs has only indirectly been addressed by mapping
or warping the bounded observations onto a latent unbounded space in which
the observational noise can be assumed to be Gaussian [1]. Hereby, the ob-
servational model is only modeled implicitly through the warping function. In
contrast, we consider observational models or likelihood functions that make as-
sumptions about the noise directly in the observational space, and thus, model
the observational noise explicitly.

1
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Possibly, the simplest way to derive a bounded likelihood function is to use
a truncated distribution. A natural choice is to use the truncated version of the
Gaussian distribution considered in this work. Alternatively, a bounded likeli-
hood function could be derived from a distribution that only has finite support.
Of this type, we will consider the beta distribution and derive a bounded like-
lihood function based on a re-parameterization. For both models we perform
inference and predictions based on the Laplace approximation and expectation
propagation (EP).

Employing a toy example, we compare the predictive distributions of warped
GPs with regression based on the bounded likelihood functions mentioned above.
We show that, as expected, the model with the correct noise assumption pro-
vides the best expected predictive negative log likelihood (or, alternatively, gen-
eralization error). Two examples are used to justify the models in real-world
regression scenarios and they show that the two likelihood models provide better
model fits compared to the warped GP.

2 Gaussian Process Regression

A Gaussian process (GP) is a stochastic process defined as a collection of ran-
dom variables, any finite subset of which must have a joint Gaussian distribu-
tion. In effect, we may place the GP as a prior over any finite set of functional
values f = [f1, f2, ..., fn]>, where fi = f(xi), resulting in a finite multivari-
ate (zero-mean) Gaussian distribution over the set as p(f |X ,θc) = N (f |0,K),
where each element of the covariance matrix [K]i,j = k(xi,xj)θc

is given by a
covariance function k(·, ·)θc

with parameters θc, and where X = {xi|i = 1, ..., n}
denotes the set of inputs. The GP is effectively used as a prior over functions
in non-parametric Bayesian regression frameworks where either the outputs or
a likelihood can be parameterized by a smooth and continuous function f(·).
In the simplest case the set of observations, Y = {yi|i = 1, ..., n}, consists of
the functional values themselves with added i.i.d Gaussian noise with variance
σ2
n. Hereby, the likelihood function is a standard Gaussian likelihood function

parameterized by f(·) defining the mean. Hence, p(yi|fi,θL) = N (yi|fi, σ2).
Bayes formula gives us—regardless of the likelihood function—the posterior

distribution,

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θc)

p(Y|X ,θ)
,

where it is typically assumed that the likelihood factorizes over instances such
that p(Y|f ,θL) =

∏n
i=1 p(yi|fi,θL). The denominator, p(Y|X ,θ), is called the

marginal likelihood or evidence given as p(Y|X ,θ) =
∫
p(Y|f ,θL)

p(f |X ,θc)df . In empirical Bayesian methods the evidence is used to learn point
estimates of both likelihood function and prior parameters θ = {θc,θL}.

Provided that the likelihood is Gaussian, both the posterior and predictive
distribution will be Gaussian (processes) available in closed form [2, Chapter
2]. However, not all real-world problems actually justify the observations to be
Gaussian distributed. As mentioned, we consider bounded observations, mean-
ing that they in contrast to Gaussian distributed observations do not have infi-
nite support.

2
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3 Bounded Likelihood Functions

We consider a set Y = {yi|i = 1, ..., n} of bounded responses yi ∈ ]a, b[ to an
input xi. In the following we will present three different observational models
for this type of response. The first is the warped GP [1], where the likelihood
describes warped observations rather than the bounded responses directly. Fol-
lowing this, we propose two different likelihood functions that directly model
the bounded responses in a principle probabilistic fashion by assuming particu-
lar distributions of the observations defining the noise in the original bounded
domain.

3.1 Warping

Snelson et. al [1] learn a warping, that transforms the original data Y into a form
where the data is modeled by a traditional GP with a Gaussian noise model.
Here, we will not consider how to learn the correct warping, but instead use a
fixed warping that transforms the bounded responses yi into unbounded versions
zi. Several warping functions would apply, but to allow for direct comparison
of all the models we use the inverse cumulative Gaussian (probit) Φ−1(·)—with
zero mean and unity variance—such that zi = Φ−1(yi). The resulting model
will be referred to as GP-WA.

3.2 Truncated Distributions

The simplest route to a bounded likelihood function is to use distributions with
infinite support and truncate them to the bounded domain. There are a number
of relevant distributions including the truncated student-t and of course the
truncated Gaussian (TG) distribution, see e.g. [3]. As a representative for this
type of bounding approach, we consider the TG and define the corresponding
likelihood function as

LTG ≡ p (yi|fi,θL) =
νN (ν (yi −M (fi)))

Φ (ν (b−M (fi)))− Φ (ν (a−M (fi)))
, (1)

where the distribution is parameterized by the mode M(fi) and the domain
limits a and b which we assume to be 0 and 1, respectably1. The mean of the
TG distribution is given by

µ (fi) = M (fi) +
1

ν

N (ν (a−M (fi)))−N (ν (b−M (fi)))

Φ (ν (b−M (fi)))− Φ (ν (a−M (fi)))
. (2)

Eq. 2 in effect leaves two parametrization options in the sense that we may
select the non-parametric function, f(·), to parameterize either the mode or the
mean function. Both options are valid from a modeling perspective, but the
easiest parametrization is by far the mode, M(fi). For prediction speed it may
be beneficial to indirectly parameterize the mean, but then the (unique) solution
to the mode given the mean must be found numerically or approximately. The
numerical approach will severely limit the effectiveness of the posterior approxi-
mation and in this work we will therefore focus on the mode parametrization for

1We note that the truncated student-t has the same form as the TG and can easily be
realized using the methods and implementations presented in this work.

3
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Figure 1: Illustration of the proposed TG likelihood function with p(yi|fi) shown
as a gray-scale level. Left: ν = 3, Middle: ν = 10 and Right: ν = 30.

Figure 2: Illustration of the proposed beta likelihood function with p(yi|fi)
shown as a gray-scale level. Left: ν = 3, Middle: ν = 10 and Right: ν = 30.

the TG. Thus, the likelihood function in Eq. 1 is parameterized by the mode as
follows M(fi) = Φ(fi) and the resulting model depicted in Fig. 1 will be referred
to as GP-TG

3.3 Beta

A distribution that imposes bounded responses in a completely natural manner
is the beta distribution which has also been applied in standard parametric
settings [4, 5]. The beta distribution is therefore an obvious distribution for
the bounded observations and we select a parametrization which expresses the
shape parameters, α, β, of the beta distribution, Beta(α, β), in terms of the
mean µ such that

α = νµ, β = ν (1− µ) .

We then parameterize the mean µ of the beta distribution by the cumulative
Gaussian, such that µ(fi) = Φ(fi). The re-parameterized beta likelihood de-
picted in Fig. 2 is thereby given by

LBE ≡ p(yi|fi,θL) = Beta(yi|νΦ(fi), ν (1− Φ(fi))),

and will be referred to as the GP-BE model. Note, that the ν parameter is an
(inverse) dispersion parameter.

4
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4 Approximate Inference and Prediction

For the GP-WA model the likelihood is effectively Gaussian, hence, inference
is analytical tractable [1]. However, neither the GP-TG model nor the GP-BE
model have analytical tractable posterior distributions. Instead, we must resort
to approximations. We consider two different approximate inference schemes—
the Laplace approximation and expectation propagation (EP). Both methods
approximate the posterior distribution p(f |Y,X ,θ) with a single Gaussian q(f).
In the following we briefly give an overview of the two approximate inference
schemes in relations to the bounded likelihood functions. For more details on
the approximation schemes see for instance [2].

4.1 Laplace Approximation

Possibly, the simplest inference method is the Laplace approximation in which
a multivariate Gaussian distribution is used to approximate the posterior, such
that p(f |X ,Y, θ) ≈ q(f) = N (f |f̂ ,A−1), where f̂ is the mode of the posterior
and A is the Hessian of the negative log posterior at the mode. The mode
is found as f̂ = arg maxf p (f |Y,X ,θ) = arg maxf p (Y|f ,θL) p (f ,X ,θc). The
general solution to the problem can be found by considering the un-normalized
log posterior and the resulting cost function which is to be maximized, is given
by

ψ (f |Y,X ,θ) = log p (Y|f ,X ,θL)− 1

2
fTK−1f − 1

2
log |K| − N

2
log 2π,

where Ki,j = k(xi,xj)θc . The maximization can be solved with a standard
Newton-step algorithm given by

f̂new =
(
K−1 + W

)−1 ·
[
Wf̂ +∇ log p(Y|f ,X ,θL)

]
,

where the Hessian W = −∇∇f log p(Y|f) is diagonal with elements defined

by the second derivative of the log-likelihood function [W]i,i = −∂2 log p(yi|fi)
∂f2

i
.

When converged, the resulting approximation is

p (f |Y,X ,θ) ≈ N
(
f |f̂ ,Σ

)
, where Σ =

(
W + K−1

)−1
.

Approximating the posterior of f by the Laplace approximation requires the
first two derivatives of the log likelihood. For the TG we will report the general
derivatives applicable for any truncated likelihood function based on symmetric
densities for which the truncated density can be written as the TG, i.e. in the
form

p (yi|fi) =
r (g (yi|fi))

s (g (b|fi))− s (g (a|fi))
, (3)

5
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where we for the TG model defines g (c|fi) = ν (c−M (fi)). The resulting
derivatives for the TG likelihood requires the following partial derivatives

∂r (·)
∂fi

= ν2g (yi)N (g (yi))N (fi) ,

∂2r(·)
∂2fi

= ν2N (g (yi))N (fi) [−νN (fi) + g (yi) (νg (yi)N (fi)− fi)] ,

∂s (·)
∂fi

= −νN (g (b))N (fi) and

∂2s(·)
∂2fi

= −νN (g (b))N (fi) [νg (b)N (fi)− fi] ,

which enter into the derivatives of Eq. 3. The two required partial derivatives
for the beta distribution are given by

∂ log Beta(yi|·)
∂fi

= νN (fi) · [log(yi)− log(1− yi)− ψ(α) + ψ(β)] and

∂2 log Beta(yi|·)
∂f2i

= −ν2N (fi) ·
[
N (fi) ·

(
ψ(1)(α) + ψ(1)(β)

)

+
fi
ν
· (log(yi)− log(1− yi)− ψ(α) + ψ(β))

]
,

where ψ(·) and ψ(1)(·) are the digamma function of zero’th and first order,
respectively.

4.2 Expectation Propagation

EP also approximates the posterior distribution with a single multivariate Gaus-
sian distribution q(f) = N (f |µ,Σ) by factorizing the likelihood by n Gaussian
factors ti(fi|Z̃i, µ̃i, Σ̃i) = Z̃iN (fi|µ̃i, Σ̃i), where i = 1, ..., n. The EP approxi-
mation to the full posterior is thus given by

p(f |Y,X ,θ) ≈ q(f) = N (f |µ,Σ) = p(f ,X )N (f |µ̃, Σ̃)
n∏

i=1

Z̃i,

where the means µ̃i and variances Σ̃i have been collected into the vector µ̃ and
diagonal matrix Σ̃, respectively. The mean and covariance of the approximation
are given by

µ = ΣΣ̃
−1

µ̃, Σ =
(
K−1 + Σ̃

−1)−1
.

EP updates each factor ti in turn by first removing the factor to yield what is
called the cavity distribution q−i(fi) = N (fi|µ−i,Σ−i), where
µ−i = Σ−i([Σ]−1i,i µi − Σ̃−1i µ̃i) and Σ−i = ([Σ]−1i,i − Σ̃−1i )−1. Secondly, the factor
ti is updated by projecting the cavity distribution multiplied with the true
likelihood term onto a univariate Gaussian. The projection is effectively done
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by solving the following three integrals

Zi =

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi, (4)

dZi

dµ−i
=

d

dµ−i

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi

=

∫
p(yi|fi)

d

dµ−i
{N (fi|µ−i,Σ−i)} dfi, (5)

d2Zi

dµ2
−i

=
d2

dµ2
−i

∫
p(yi|fi)N (fi|µ−i,Σ−i)dfi

=

∫
p(yi|fi)

d2

dµ2
−i
{N (fi|µ−i,Σ−i)} dfi. (6)

Neither the beta likelihood nor the TG likelihood yield analytical tractable
solutions for these three integrals, but the one-dimensional integrals can be
solved numerically for the EP inference.

4.3 Predictive Distributions

Naturally, we want to predict future values of both the latent functional value f∗

and data label y∗. For all models the posterior distribution over f is effectively
Gaussian2. Hence, the predictive distribution p(f∗|Y,X ,x∗) = N (f∗|µ∗, σ2

∗) of
latent functional values is Gaussian and is derived just as in the standard cases
in a straight forward manner (see e.g. [2, Chapter 2-3]).

The predictive distribution of future targets p(y∗|Y,X ,x∗) involves comput-
ing the integral

p(y∗|Y,X ,x∗) =

∫
p(y∗|f∗)N (f∗|µ∗, σ2

∗)df
∗.

For the GP-WA, the predictive distribution has a closed-form solution [1]

pGP-WA(y∗|Y,X ,x∗) =
N (Φ−1(y∗)|µ∗, σ2

∗)
N (Φ−1(y∗))

.

In case of the GP-BE and GP-TG the predictive distribution is not given in
closed form. Instead, the integral must be computed using numerical methods.
Predictions of the mean, E(y) ∈ ] 0; 1 [ , are in the bounded case given by

Ep(y∗|·){y∗} =

∫ 1

0

y∗p(y∗|Y,X ,x∗)dy∗ (7)

=

∫
N (f∗|µ∗, σ2

∗)
∫ 1

0

y∗p(y∗|f∗)dy∗df∗

=

∫
N (f∗|µ∗, σ2

∗)Ep(y∗|f∗){y∗}df∗. (8)

Given the cumulative Gaussian warping, Eq. 7 can be solved analytically for the
GP-WA model. In Eq. 8 the mean of the likelihood occurs, which in the beta

2For the warped GP the posterior is exactly Gaussian, whereas we for the two other models
have approximated—either by Laplace or EP—the posterior with a Gaussian.

7

Bounded Gaussian Process Regression 107



case is parameterized by a cumulative Gaussian and given the specific choice of
warping this results in a closed form solution expressed by3

EGP-WA{y∗} = EGP-BE{y∗} = Φ

(
µ∗√

1 + (σ∗)2

)
.

In case of the GP-TG model, Eq. 7 has no analytical form and must be solved
by one-dimensional numerical approximation.

5 Simulation Example

In order to illustrate the difference between the warped and bounded likelihood
approaches we consider an artificial example with added noise. It is generated
by drawing a one-dimensional function from a zero-mean Gaussian process with
a squared exponential (SE) kernel with length scale, σl = 1, and noise variance
σf = exp(1). Three different types of noise are then added: The first type
(WA) is i.i.d Gaussian noise added directly on f and transformed through Φ(·)
which corresponds to the noise assumption in the warped GP. In the second case
(TG), f is transformed through Φ(·) before adding noise based on the mode-
parameterized TG distribution, thus corresponding to the noise assumption of
the TG likelihood. In the third case (BE), we add noise based on the mean-
parameterized beta distribution.

In order to visualize the special nature of bounded responses and the dif-
ference between the models, we have illustrated the WA noise case in Fig. 3,
where all three bounded models are evaluated. Both the Laplace approxima-
tion and EP have been used for inference for the beta and TG model. The
hyper-parameters are in all cases optimized using evidence maximization. The
main difference of the three models occurs at the domain boundaries, where
the GP-WA model concentrates the entire mass almost at the boundary. The
predictive distribution of the GP-TG model generally has a similar shape over
the entire domain with its mean always spaced significantly far from the bound-
ary, whereas the GP-BE can also have its mean very close to the boundary
as for the GP-WA model, but still retain mass away from the boundary. No
significant differences between the two inference schemes are evident. Since the
EP scheme requires numerical solutions to the integrals in Eq. 4-6, the Laplace
approximation will be used in the reminder of this article.

We evaluate the ability of the models to model different noise distributions
by comparing the predictive log likelihood for the previously mentioned dataset
based on the Laplace approximation. A second example is added in which the
function is drawn from a GP with a periodic covariance function. The predictive
log likelihood for both examples is reported in Tab. 5 and is the average over ten
realizations of the noise. As expected, we see that the model corresponding to
the added noise type always results in the lowest negative likelihood, indicating
a better model fit.

3Keep in mind that although there is an equal sign between the predictive mean of the
cumulative-warped and the beta model, the means will in general be different due to difference
in the latent predictive distributions of the GP.

8

108 Appendix E



Squared Exponential (σ2
f = 2, ` = 1)

WA TG BE
GP-WA -129.8 (6.4) -82.0 (7.3) -165.3 (31.1)
GP-TG -91.0 (19.6) -96.8 (4.5) -81.8 (14.5)
GP-BE -119.8 (7.7) -91.2 (6.3) -195.2 (24.6)

Periodic (σ2
f = 3, ` = 0.8, λ = 5)

WA TG BE
GP-WA -93.2 (6.9) -80.6 (11.0) -70.8 (10.4)
GP-TG -76.2 (10.3) -91.6 (9.4) -66.0 (12.9)
GP-BE -88.5 (3.8) -84.5 (7.8) -99.8 (15.5)

Table 1: Expected predictive negative log likelihood (and standard deviation)
for each of the three models (GP-WP, GP-TG, GP-BE)) evaluated on a specific
function with additive noise from ten random realizations of the noise for each
corresponding noise types: WA, BE and TG. The noise free function is drawn
from a GP prior with the indicated covariance functions and parameter values
(defined in [6])

x

y

GP-WA

0

0.5

1

x

y
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Figure 3: Predictive distributions for the three models: GP-WA, GP-TG and
GP-BE. For GP-TG and GP-BE both Laplace and EP inference are shown,
where training data: +, test examples: ·, predictive mean: − and 68% and
95% percentiles: · · · . Also, contours of the predictive distribution are shown in
gray, where the intensity reflects probability mass concentration.
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6 Perceptual Audio Evaluations

In order to demonstrate the difference between the three considered models in a
real-world scenario, we have tested the three models on two datasets consisting
of subjective ratings performed while listening to audio through a hearing aid
(HA) compressor with different settings.

The first dataset [7], HA-I, contains six compression ratio settings (includ-
ing one without compression) and three release-time settings. This results in
sixteen non-trivial combinations of the settings with xs ∈ R2, that are rated
three times by each of the seven test subjects, u, while listening to a speech
signal. The dataset also contains an complete six point audiogram on both left
and right ear, xu ∈ R2×6, of the hearing impaired test subjects. The audio
signal resulting from each compressor setting is represented by standard audio
features, namely thirty Mel frequency cepstral coefficients, xa ∈ R30. Thus, for
one setting, s, each test subject, u, rated the audio signal, a. This results in a
collection of inputs for this specific rating which we collect in x = {xu,xa,xs}.
We use the multi-task kernel formulation [8] and define the covariance func-
tion as k (xi,xj) = kuSE-ARD

(
xu
i ,x

u
j

) (
kaSE

(
xa
i ,x

a
j

)
+ ksSE

(
xs
i ,x

s
j

))
where all

covariance functions are squared exponential (SE), the first one with automatic
relevance determination (SE-ARD).

The second dataset [9], HA-II, contains three input settings related to the
compression ratio, attack time and release time of a HA dynamic range com-
pressor, thus xs ∈ R3. Four subjects have rated 50 combinations of inputs in
relation to general preference while listening to a speech-in-background-noise
signal. The dataset does not contain any data describing the subjects, hence
we use only a single squared exponential covariance function.

We initialize the hyper-parameters in the (common) covariance function to
the same value for all models, but initialize the likelihood noise parameter with
multiple values in a grid pattern after which all the hyper-parameters are op-
timized using evidence maximization. We then report the performance of the
model which yields the largest evidence after maximization. For the purpose of
comparing the three models, we will simply consider the Laplace approximation
and a retest scenario in which we train on a random repetition and test on
another repetition for each setting. We repeat this three times and evaluate the
resulting predictive likelihood and mean square error (MSE). The results are
listed in Tab. 6. We note from the negative predictive log likelihood that the
beta distribution provides a better fit to the noise compared to the other two
models given the two real-world datasets presented here.

7 Discussion and Conclusion

In the present work, we outlined two bounded likelihood functions for bounded
Gaussian process regression which in contrast to previous work make explicit
assumptions about the noise in the bounded observation space. In the two
considered examples we found the beta model to be better than the two other
models in terms of the predictive log likelihood. These results together with
the artificial examples support the application of all three models in the non-
parametric Gaussian process framework. However, the optimal model obviously
depends on the actual noise distribution in a given application. We therefore
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GP-WA GP-TG GP-BE

HA-I
-log p(y∗) -66.1 -96.1 -101.2

MSE 0.013 0.001 0.010

HA-II
-log p(y∗) -7.7 -9.3 -14.1

MSE 0.031 0.030 0.035

Table 2: HA-I Mean square error (MSE) and expected predictive negative log
likelihood over 10 random sets. We find a significant difference in log likelihood
at the 5% level between GP-TG and the two other models but not between GP-
TG and GP-BE. For MSE the only significant difference is between GP-TG and
GP-BE. HA-II Mean square error (MSE) and negative log likelihood over 10
folds. Considering the negative log likelihood only the GP-BE is significantly
better than the GP-WA in a paired t-test. There is no significant difference
between GP-TG and the other models. The GP-BE is significantly different in
terms of MSE than the two others.

foresee addition and inclusion of other noise models based on other distribution
with finite support.

Implementations of the various likelihoods are available [10] for use in the
gpml toolbox [6] and can easily be extended to support more advanced link func-
tions [11], which will make the models (both the bounded and the warped) even
more flexible. In particular, we suggest to use a mixture of cumulative Gaussian
link functions which do not complicate predictions significantly. Furthermore,
we suggest to evaluate the performance of the deterministic approximations by
the use of MCMC-sampling methods.

In conclusion, we have extended the Gaussian process framework to include
bounded likelihood functions allowing for explicit specification of the likelihood
model in applications where bounded observations are present and support an
explicit noise model.
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Abstract

Modern audio systems are typically equipped with several user ad-
justable parameters unfamiliar to most users listening to the system. To
obtain the best possible setting, the user is forced into multi-parameter
optimization with respect to the users’s own objective and preference.
To address this, the present paper presents a general inter-active frame-
work for personalization of such audio systems. The framework builds
on Bayesian Gaussian process regression in which a model of the users’s
objective function is updated sequentially. The parameter setting to be
evaluated in a given trial is selected by model-based sequential experi-
mental design. A Gaussian process model is proposed which incorporates
correlation among particular parameters providing better modeling capa-
bilities compared to a standard model. A five-band equalizer is considered
for demonstration purposes, in which the parameters are optimized using
the proposed framework. Twelve test subjects obtain a personalized set-
ting with the framework, and these settings are significantly preferred to
those obtained with random experimentation.

1 Introduction

The ever increasing number of features and processing possibilities in many
modern multimedia systems, such as personal computers, mobile phones, hear-
ing aids and home entertainment systems, has made it possible for users to
customize these systems significantly. A downside in this trend is the large
number of user-adjustable parameters which makes it a daunting and complex
task to actually adjust/optimize the systems optimally. This is because users
have to navigate in a high-dimensional parameter space, which makes it ex-
tremely difficult for users to find even a local optimum. For audio systems, the
optimization is further complicated by perceptual and cognitive aspects of the
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Figure 1: A conceptual overview of the interactive system. At step (1) we draw
a new EQ from the current estimate of the user’s objective function. Next, at
step (2) this particular EQ is associated with a ball, in this case number eight, in
the visualized user interface. Finally, after the user has rated the new EQ, the
objective function is updated to reflect current positions of all previous balls,
this update occurs at step (3). We emphasize that the user at any time may
select between previously sampled EQ by clicking the balls, making the current
song play through the newly selected EQ.

human auditory and cognitive system, which result in a significant spread in
users’s opinions concerning the adjustment of a particular system. It is there-
fore of great interest to find and evaluate fast and flexible tools for robustly
optimizing user-adjustable parameters, with the aim to rapidly obtain a truly
personalized audio system setting.

Prime examples of complex audio systems are hearing aids, where hundreds
of parameters make up a unique and personal experience. It is therefore nat-
ural that this field has considered ways to learn an optimal setting based on
preference (Kuk et. al. [8] and Baskent et. al. [1]), although these are currently
based on non-probabilistic methods. Recently—and the closest related to our
approach—Birlutiu et. al. [4, 3] have proposed two probabilistic approaches
driven mainly by a multi-task formulation utilizing the information transfer
among users, to learn a complete preference model accounting for all preference
relations. For the purpose of optimizing parameters, it is not efficient to learn
a complete model over a high-dimensional parameter space, because the model
is only required to be accurate around possible optimal parameters.

In audio reproduction systems—like home entertainment and professional
mixing equipment—preference learning approaches are relatively unknown, de-
spite the clear evidence that personalization may be beneficial in for example
equalization (Paterson [11] and Zhang et. al. [18]). Existing approaches such as
Reed [13], Pardo et. al. [10], and Sabin et. al. [14], are based on non-probabilistic
approaches, thus neglecting the highly stochastic nature of perceptual responses.

In this work we focus on audio reproduction systems and the outlined task
of optimizing multiple parameters in such systems for an individual user listen-
ing to the output of the system. For this purpose, we propose and consider a
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combination of robust Bayesian modeling, an engaging user interface for user
feedback and global optimization techniques (active learning) in an interactive
loop visualized in Fig. 1. The loop constitutes a general framework where the
inherent uncertainty in user feedback is addressed from a Bayesian viewpoint
in which the belief in the user’s (unknown) objective function is modeled with
(warped) Gaussian process (GP) regression [15]. The framework uses an intu-
itive and simple graphical user interface for obtaining user ratings, which allows
the user to listen to previously rated settings thus serving as anchors/references
for future ratings. In contrast to standard practice, we do however not only al-
low the user to listen to previous settings, but we also allow the user to change
all the ratings of previous settings, if for some reason a new setting would change
e.g. the span of the scale. This is possible, since we are constantly updating our
regression model to reflect the belief about the user’s objective function given
the ratings obtained so far. Finally, we propose to use a sequential optimiza-
tion technique to rapidly find a (possibly local) optimum of the user’s objective
function. The sequential design takes advantage of the Bayesian formulation
by including the belief about the user’s objective function. This significantly
reduces the required number of settings that the user should rate in order to
find an optimum.

We furthermore consider the fact that certain parameters may be correlated
with respect to the user’s objective. An example could be the compression
ratio, the attack time and the release time in a compressor. To exploit such
correlation and obtain better modeling capabilities, we suggest a specific model
which assumes correlation between specific input parameters.

To demonstrate the potential of the framework for personal audio system
optimization, we use a five-band constant-Q equalizer (EQ) as the running ex-
ample, because the parameters (gains) in an EQ is something that we (as profes-
sionals) more or less all can relate to. We are aware that any audio-engineering
professional will probably be able to quickly tune the five parameters of the EQ
to his own objective. However, this is actually not a very typical scenario. Typ-
ically, users of home entertainment systems are untrained, and thus, have very
little intuition about the parameters that they have the opportunity to tune
and close to no intuition at all about the interplay between parameters. Hence
with for instance five parameters controlling a virtual surround sound system
with virtual base enhancement, most users would seek an optimal setting using
trial and error (random experimentation). This is the premises in which the EQ
example should be considered and the EQ is just convenient for demonstration
purposes.

Through model comparison, we first show that the model with assumed cor-
relation between input parameters improves the modeling capabilities compared
to a traditional GP model without assumed correlation. The analysis is per-
formed on real-world data, where 21 test subjects have rated different randomly
chosen settings of the EQ. Even for this EQ with relative few bands—which is
thus perceptually well separated—we would expect the gains in adjacent bands
to be somewhat correlated with regards to the user’s objective. Secondly, we
evaluate the usefulness of the entire framework in a real-world experiment where
personalization of the EQ have been conducted for twelve test subjects. As the
EQ has over fifty-nine thousands unique settings, the hypothesis is that the
preferred setting will be hard to find (for the typically untrained user) with-
out an efficient sequential design approach and correspondingly good modeling
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capabilities. The results from the real-world listening experiments focusing on
the statistical difference between random experimentation and sequential exper-
imental design, show a clear advantage of the sequential design approach.

Our contribution is thus three fold: First in Sec. 2, we propose a general
personalization framework with an intuitive user interface (Sec. 2.3), a princi-
pled modeling approach using warped Gaussian processes extended to expect
correlation between adjacent input parameters (Sec. 2.1) and a sequential design
approach (Sec. 2.2). Secondly in Sec. 3.2, we show that the GP model extension
provides better modeling capabilities for our specific purpose. Thirdly, we eval-
uate the entire framework by a listening experiment in a real-world interactive
scenario and outline the results in Sec. 3.3. A discussion is provided in Sec. 4
and the paper is concluded in Sec. 5.

2 Personalization Framework

The proposed personalization framework uses an interactive loop to discover the
user’s preferred setting of a particular audio system, where we as an example
use the EQ. The interactive loop is visualized in Fig. 1. The loop can conceptu-
ally be divided into three parts: a preference modeling part, a sequential design
part and an interface part. The preference modeling part presents how a user’s
objective function over EQ settings is learned based on user ratings. The se-
quential design part covers how to choose new EQ settings to be rated based on
what the model currently predicts. Finally, the interface part covers the design
of the graphical user interface, such that it is both intuitive and easy to use for
the users. The three parts are described in the following three sections.

2.1 Preference Modeling

We represent each system setting as a d = 5 dimensional vector of parameters,
x = [x1, ..., xd]

>. Next, we assumed that the user’s objective is an unobserved
real-valued stochastic function (or process), such that each unique setting xi has
a corresponding real-valued function value, f(xi), expressing the user’s prefer-
ence for the particular setting. This function is to be learned—and subsequently
maximized—trough a number of experiments where we observe the user’s ex-
pressed preference by a rating on a bounded scale, y ∈ ]0; 1[, where 0 is Bad and
1 is Good (see interface (2) on Fig. 1). At some point the user has evaluated n
such distinct system settings xi ∈ X collected in X = {xi|i = 1, ..., n}, with a
related set of n responses denoted Y = {yi|i = 1, ..., n}.

We model the function mapping from settings, xi, to ratings, yi, by a so-
called warped Gaussian process [15]. A standard Gaussian process (GP) is a
stochastic process defined as a collection of random variables, any finite subset
of which must have a joint Gaussian distribution [12]. In effect, the GP is
placed as a prior over any finite set of functional values f = [f1, f2, ..., fn]>,
where fi = f(xi), resulting in a finite multivariate Gaussian distribution over
the set as f |X ∼ N (0,KXX), where each element of the covariance matrix KXX

is given by a covariance function k(·, ·) such that [KXX]i,j = k(xi,xj). The GP
prior can be used in non-parametric Bayesian regression frameworks where the
likelihood function can be parameterized by a smooth and continuous function
f(·).
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However, our regression setup is special due to the bounded nature of the rat-
ings. We therefore use a warped Gaussian process in which the original ratings in
Y are transformed into a form where the data is modeled by a traditional Gaus-
sian noise model [12, Chapter 2]. Several warping functions would apply, but
a natural choice is the inverse cumulative Gaussian (probit) Φ−1(·)—with zero
mean and unity variance—such that observations are warped as zi = Φ−1(yi).

The final model is defined by,

σs|θs ∼ U(0,∞)

σ`|θ` ∼ U(0,∞)

σ|θ` ∼ U(0,∞)

fi|σs, σ` ∼ GP
(
m (xi) , k (xi, ·)σs,σ`

)

zi|fi ∼ N (fi, σ) (1)

zi = Φ−1 (yi) , (2)

where σ` is the length scale of the covariance function, σs is the standard de-
viation of the latent function, and σ is the noise standard deviation (in latent
space). U(a, b) denotes a uniform hyper prior on the open interval from a to
b, i.e. an improper and non-informative prior. Alternatively, so-called weakly-
informative hyper priors would apply—especially over the length scale σ`—
such as the half-student-t hyper prior [5, 16], which could be applied to provide
a more robust inference and prediction scheme avoiding the GP model to fit
hyperplanes with only few observations. We note that the observation noise, σ,
can be included in the covariance function.

Given this model, the main question remains regarding the covariance (or
kernel) function, which effectively defines the smoothness of the function. We
consider two covariance functions based on the general form of the squared
exponential kernel [12]

k (xi,xj) = σs exp

(
− 1

σ`
(xi − xj)

>
Λ−1 (xi − xj)

)
. (3)

In the first case, Λ is the identity matrix leading to the well-known (isotropic)

squared exponential covariance function kiso (xi,xj) = σs exp
(
− 1
σ`
‖xi − xj‖2

)
.

In the second case, Λ is a general positive semi-definite matrix defining a cor-
relation between parameters (input space) as explicit prior information. Here
will denote this variant as the Mahalanobis covariance function1, kmah (xi,xj)
and set

Λmah =




1 0.5 0.2 0 0
0.5 1 0.5 0.2 0
0.2 0.5 1 0.5 0.2
0 0.2 0.5 1 0.5
0 0 0.2 0.5 1



. (4)

The effect of the two options on the EQ example will be evaluated with reference
to the standard case as iso and the Mahalanobis case as mah.

1Sometimes also referred to as a anisotropic (squared exponential) covariance functions
[12].
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We turn to a standard GP inference scheme [12] in which the covariance and
likelihood parameters, σs, σ`, σ, are approximated by point estimates by maxi-
mizing the marginal likelihood (or evidence) using a BFGS method and where
the posterior p(f |Y,X) is analytical tractable [15]. For the BFGS methods, the
parameters are always initialized as σs = 1, σ` = 1, σ = 1. The predictive mean
and (co)variance of the latent function, E(f∗) and V(f∗), are given in standard
form [12] as

E {f∗} = K>XX∗
[
KXX + σ2

i I
]−1

Φ−1 (Y) (5)

V {f∗} = KX∗X∗ −K>XX∗
[
KXX + σ2

i I
]−1

KXX∗ (6)

where KAB is the kernel matrix containing either evaluations between training
inputs, A = B = X, test inputs, A = B = X∗, or between training and test
inputs, A = X,B = X∗.

The predictive distribution and in particular the predictive uncertainty is a
clear advantage of the probabilistic GP framework, since the predictive mean
and predictive (co)variance can be used to determine the information gain in
including a new candidate point into the model as considered in the next section.

2.2 Sequential Experimental Design

Classical experimental designs such as Latin Squares or random experimentation
[9] become increasingly infeasible in high dimensions. As an alternative, we
propose to use sequential design approaches which, by greedy selection of the
most informative next sample, potentially achieve much faster convergence than
fixed designs [7].

The main purpose is to define a selection criterion which finds the optimal
of the (unknown) objective function. The applied criterion is a slightly modified
version of the so-called Expected Improvement (EI) [7], a known criterion in the
design of computer experiment (DACE) community. The expected improvement
is for each candidate point, xj , defined as,

EI(xj) = σEI · N
(
µEI
σEI

)
+ µEI · Φ

(
µEI
σEI

)
, (7)

where N (·) is the standard Normal distribution and Φ(·) is the standard cu-
mulative Gaussian as before. Given the predictive distribution the EI is given
by,

µEI = µj − µmax

σ2
EI = σ2

j + σ2
max − 2σj,max

where µj and σj is the predictive mean and variance of the test point and µmax

and σmax is the predictive mean and variance of the current maximum of the
objective function (using the predictive mean as the predictor), i.e., the current
best setting, all of which originate from Eq. 5-6. The covariance between the
two function values, σj,max, requires correlated predictions which we refrain
from due to computation burden, thus σj,max = 0,∀xj . Hence, the selection of
a new point to evaluate is given by

xnew = arg max
xj

EI (xj)

6
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which is then included in the current set of training points and evaluated by the
user through the user interface. We refer to this as the active configuration,
where the very first setting for the user to evaluate is chosen randomly. A
random configuration rnd is included in which samples are selected randomly
to provide a baseline method.

The interactive framework leaves four strategies to be investigated experi-
mentally: rnd-iso, rnd-mah, active-iso and active-mah.

2.3 Interface

When applying absolute ratings, it is important to define anchor and/or ref-
erence points [2]. This allows users to compare stimuli with a fixed reference,
such that each rating is calibrated both with respect to previous ratings, but
also with respect to yet unobserved stimuli, which might redefine the end points
of the rating scale. To address these two issues a graphical user interface sim-
ilar to [10] is designed. Users can listen to previous settings (references) and
are allowed to change previous ratings based on the new one. Obviously, this
means that ratings are neither directly comparable across users nor between
iterations. However, it is not of particular interest to use ratings across users to
formulate one single optimal setting, but instead we are interested in personal-
ized settings—one for each user.

3 Experiment

To evaluate the different model configurations and experimental designs in a
real-world scenario, an experiment was conducted, in which the five gains of the
EQ are to be optimized by the four different versions of the proposed framework.
The procedure and results are described in the following section.

3.1 Procedure

The experiment consisted of three parts: (1), (2) and (3) as visualized in Fig. 2.
During part (1), the subjects rate ten randomly chosen balls to learn how to
use the interface and to get an impression of the stimuli (EQ processed music).
Part (2) consisted of three sessions for which the order of sessions was balanced
across test subjects. In each of the three sessions a particular model (iso or mah)
and sequential design (rnd or active) are used to find a personalized setting of
the EQ for the test subject. Finally in part (3), the preferred settings, found
by each of the four combinations of models and sequential designs after 10, 15,
20, 25 and 30 presented settings, are determined by which model predicted the
setting that is rated highest (in the tournament - see Fig. 2). Each tournament
(as defined in Fig. 2) was repeated twice resulting in ten tournaments for which
the sequence was randomized.

The sound was played back to the test subjects through Sennheiser HD650
headphones and a FirestoneAudio FUBAR DACIII headphone amplifier at con-
stant level. The output level was furthermore loudness normalized to the same
level using a A-weighting filter, with the purpose to make the rating process
easier for the test subjects, such that the test subject primarily focus on the

7
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tonal qualities—not the loudness. An interval of 31.9 seconds in the beginning
of the track ”Sleeping with the Light on” by Teitur was used as the music piece.

3.2 Model Analysis

The interactive loop outlined in Sec. 2 has two critical blocks which influence the
convergence of the optimization procedure: 1) the GP-model predictions of the
subject’s objective function at all inputs given only the rated inputs, and 2) the
sequential design approach. In this section we only seek to determine which GP
model that best suits our purpose without the influence of the sequential design
approach. We do this by evaluating the two GP models—iso and mah—in
terms of their predictive performance on random data sets for 21 test subjects.
In machine learning and statistics, cross-validation is typically used to get an
unbiased measure of the predictive performance. Since the random data sets for
each test subject contain only 30 ratings, we use leave-one-out cross validation
(LOO-CV) [12] to get an effectively unbiased measure of the true predictive
performance.

Performance is typically defined as an error measure through a cost func-
tion, such as the sum-of-squared error function. However, such error functions
only include the absolute deterministic errors made by the model on noisy data
without additionally considering if the model actually fits the noise correctly.

Figure 2: Visualization of the experiment with its 3 sessions: (1) Training, (2)
Sessions and (3) Tournament.

8
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Figure 3: Predictive log-likelihood ratio (Bayes factor) over all leave-one-out
cross-validation splits for all twenty-one test subjects. The p0-value gives the
probability of the null-hypothesis that the median is equal to zero (the to mod-
els are equally well) with the alternative hypothesis that the median is larger
than zero (the Mahalanobis model is better than the isotropic) using an non-
parametric sign test.

For the sequential design approach to work efficiently, the model should both fit
the data and account for the noise in the data as well as possible. To capture
this in the performance measure, typically, the predictive likelihood p(y∗|D,M)
of the unseen data points y∗ given the model M and the observed data D is
used.

A proper Bayesian and statistical way of comparing two models [17, 6] is
to compare the (predictive) likelihood ratio p(y∗|D,Mmah)/p(y∗|D,Miso) be-
tween the two different models—mah and iso. This is also referred to as the
Bayes factor [6]. A (log) Bayes factor larger than zero favors the model denoted
in the nominator, whereas a (log) Bayes factor less than zero favors the model
in the denominator.

For each of the 21 random data sets—one for each test subject— LOO-CV is
used and the (log) Bayes factor is calculated for each LOO-CV split. This gives
a total of 21×30 Bayes factor estimates shown in a histogram in Fig. 3. We see
that on average, the mah model performs the best probabilistic predictions of
test subjects’s individual ratings and thus appears to be the most suitable model
due to the assumed correlation between adjacent parameters. A non-parametric
sign test shows that this is significant (sample size of 630).

3.3 Sequential Design Analysis

The results are summarized in Fig. 4(a). The illustrated p0-values gives the
significance level for which the null-hypothesis, that the total number of active
wins is equal to the total number of random wins at each tournament point
(#examples), can be accepted.

9
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Averaged across test subjects and repetitions, the sequential design is signifi-
cantly better than random design after any given number of examples, as shown
by the p0–values. This is without distinguishing between the two applied covari-
ance functions. It demonstrates the potential of the Bayesian model and active
learning methods in audio applications. It is furthermore noted that a standard
fixed design will approximate the random configuration in this high-dimensional
space.

The second aspect is if the more informative Mahalanobis (mah) prior results
in a more accurate model with only a few ratings available. This is generally
not the case, although the specific Mahalanobis model possesses better gen-
eralization capabilities compared to the isotropic model as shown in Sec. 3.2.

4 Discussion and Future Work

The results presented in this paper has focused first on verifying that the pro-
posed Mahanolobis model is suitable in this context, and secondly, demonstrat-
ing that the sequential design approach actually performs as expected (and bet-
ter than random). There are however many possibilities for further evaluation
and development.

In regards to the specific prior, we believe despite the lack of evidence in
the present paper, that the Mahalanobis covariance function will be found suit-
able in several audio applications—including the EQ example used here. We
speculate that at least two additions would improve the performance of the
Mahalanobis model in the suggested framework. Firstly, the modeling capa-
bilities could be improved by a parametrization of the correlation structure in
the Mahalanobis kernel by a small set of parameters, which could then be in-
ferred from data. The latter is easily accomplished in the GP framework by
evidence maximization. Secondly, the sequential design criterion (Sec. 2.2) does
not in its current form fully exploit the correlation between predictive function
values for different settings. To include this correlation the covariance matrix
between all unique settings must be calculated. Calculating these is currently
computational infeasible. To overcome this and exploit the modeled correlation
in the sequential design criterion, a greedy-gradient approach is currently being
developed and tested with regards to find a (possible local) optimum of the
(correlated) EI.

The Gaussian process modeling approach will in general benefit from the
addition of weakly informative hyper-priors over especially the length scale pa-
rameter, σ`. This will result in a more robust inference scheme in which unreal-
istic hyper-plane predictions of the user’s objective function would be avoided,
thus aiding the sequential design. This is currently being introduced into the
modeling framework.

The current evaluation is based on an absolute paradigm with adjustable
anchors in terms of previous ratings. For the user, it can however be quite de-
manding to keep track of all ratings, when there are several items (balls) present,
which leads to inconsistent ratings. The GP based personalization framework
is easily extendable with other paradigms such as pairwise comparisons or more
general ranking based approaches. It is speculated that a more robust paradigm
(with respect to user feedback) may further aid the optimization process.
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Figure 4: (a): The percentage of times the predicted preferred setting by each
of the four models wins over the other models across test subjects at each of
the five tournament points. The p0-values is for accepting the null-hypothesis
that the two active sequential design approaches is equal to the two random
approaches using a binomial test. (b): Actual ratings of different EQ settings
from the three Sessions for test subject 2. The EQ curves are the imposed gain
and the color and thickness of the EQ curves both indicate the rating, where
think/dark black is a good ratings (y → 1) and thin/light gray is a bad ratings
(y → 0).

Finally, it is the ambition to evaluate the proposed framework on a larger
population, which could be accomplished by embedding the current personal-
ization framework in a web application allowing evaluation on a larger scale.
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5 Conclusion

We have proposed a framework for obtaining personalized systems—in partic-
ular audio systems—which utilizes a Bayesian probabilistic modeling approach
in combination with sequential experimental design. This improves the high-
dimensional preference optimization procedure in comparison to random (equiv-
alent to manual) experimentation. The solutions found by the sequential ap-
proach is significantly preferred by the test subjects over the solutions found
by random experimentation. The results do not support any advantage of us-
ing the more informative Gaussian process prior with the Mahalanobis kernel
compared to the less informative Gaussian process prior with the isotropic ker-
nel. Supported by the demonstrated modeling capabilities of the Mahalanobis
kernel, it is nevertheless believed that future additions to the framework would
be able to exploit these possibilities and hence improve the performance of the
framework.
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Abstract

Modern digital hearing aids require and offer a great level of personalization. To-
day, this personalization is not performed based directly on what the user actually
perceives, but on a hearing-care professional’s interpretation of what the user ex-
plains about what is perceived. In this paper, an interactive personalization system
based on Gaussian process regression and active learning is proposed, which per-
sonalize the hearing aids based directly on what the user perceives. Preliminary
results demonstrate a significant difference between a truly personalized setting
obtained with the proposed system and a setting obtained by the current practice.

1 Introduction

Hearing aids (HAs) [1] are fitted by predetermined rules (prescriptions [1, Chapter 10]) given
frequency-dependent hearing thresholds—called an audiogram—of the hearing-impaired user.
These rules are based on years of practical experience and research of the human auditory sys-
tem, however nobody knows exactly how the fitted HAs sound like, except of course, the user. From
empirical studies, it is well-known [1, Chapter 12], that users with the same audiogram may benefit
from—and prefer—very different HA settings. Therefore, a hearing-care professional with years of
experience often needs to manually fine-tune the HAs beyond the predetermined prescription. This
fine tuning is typically based on oral feedback from the user [1, Chapter 12]. In effect, this feed-
back is the user’s oral translation of the perception using a description meaningful to the subject.
This description, however, might not necessarily give meaning to the hearing-care professional. It
is believed that HA users would benefit greatly if the HAs were adjusted and personalized based
directly on how the devices sounds—and not on a poorly aligned translation thereof. In this paper, a
machine-learning based personalization system is proposed, which adjusts hearing aid settings based
on user feedback, which mimics what the individual actually hears. From the user’s perspective, the
feedback is returned as a degree-of-preference rating between two different hearing aid settings. This
is an intuitive way of expressing what is perceived while inducing a low cognitive load compared
to conveying an oral response to a single setting. The feedback is used to learn a Gaussian process
regression model of the user’s latent objective function—the optimum of which corresponds to the
truly personalized setting. To quickly find this optimum, the GP model is repeatedly updated based
on the feedback from the user and subsequently used to select the next comparison to present to the
user using active learning. Fast convergence is an absolute requirement, because even quarters of an
hour of careful listening is a very demanding task—especially for most hearing aid users.

2 Personalization System

The personalization system is an interactive loop visualized in Fig. 1. The loop essentially contains
three parts: I) A modeling part where the user’s objective function is modeled by a Gaussian process

∗DTU Compute, Matematiktorvet 303B, 2800 Kgs. Lyngby, Denmark jenb@dtu.dk
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Figure 1: (1): a new optimal setting
is determined based on the current
(probabilistic) estimate of the sub-
ject’s objective function. (2): the op-
timal setting is compared to the set-
ting which maximizes the current es-
timate of the subject’s objective func-
tion, and the subject assesses the de-
gree of preference between the two
settings. (3): the estimate of the sub-
ject’s objective function is updated
based on the recent assessment.

based on the feedback obtained, II) an active learning part setting op the next comparison based on
the current state of the model, and III) an user interface part.

2.1 Part I: Modeling the User’s Objective from Feedback

The modeling of the subject’s objective function is performed in a Bayesian non-parametric setup
based on Gaussian Processes (GPs) [2]. In the following, GP regression from degree of preference
observations will be explained. The GP framework is based on previous work found in [3].

2.1.1 Gaussian Process Prior

A Gaussian process (GP) defines a prior, f(x) ∼ GP (0, k(x, ·)θC ), over functions, f : RD →
R,x 7→ f(x), where k(·, ·)θC is a covariance function or kernel with parameters θC . In this paper,
a squared exponential (SE) kernel with individual length scales λd for each input dimension (ARD)
will be used, hence θC = {σf , λ1, ..., λD}. Given a finite set of function values (random variables),
f = [f(x1), ..., f(xn)]> for X = {xi ∈ RD|i = 1, ..., n}, the GP defines a joint distribution over
the function values as p(f |X ,θC) = N (0,K) , where [K]i,j = k(xi,xj)θC . By specifying the
likelihood p(Y|f ,θL) of some set of observations Y given the finite set of function values f the
posterior distribution over the function values f is given by Bayes formula

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θC)

p(Y|X ,θ)
=

p(Y|f ,θL)p(f |X ,θC)∫
p(Y|f ,θL)p(f |X ,θC)df

, (1)

where the hyper-parameters θ = {θL,θC} contain both likelihood and covariance parameters.

2.1.2 Beta likelihood

Following previous work [3], GP regression from pairwise continuous observations (degree of pref-
erence) is performed with a likelihood function based on a re-parameterized beta distribution. Con-
sider a set of pairwise observations Y = {yk ∈ (0, 1)|k = 1, ...,m} of the degree of preference
between two distinct inputs uk, vk ∈ {1, ..., n}, implying that xuk

,xvk ∈ X . With this formula-
tion, an dominant preference for the first option uk is reflected by yk → 0, whereas an dominant
preference for the second option vk is reflected by yk → 1 reflects. No preference is indicated by
yk = 0.5. A suitable likelihood function p(yk|fk) can now be constructed given the function val-
ues for the two input instances fk = [f(xuk

), f(xvk)]>, by re-parameterizing the beta distribution,
Beta ( · ;α, β), as p(yk|fk,θL) = Beta (yk; νζ(fk, σ), ν(1− ζ(fk, σ))) ,
where θL = {ν, σ} is the set of likelihood parameters, ν is a dispersion parameter around the mean
ζ(fk, σ), which is defined by

ζ(fk, σ) = Φ

(
f(xvk)− f(xuk

)√
2σ

)
, (2)

where Φ(·) is the standard normal cumulative density function—with zero mean and unit variance—
and σ is a slope parameter. By assuming that observations are independent given the latent function
values f , the likelihood can be written as p(Y|f ,θL) =

∏m
k=1 p(yk|fk,θL), which is plugged into

Eq. 1 together with the GP prior from Eq. 2.1.1 to complete the Bayesian model.
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2.1.3 Inference and Prediction

The Gaussian process model outlined above is not analytical tractable due to the Beta-like likelihood
function from Eq. 2.1.2. Instead, approximate inference based on the Laplace approximation [2,
Section 3.4] is performed as in [3], giving

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f̂ ,
(
W + K−1

)−1)
(3)

where f̂ is the maximum of the posterior (mode) and [W]i,j = −∑m
k=1

∂2 log p(yk|fkθL)
∂f(xi)∂f(xj)

. Note, that
unlike traditional classification and regression problems, W does not become diagonal due to the
pairwise structure. For further details, see [4].

For (hyper) parameter optimization, traditional ML-II optimization [2, Chapter 5.2] results in large
length scales with few observations (< 20) available. This is an undesirable property in combination
with active learning. Therefore, a half-student’s-t prior is placed on critical hyper-parameters, result-
ing in the evidence q(Y|X ,θ) of the Laplace approximation being augmented with a extra term (see
[5] for similar use). The resulting MAP-II scheme for hyper parameter optimization is therefore:

θMAP-II = arg max
θ
{log q(Y|X ,θ) + log p(θ)} , (4)

where σf ∼ δ(σf = 4), λd ∼ half-St(·|6, 100) and σ, (ν − 2) ∼ half-St(·|6, 10) with

half-St(z; ξ, s) ∝
(

1 +
1

ξ

(z
s

)2)−(ξ+1)/2

. (5)

The predictive distribution p(f∗|Y,X ,X∗,θ) of the function values f∗ = [f(x∗1), ..., f(x∗o)]
> at new

input locations X∗ = {x∗l ∈ RD|l = 1, ..., o} is given by
p(f∗|Y,X ,X∗,θ) = N (µ∗,Σ∗) , (6)

µ∗ = k>∗
(
W + K−1

)
f̂ (7)

Σ∗ = K∗ − k>∗ (I + WK)
−1

Wk∗. (8)
Predicting preference relations y∗ are not of interest in the present paper, but are considered in [4].

2.2 Part II: Efficient Sequential Design for Faster personalization

In most machine learning algorithms sequential design (or active learning) aims at maximizing the
generalization performance of a model in terms of a specific measure of performance. In this
work, the generalization performance is not of particular importance. Instead, the aim is to find
the maximum—ideally the global one—of the unknown objective function. For this, a bivariate
version of the expected improvement [6] (EI) is used given by

EI = σIφ

(
µI
σI

)
+ µIΦ

(
µI
σI

)
(9)

with µI = [µ∗]l− [µ∗]max, and σ2
I = [Σ∗]l,l + [Σ∗]max,max− 2 · [Σ∗]l,max. The EI is optimized with

a gradient descent method with 5 random initializations. By using only 5 random initializations, a
little more exploration is build into the sequential designs for robustness.

2.3 Part III: Interface

The system relies on the degree-of-preference paradigm discussed earlier, and the user interface (PC
screen) presents two options to the user, A and B, as illustrated in Fig. 1. The user can now listen
to both options, and finally select to which degree A or B is preferences by dragging the sliders to
either side.

3 Preliminary Results

The feasibility of the system was evaluated in an experiment where the personalization system was
used to find the preferred settings of HAs with several HA users. The preliminary results 1 in Fig. 2

1A full analysis of the results is currently in preparation
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show a long-term spectra of the sound pressure level (SPL) at the eardrum of a HA user wearing
HAs while listening to a piece of music. Each spectrum corresponds to a particular four parameter
setting of the HAs. The spectra labeled test 1 and test 2 correspond to two HA settings obtained
for the user with the personalized system. The spectrum labeled ”prescription” corresponds to the
setting resulting from current practice using the user’s audiogram and the prescription. In a separate
test, it was validated that the setting of ”Test 2” is significantly (p0 < 0.05) preferred over the setting
resulting from the prescription. The system takes about 10 minutes to discover the preferred setting.

125 250 500 1k 2k 4k 8k
10
20
30
40
50
60
70
80
90

Frequency [Hz]

d
B
S
P
L

test 1
test 2
prescript ion
absolute thresholds

(a) Left Ear

125 250 500 1k 2k 4k 8k
10
20
30
40
50
60
70
80
90

Frequency [Hz]

d
B
S
P
L

test 1
test 2
prescript ion
absolute thresholds

(b) Right Ear
Figure 2: KEMAR measurements of long-term power spectra of the sound pressure level at the
eardrum of a HA user wearing HAs while listening to a piece of music. The user’s thresholds at four
distinct frequencies are marked with black dotes.

4 Discussion & Conclusion

In this paper, a machine learning based personalization system has been proposed directly addressing
a fundamental issue of hearing aid personalization, namely, that the fine-tuning process should be
based directly an what the hearing impaired perceives. The proposed personalization system appears
to be both fast and robust in finding personalized HA settings, that are significantly preferred over
standard prescription based first-fit settings. Hence, the system could possibly be a useful fine-tuning
supplement in clinics. The system could easily be extended to support other types of user feedback
with the Gaussian process framework, such as rankings [7] or absolute scorings [8], instead of
pairwise comparisons, although in general, the latter is probably preferable due to its low cognitive
load. The proposed Gaussian process based framework is applicable for other than personalization.
By changing the active learning criterion to for instance BALD [9], the framework could be used to
generalize—in constrast to optimize—the latent objective function over all settings.

References
[1] H. Dillon, Hearing Aids, Boomerang Press, 2nd edition, 2012.
[2] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine Learning, MIT Press, 2006.
[3] B. S. Jensen, J. B. Nielsen, and J. Larsen, “Efficient Preference Learning with Pairwise Continuous Obser-

vations and Gaussian Processes,” IEEE Workshop MLSP, Beijing, September 2011.
[4] B. S. Jensen and J. B. Nielsen, “Pairwise Judgements and Absolute Ratings with Gaussian Process Priors,”

Tech. Rep., November 2011.
[5] J. Vanhatalo and A. Vehtari, “Sparse log gaussian processes via mcmc for spatial epidemiology,” in JMLR

Workshop and Conference Proceedings, 2007, vol. 1, pp. 73–89.
[6] D. R. Jones, “A Taxonomy of Global Optimization Methods Based on Response Surfaces,” Journal of

Global Optimization, vol. 21, no. 4, pp. 345–383, 2001.
[7] Wei Chu and Zoubin Ghahramani, “Extensions of gaussian processes for ranking: semi-supervised and

active learning,” in NIPS workshop on Learning to Rank. 2005, pp. 29–34, Citeseer.
[8] B. S. Jensen, J. B. Nielsen, and J. Larsen, “Bounded gaussian process regression,” in IEEE International

Workshop on Machine Learning for Signal Processing, sep 2013.
[9] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel, “Bayesian Active Learning for Classification and

Preference Learning,” ArXiv e-prints, Dec. 2011.

4

Hearing Aid Personalization 135



136



Appendix H

Perception-based
Personalization of Hearing

Aids using Gaussian Processes
and Active Learning

Jens Brehm Bagger Nielsen, Jakob Nielsen, Jan Larsen. Perception-based
Personalization of Hearing Aids using Gaussian Processes and Active Learn-
ing. Published in IEEE/ACM Transactions on Audio, Speech and Language
Processing, January 2015, volume 23, issue 1, page 162-173, ISSN 2329-9290.
doi:10.1109/TASLP.2014.2377581.

Copyright c© 2015 IEEE.



138 Appendix H



Perception-based Personalization of Hearing Aids

using Gaussian Processes and Active Learning

Jens Brehm Bagger Nielsen1,2, Jakob Nielsen1 and Jan Larsen1,2

1Widex A/S, Nymøllevej 6, DK-3540 Lynge,
{jeb,jnl}@widex.com

2Department of Applied Mathematics and Computer Science,
Technical University of Denmark,

Matematiktorvet Building 303B, DK-2800 Kongens Lyngby,
{jenb,janla}@dtu.dk

preprint

Abstract

Personalization of multi-parameter hearing aids involves an initial fit-
ting followed by a manual knowledge-based trial-and-error fine-tuning from
ambiguous verbal user feedback. The result is an often sub-optimal HA
setting whereby the full potential of modern hearing aids is not utilized.
This article proposes an interactive hearing-aid personalization system
that obtains an optimal individual setting of the hearing aids from direct
perceptual user feedback. Results obtained with ten hearing-impaired
subjects show that ten to twenty pairwise user assessments between dif-
ferent settings—equivalent to 5-10 min.—is sufficient for personalization
of up to four hearing-aid parameters. A setting obtained by the system
was significantly preferred by the subject over the initial fitting, and the
obtained setting could be reproduced with reasonable precision. The sys-
tem may have potential for clinical usage to assist both the hearing-care
professional and the user.

Hearing Aids, Personalization, Individualization, Gaussian Process (GP), Active
Learning, Pairwise Comparisons.

1 Introduction

The complexity of digital signal processing algorithms in hearing-aids (HAs)
has increased in the past two decades due to continuous refinement of existing
HA algorithms and the addition of new ones. Consequently, the number of
associated algorithm parameters has increased and will continue to do so in
the future. Algorithm parameters control how the incoming sound is processed
by the multitude of algorithms and thereby how the sound is presented to the
user. In practice, the multi-parameter adjustment—traditionally referred to as
fitting—is done in fitting software supplied by the HA company: A restricted
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set of meta parameters is available, that controls the entire set of algorithm
parameters. The rules defining the mapping from meta parameters in the fitting
software to algorithm parameters are covered by a so-called fitting rationale
or prescription. Every HA company has their own fitting rationales for their
specific HAs. Typically, generic rationales, such as NAL [1] or DSL [2], are
available in the software as an option as well. The overall objective of any
fitting rationale is to compensate for the user’s reduced ability to hear and
comprehend speech. A hearing deficit is typically quantified by measuring the
reduction in pure-tone hearing threshold level (HTL) in one-octave frequency
bands from 500 Hz to 4 kHz relative to normal hearing (NH) [3, Chapter 10].
A user’s audiogram refers to the pure-tone HTL difference between the user
and NH. The HTL differences are specified in dB of hearing level (dB HL) [3,
Chapter 10]. A 10 dB HL at 500 Hz indicates that the sound pressure level
(SPL) at 500 Hz needs to be 10 dB louder compared to the HTL of a normal
hearing subject for the user to detect the pure tone. Hence, an audiogram could
directly be converted to HA gains in one-octave frequency band. However,
due to loudness recruitment [4, Chapter 4-III] and reduced dynamic range [5,
Chapter 1] among other factors, it is inappropriate to set gains directly matching
the audiogram [5, Chapter 10]. Instead, the audiogram is used as target gains
for the fitting, implying that the actual HA gain will not compensate fully for
the reduced sensitivity. A rationale converts the target gains (or audiogram)
into band-dependent and input-level-dependent (non-linear) HA gains.

HA fitting is carried out by a hearing-care professional (HCP) who mea-
sures the audiogram e.g. at, 500 Hz, 1 kHz, 2 kHz, and 4 kHz, which thus
results in four target gains for the fitting. The target gains—one set of meta-
parameters—are used to set algorithm parameters like compression ratio, gain of
the linear region, and knee-points of the multi-band dynamic processor embed-
ded in modern digital hearing aids. The goal of the fitting is to ensure audibility
and optimal speech intelligibility without compromising the user’s preferences.

Besides the measured target gains, there are typically additional meta pa-
rameters that the HCP can or must adjust related to e.g. noise reduction,
multi-channel beamforming, further tailoring of the dynamic compressor etc. [5,
Chapter 12]. The HCP will consult the hearing-impaired (HI) client about HA
use, rehabilitation, and preferences when adjusting meta-parameters; but they
can only be adjusted manually based on the user’s often ambiguous descriptions
about the perceived sound. The HI client typically finds it difficult to explain his
preferences towards sound, hence, it is very challenging to determine the best
setting. Furthermore, manual fine tuning is time consuming and thus expensive
to perform. In summary, this result in an imminent risk of not exploiting the
full potential of modern digital HAs. This provides a great potential for new
fine-tuning methods or paradigms which aim at optimal settings for individual
users in robust and time-efficient manners.

In this paper, a machine-learning based interactive HA personalization sys-
tem (IHAPS) is proposed. IHAPS optimizes multiple parameters based directly
on the user’s perception of the sound and not based on a derived verbal ambigu-
ous description. By the active user process of listening to and comparing HA
settings, IHAPS enables the user to recognize his preference towards the sound.
Active engagement also leads to greater psychological ownership, and thereby
to better outcome of the entire hearing impairment therapy [6, 7].

In IHAPS, it is assumed that a user’s perception is encoded by an unobserved

2

140 Appendix H



internal response function (IRF). Hence, when a user compares two stimuli, the
magnitudes of the IRF for the two stimuli determine which of the two stimuli
the user prefers or judges to be the best. The IRF cannot be measured directly,
and is assumed to be stochastic due to multiple uncontrollable factors. Fur-
thermore, a user’s judgments are not fully consistent. Consequently, a user’s
IRF can only be estimated given a set of user assessments of particular stimuli.
A particular HA setting, xi, determines the acoustical stimulus. Hence, the
IRF is a function, f(x), of the d HA parameters, x = [x1, ..., xd]

>. Note, that
IHAPS can be used both for optimization of meta parameters and of algorithm
parameters directly. In the remainder of this article, no distinction between
algorithm parameters and meta-parameters will be made. Instead, HA param-
eters will be considered, which can cover both meta- and algorithm parameters.
In IHAPS, the IRF is modeled by a non-parametric Bayesian regression method,
viz. a Gaussian process (GP) [8], which defines a distribution over flexible non-
linear functions, f(x). Users assess settings in a pairwise-comparison paradigm,
whereby users do not need to memorize previous ratings, thus resulting in a re-
duced cognitive load. However, to minimize the number of assessments required
to estimate the user’s IRF, the user does not only choose which of two particu-
lar HA settings that is preferred (forced choice), but also assesses the degree of
which the setting is preferred over the alternative [9]. For a given set of such
degree-of-preference assessments (observations), the distribution of a user’s IRF
is updated [9] and the setting associated with the largest value of the estimated
(mean) IRF is suggested as the optimal setting for the user. Hence, from a mod-
eling perspective, the task is to perform global multi-parameter optimization of
the user’s unobserved IRF with respect to the d HA parameters, x. In IHAPS,
global optimization is performed with minimal number of assessments by use
of a sequential design in which active learning is used to suggest the next two
settings to be compared. In summary, IHAPS sequentially loops the following
three steps: (1) active learning to determine the optimal next settings to be
compared given the current estimate of the user’s IRF; (2) user’s assessment of
the degree-of-preference between the two compared settings; and (3) update of
the user’s estimated IRF given all past assessments—including the most recent
one. When converged or stopped, the suggested optimal setting is given by the
setting that maximizes the estimated IRF.

For demonstrating solely the potential of IHAPS, two similar studies are
conducted in which HA personalization is performed in the case of two and four
parameters, respectively. Preliminary results from the four-parameter study
have briefly been described in [10]. Both studies considered a music scenario,
because music evokes a user’s immediate opinion of the quality of the HA-
produced sound. Other scenarios, such as a speech scenario, could have been
considered as done in [11], but to evaluate IHAPS without several external ef-
fects influencing the analysis, the music scenario was considered most suitable.
For a real-life application of IHAPS, a multitude of scenarios are relevant in-
cluding several different stimuli to mimic each scenario. However, these mixed
conditions are irrelevant for demonstrating the potential of IHAPS.

Several directions have been pursued for personalization of HAs using for
instance a modified simplex procedure [12] or genetic algorithms [13, 14]. How-
ever, these initial attempts require unreasonably many assessments to converge,
and scale badly with the number of tunable parameters. Almost a decade ago,
a probabilistic Bayesian approach was proposed [15], which reads similar to the

3
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Figure 1: A conceptual overview of the interactive system. At step (1) a new
optimal setting is determined based on the current (probabilistic) estimate of
the subject’s IRF. Next, at step (2) the optimal setting is compared to the
setting which maximizes the current estimate of the subject’s IRF, and the
subject assesses the degree of preference between the two settings using a GUI
(see Fig. 5). Finally at step (3), the estimate of the subject’s IRF is updated
based on the recent assessment.

approach proposed in the present paper. However, two fundamental aspects of
the approach in [15] are different: Firstly, it assumes that the user’s IRF has a
known parameterized functional form, which is difficult to qualify in practice.
Secondly, assessments are provided in a pairwise forced-choice paradigm using
classical choice models [16, 17]. Using an artificial example, Jensen et al [9]
show that a forced-choice paradigm requires more assessments than the degree-
of-preference paradigm. The non-parametric GP approach using the forced
choice paradigm [18] has been considered for instance in [19].

2 Personalization System

IHAPS is based on an interactive loop visualized in Fig. 1. The loop essen-
tially contains three parts: (A) Modeling, (B) active learning, and (C) user-
interaction.

2.1 Modeling of the User’s Internal Response Function
with Gaussian Processes

Modeling of the user’s IRF is performed in a Bayesian non-parametric framework
based on GPs, see e.g. [8]. In the following, the different steps of the non-
standard GP framework used in IHAPS to perform regression based on degree-
of-preference assessments are described. The GP framework is based on previous
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Figure 2: Examples of sampled functions from a Gaussian process with different
setting of the smoothness parameter λ, see Eq. 2. For a more thorough treatment
of GP smoothness, see [8, Sec. 2.3 & 2.6, Chap. 5]

work [9].

2.1.1 Gaussian Process Priors

A Gaussian process (GP) is a Bayesian non-parametric regression technique,
which defines a prior over functions, f : Rd → R,x 7→ f(x), captured in the
notation

f(x) ∼ GP (0, k(x,x′)θC ) , (1)

where k(·, ·)θC is the covariance function1 with parameters θC . Generally speak-
ing, the covariance function defines the smoothness of the functions. A com-
monly used covariance function is the isotropic squared exponential (SE) given
by

kSE(x,x′) = σf exp

(
− 1

2λ
(x− x′)>(x− x′)

)
. (2)

A GP is defined as a collection of random variables, any finite number of which
have a joint Gaussian distribution [8, Definition 2.1], such that a finite collection
of function values, f = [f(x1), ..., f(xn)]>, for a corresponding set of inputs,
X = {xi ∈ Rd|i = 1, ..., n}, has a distribution given by

p(f |X ,θC) = N (f |0,K) , (3)

where each entry in the n×n covariance matrix K is given by [K]i,j = k(xi,xj)θC
and N (z|µ,Σ) denotes the multi-variate normal probability density function2.
Functions sampled from a GP prior with different settings of the smoothness
parameter, λ, are depicted in Fig. 2. By specifying the likelihood, p(Y|f ,θL),
of some set of observations, Y, given the finite collection of function values, f ,
the posterior distribution over the function values f is given by Bayes formula:

p(f |Y,X ,θ) =
p(Y|f ,θL)p(f |X ,θC)

p(Y|X ,θ)
(4)

=
p(Y|f ,θL)p(f |X ,θC)∫
p(Y|f ,θL)p(f |X ,θC)df

, (5)

1In the literature, several expressions are used for the covariance function, such as kernel
function or simply kernel.

2In this paper, z ∼ N (µ,Σ) and p(z) = N (z|µ,Σ) are equivalent.
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where the hyper parameters, θ = {θL,θC}, contain both likelihood and covari-
ance parameters.

2.1.2 Likelihood Function

In previous work [9], modeling of continuous bounded responses is performed
with a likelihood function based on a re-parameterized beta distribution specif-
ically applicable in cases where observations are pairwise degree-of-preference
assessments. Thus, the framework is specifically applicable for the present work.

Progressing as in [9], consider a set of pairwise observations,
Y = {yk ∈ (0, 1)|k = 1, ...,m}, of the degree of preference between any two
distinct inputs, uk, vk ∈ {1, ..., n}, implying that xuk

,xvk ∈ X . An increasing
preference for the first option, uk, is reflected by yk → 0, whereas an increasing
preference for the second option, vk, is reflected by yk → 1. No preference is in-
dicated by yk = 0.5. A suitable likelihood function, p(yk|fk), is now constructed
given the function values for the two input instances, fk = [f(xuk

), f(xvk)]>, by
re-parameterizing the beta distribution, Beta ( · |α, β), as

p(yk|fk,θL) = Beta (yk|νζ(fk, σ), ν(1− ζ(fk, σ))) , (6)

where θL = {ν, σ} is the set of likelihood parameters. ν is a dispersion parameter
around the mean, ζ(fk, σ). The mean is defined by

ζ(fk, σ) = Φ

(
f(xvk)− f(xuk

)√
2σ

)
, (7)

where Φ(·) is the standard normal cumulative density function—with zero mean
and unit variance—and σ is a slope parameter. The likelihood function is visu-
alized in Fig. 3.

By assuming that observations are independent given the latent function
values f , the likelihood is written as

p(Y|f ,θL) =
m∏

k=1

p(yk|fk,θL), (8)

which is plugged into Eq. (4) together with the GP prior from Eq. (3) to com-
pletely specify the Bayesian model.

2.1.3 Posterior Inference and Model Training

The Gaussian process model described above is analytically intractable due to
the integral in Eq. (5). Therefore, approximate inference is performed based on
the Laplace approximation following [9].

The idea of the Laplace approximation [8, Section 3.4] is to approximate the
intractable posterior, p(f |Y,X ,θ), from Eq. (4) with a Gaussian q(f |Y,X ,θ) of
the form

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f |f̂ ,A−1

)
, (9)

where f̂ is the posterior maximum (mode) and A is the Hessian of the negative
log posterior at the mode. The mode is found by maximizing the unnormalized
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Figure 3: Visualization of the Beta likelihood p(yk|fk,θL) function for three
different settings of the dispersion parameter ν and two different settings of the
slope parameter σ.

log-posterior given by

ψ (f |Y,X ,θ) = log p (Y|f ,θL)− 1

2
f>K−1f − 1

2
log |K| − n

2
log 2π, (10)

with a Newton method. The Newton step is given by

fnew =
(
K−1 + W

)−1
[Wf +∇ log p(Y|f ,θL)] , (11)

where [W]i,j = −∑m
k=1∇∇i,j log p (yk|fk,θL) defining ∇∇i,j ≡ ∂2

∂f(xi)∂f(xj)
.

Note, that unlike traditional classification and regression problems, W is not
diagonal due to the pairwise structure. For derivatives and further details, see
[20].

When Eq. (11) has converged, the approximation is simply

p(f |Y,X ,θ) ≈ q(f |Y,X ,θ) = N
(
f |f̂ ,

(
W + K−1

)−1)
(12)

Traditionally, training of GPs are performed by optimizing the marginal likeli-
hood, p(Y|X ,θ), from Eq.( 4) with respect to the hyper parameters, θ. This
is referred to as ML-II optimization [8, Chapter 5.2]. In the present paper, a
slightly different scheme is used, in which the optimization is regularized by
hyper priors, p(θ), over the parameters in what is a maximum-a-posterior-like
(MAP-II) scheme following [8, Chapter 5.2]. More precisely, the parameters
θMAP-II in the trained GP are given by

θMAP-II = arg max
θ

log q(θ|Y,X ) (13)

≈ arg max
θ

log p(θ|Y,X ) = arg max
θ

p(θ|Y,X ),

7
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where the intractable log posterior over the parameters, log p(θ|Y,X ), is ap-
proximated by log q(θ|Y,X ), which is—up to a normalization constant—given
by

log q(θ|Y,X ) ∝ log q(Y|X ,θ) + log p(θ). (14)

In Eq. (14), q(Y|X ,θ) is the Laplace approximation to the (intractable) marginal
likelihood, p(Y|X ,θ), from Eq. (4), resulting in

logq(θ|Y,X ) ∝ log p(Y|f̂ ,θL)− 1

2
f̂>K−1f̂ − 1

2
log |I + KW|+ log p(θ). (15)

Hence, training of the GP model consists of the following two steps which are
looped until convergence3:

1: With fixed hyper parameters, θMAP-II, repeat Eq. (11) to find the mode of
the Laplace approximation and use Eq. (12) to approximate the posterior.

2: Given the approximate posterior from Eq. (12), optimize the right hand side
of Eq. (15) with respect to θ using a BFGS gradient method to obtain the
hyper parameters θMAP-II.

The specific choices of kernel, k(·, ·)θC , and hyper priors, p(θ) are specific to
each experiment, and are therefore explained as part of Sec. 3 and Sec. 4.

2.1.4 Predictions

The overall goal of almost any machine learning algorithm once trained, is to
make prediction for future inputs. In a regression setting, predictions consist
of predicting the function values, f∗ = [f(x∗1), ..., f(x∗o)]

>, at new input loca-
tions, X∗ = {x∗l ∈ Rd|l = 1, ..., o}. In a Bayesian framework, the variables are
considered stochastic. Therefore in a Bayesian framework, predictions are for-
mulated in terms of the predictive distribution, p(f∗|Y,X∗), from which different
statistics about the variables can be accessed, such as the mean value, µ∗, and
(co)variance, Σ∗.

Given the GP, the joint prior distribution between the predictive and training
function values is given by

[
f

f∗

]
∼ N

([
0

0

]
,

[
K

K>∗

K∗
K∗∗

])
, (16)

where [K∗∗]l,r = k(x∗l ,x
∗
r) and [K∗]i,l = k(xi,x

∗
l ). Given Eq. (16), the condi-

tional distribution of f∗|f is Gaussian, hence

p(f∗|Y,X ,X∗,θ) =

∫
p(f∗|f ,X ,X∗,θ)q(f |Y,X ,θ)df = N (f∗|µ∗,Σ∗) (17)

which is an integral over the product of two Gaussian distribution, which is
again Gaussian. The solution is found in for instance [18, Eq. (17)-(18)] and is
given as

µ∗ = K>∗K−1f̂ (18)

Σ∗ = K∗∗ −K>∗
(
K + W−1)−1 K∗ = K∗∗ −K>∗ (I + WK)

−1
WK∗ (19)

3The similarity with the Expectation-Maximization algorithm is that step 1 can be recog-
nized as the E-Step, and step 2 as the M-step.

8

146 Appendix H



1 20 40 60 80 100

0.1

0.4

0.7

l

 

 
Univariate ⊥Bivariate Bivariate

1 20 40 60 80 100

1

4

7

l

 

 

[µ∗ ]l [Σ∗]l,l [µ∗ ]1, [Σ∗]1,1

1 20 40 60 80 100
0

0.5

1

l

 

 

[Σ∗]1,l

Figure 4: Illustration of the difference between the univariate and bivariate EI.
The current maximum (indicated by circles) is at l = 1, which is also a possi-
ble query. Top: EI for the standard version (Univariate), a bi-variate version
neglecting covariance (⊥Bivariate) and a full bivariate version incorporating
covariance (Bivariate). Middle: mean and variance for query points, x∗l . Bot-
tom: covariance between query x∗l and maximum x1 used in the (full) bivariate
EI. Note that the full bivariate EI is zero at the current maximum; hence, avoids
querying this point again.

where the last expression is not given in [18], but is numerically more stable,
because it avoids inverting W. Eq. (18) is used as the estimator of the user’s
IRF. In addition, the covariance from Eq. (19) is utilized to formulate an active
learning criterion used to select the next input x̂∗ actively, to constitute the
next (k + 1) comparison.

Prediction of preference relations, y∗, can be done but is not of particular
interest in the present paper, see further [20].

2.2 Sequential Design for Optimization

Sequential design (or active learning) is used to reduce the required number of
training examples by sequentially including new informative training examples
with respect to some criterion4. Traditionally, active learning is used when
labeling of data is expensive and is done sequentially.

As for most machine learning algorithms, typically, sequential designs aim at
maximizing the generalization performance of a model often formulated in terms
of a specific criterion. A Bayesian criterion is the expected reduction in posterior

4Some active learning methods, such as query-by-committee, do not have an explicit cri-
terion, but this is beyond the scope of the present article to discuss.
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Shannon entropy after inclusion of a new training example [21]. In this work,
the generalization performance is not of particular importance. Instead, the aim
is to find a maximum—ideally the global one—of the unknown IRF modeled
by the GP. For this, a novel bivariate version of the expected improvement [22]
is used. Expected improvement (EI) is derived by defining improvement, I, as

the difference in function values between the current maximum f̂ ≡ f(x̂max)
(typically only among the training cases X ) and a query point f∗l ≡ f(x∗l )

I ≡ f∗l − f̂ . (20)

Now, EI is the expectation of the (positive) improvement (which is normally
distributed in the present model)

EI ≡ Ep(I){max(I, 0)} =

∫ ∞

0

Ip(I)dI =

∫ ∞

0

IN
(
I|µI , σ2

I

)
dI

= σIN
(
µI
σI

∣∣∣∣ 0, 1
)

+ µIΦ

(
µI
σI

)
(21)

In standard EI, f̂ is not considered stochastic, hence the distribution p(I) is just

a univariate normal with mean µI = [µ∗]l − f̂ and variance σ2
I = [Σ∗]l,l [22].

In this article, the joint distribution between the query and maximum is taken
into consideration. In this case, p(I) is the difference between two dependent
normal distributed random variables, and is thus given by

p(I) = N
(
I|µI , σ2

I

)
, where

µI = [µ∗]l − [µ∗]max = [µ∗]l − f̂
σ2
I = [Σ∗]l,l + [Σ∗]max,max − 2 · [Σ∗]l,max. (22)

The difference between the univariate and bivariate EI, i.e., whether to including
the covariance between the query and the maximum (last term in Eq. (22)), is
illustrated in a small example in Fig. 4. In this example, the current maximum
point corresponds to l = 1 and has larger mean value than all other query points
(l 6= 1), but smaller variance. This is a typical scenario in GP modeling. In this
scenario, neglecting the covariance has the undesirable effect of querying the
already observed maximum point, causing the active learning to “get stuck”.
The (full covariance) bivariate EI avoids this, but has the same properties when
maximum and query points are independent. For GP models, predictions are
typically very dependent when inputs are close to each other. Hence, the bi-
variate version is not as local as the standard univariate EI. In the following, EI
refers to the full bivariate version.

A user’s optimal setting is essentially unknown. Therefore, it is not possible
to measure how close an optimal setting suggested by IHAPS is to the true
optimal setting. However, the average EI over possible queries, x∗l , is in IHAPS
used as a prediction of convergence (convergence measure). Intuitively, when the
average EI is zero or close to zero, no further improvement is to be expected from
another setting. Thereby, no other setting is under the predictive distribution
expected to be preferred over the current optimal setting, x̂max.

2.3 Graphical User Interface

The graphical user interface (GUI) by which the users interact with IHAPS
during experiments is depicted in Fig. 5. An important property of the GUI
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Figure 5: The pairwise graphical user interface (GUI) used for the experiments.
A slider is used to capture the degree-of-preference for either setting ’1’ or ’2’.
The user can listen to setting ’1’ or ’2’ by pressing the corresponding button.
A gray button indicates that the corresponding setting is selected and thus
active in the HAs. When the user is satisfied with the position of the slider,
the button in the lower-right corner ’Nste’ is pushed to confirm the current
assessment. Next IHAPS computes the next comparison with two new settings
corresponding to ’1’ and ’2’ until a prescribed number of iterations is reached.

is that users shall generally find it intuitive and easy to use. Therefore, the
placements of buttons and sliders are arranged to indicate the pairwise nature
of the assessments. The slider is designed as a mirrored volume control to
indicate that the preference is increasing towards the end points of the slider.

3 Study 1: Two-Dimensional Optimization

In the first study the subjectively best target gains of the HA fitting for the
four basic frequency bands—500 Hz, 1 kHz, 2 kHz, and 4 kHz—were learned
indirectly by modifying the target gains5 with two meta-parameters x1, x2 ∈
{−20; 20}. The meta-parameters were learned while the subject listened to a
32 sec. looping music clip6. The parametrization is visualized in Fig. 6. For a
specific parametrization, x1 and x2, the resulting target gains (in dB) for the
four frequency bands are computed as the sum of the two sets of added gains
in Fig. 6 (a) and (b) and the measured audiogram7. Together x1 and x2 define

5In the WIDEX® fitting software the target gains are set in what is called a SENSOGRAM,
see http://www.widex.pro/en/fitting-systems/compass/in-situ-tools/sensogram/.

6Teitur, ”Sleeping with the Lights on”, Poetry & Aeroplanes, 2003. Start at sec. 6. End
at sec. 38.

7The audiogram is measured binaurally, hence the left and right ears are fitted individually.
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(a) Contribution of x1

(b) Contribution of x2

Figure 6: Two meta-parameters, x1 and x2, are used to modify the target gains
in the four basic frequency bands of the HA fitting, as shown in (a) and (b),
respectively. Note, that a particular subjects resulting target gains (in dB) for
the four frequency bands is the sum of the measured audiogram (binaural) and
the added gains specified by the selection of x1 ∈ {−20; 20} and x2 ∈ {−20; 20}.
The grey shaded areas show the added gain limits when varying the meta-
parameters in their intervals.

how the audiogram is shaped for the particular piece of music, and IHAPS was
used to obtain optimal shapes for the individual subject as quickly as possible.

3.1 Algorithm Details

Although the described framework from Sec. 2 is highly generic, there are still
a few properties left to define. The modeling part was set up by defining the
covariance function and hyper-prior distributions:

k(x,x′) = σf exp

(
−1

2
(x− x′)>P−1(x− x′)

)
, (23)

with P = diag([λ1, ..., λd]
>), (24)

σf ∼ p([θC ]d+1) = δ(σf = 4), (25)

λi ∼ p([θC ]i) = half-St(λi; 6, 10), (26)

σ ∼ p([θL]1) = half-St(σ; 6, 10), (27)

ν − 2 ∼ p([θL]2) = half-St(ν − 2; 6, 10), (28)
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where half-St(z; ξ, s) ∝
(

1 + 1
ξ

(
z
s

)2)−(ξ+1)/2

is the half Student’s

t-distribution [23, 24, 25] with ξ degrees of freedom and scale s. The above
kernel and hyper-prior distribution are common choices, see e.g. [8, 23]. The
hyper parameters were learned by optimizing Eq. (15) using a gradient ascend
method with initial values σf = 4, λi = 5, σ = exp(1), ν = 2 + exp(1). The
parameters of the hyper-prior distributions and the initialization of the hyper
parameters were not tuned to perfection, but were set from a few initial exper-
iments with normal-hearing subjects. It turns out that the framework is not
overly sensitive to this tuning.

For the active learning part, the EI from Eq. (21) was not directly maxi-
mized. Instead, the EI was calculated for all possible x∗l in a grid and collected
in EI such that [EI]l contained the EI for x∗l . The evaluation of the EI for
the entire grid was computationally feasible, since d = 2 is small. A uniform
grid from −20 to 20 with a step size of 1 was used for both x1 and x2, hence
X∗ = {[−20 : 1 : 20]2}. Now, the index l̂ of the setting x̂∗l ∈ X∗ to add to the
next comparison was determined by once drawing a vector ` of length o = 412

of binary variables with exactly one nonzero component from a multinomial
distribution given by

`|EI ∼ Mult

(
1∑o

l′=1[EI]l′
·EI

)
. (29)

The index l̂ was thus given by the index of the nonzero component of `. Com-
pared to maximization of the EI, a little randomness8 was introduced. Recall,
that the bivariate EI compared to the univariate EI avoids querying the cur-
rent maximum over and over again for the entire test. The extra randomness
imposed by the multinomial sampling avoids querying settings too close to the
current maximum too often towards the end of each test.

3.2 Procedure

Every iteration consisted of a comparison between the actively sampled new
setting, x̂∗l , and the current best setting, x̂max, among the training set, X .
To remove a possible bias effect, the two settings were randomly assigned to
option 1 and 2. A single test consisted of 30 iterations/comparisons which
were the desired maximal number of iterations to achieve an optimal setting.
Two tests, Test 1 and Test 2, were conducted to show the reproducibility of
the found optima. Prior to the two tests, the subjects rated 10 comparisons
between randomly chosen settings. This training session was used only to give
the subjects an opportunity to learn how to use the setup and how the sound
in the HAs varied. Following the two tests, a significance test was conducted
to investigate if the optimal setting of IHAPS was significantly preferred by
the subject over a baseline setting. The significance test used twenty repeated
forced-choices between the optimal setting and the baseline setting. In each
repetition they were assigned randomly to the two options presented to the
subject. Significance was tested with an exact two-tailed binomial test. The
optimal setting was taken from Test 2 unless this test did not converge. In that

8Typically, finding the best trade-off between exploitation (utilize the model) and explo-
ration (reduce uncertainty) is the main challenge in active learning.
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case the optimal setting was taken from Test 1. A natural baseline setting is the
setting with target gains equal to the subject’s audiogram (i.e., x1 = 0, x2 = 0),
since this is the standard setting of the HAs without additional personalization.
Settings were automatically uploaded to the HAs using proprietary WIDEX®

software.
WIDEX® PASSION440 HAs equipped with RIC 1-Receivers were used in

all tests with all subjects. CRET-S soft earmolds (without vent) were con-
structed individually to each subject to obtain a closed fitting. The HAs were
fitted initially using the measured audiogram, with an omni-directional beam-
former, noise reduction and speech enhancement turned off and slow-acting
less-aggressive feedback cancellation (FBC) particular suitable for music9.

To avoid placebo effects in the final significance test, subjects were not in-
formed that the aim of the experiments was to optimize the setting of the HAs
based on their feedback. Instead, they were informed that they, in a sequence of
pairwise comparisons between different settings in the HAs, should judge which
settings they preferred and how much. It was emphasized that the judgments
should only reflect their subjective opinion. Likewise, subjects were not primed
to focus or pay attention to specific things in the music.

3.3 Results

Table 1: Optimal parameter settings (x1, x2) for Test 1 and Test and corre-
sponding significance levels.

Subject Age Test 1 Test 2 p0 <

#1 55 NC (−20,−20) 0.001

#2 58 (−20,−16) (−16,−12) 0.001

#3 57 (−16,−16) (−14,−16) 0.001

#4 71 (−20,−12) (−16,−8) 0.001

#5 66 (−18,−14)∗ (−18,−2)∗ 0.001

#6 77 NC NC NC

#7 45 NC NC NC

#8 45 (0,−14) (−4,−12) 0.001

#9 35 (0,−18) (−8,−10)∗ 0.001

#10 53 (−18,−14) (−20,−6) 0.001

NC: Not converged, average EI is clearly non-zero.
∗: Average EI not completely zero.

The best settings found in the two consecutive tests and the results of the
significance tests are shown in Table 1. NCs indicate tests that did not converge
according to the average EI convergence measure. Asterisk symbols denote tests
in which the convergence measure did not completely reach zero (see Fig. 7a).

9This FBC setting is obtained in the WIDEX® software with the ”SuperGain Music”
setting of the FBC
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The optimal settings (from converged tests) transformed to actual target-gains
shapings are shown in 7b.

Fig. 8 and Fig. 9 show the IRF predictions and the EI after 30 and 16
iterations, respectively, for subject 4 from Test 1 and Test 2. Additional details
are found in [26].

3.4 Discussion

During the tests, some interesting observations were made. Firstly, subject
6 clearly was not able to consistently distinguish between different settings,
which is also reflected in the convergence measure (see Fig. 7a). Secondly,
subject 7 expressed that he was in conflict with himself during the experiments.
Sometimes he preferred a more richer but resounding sound, while other times
he preferred a more flat and neutral sound. Unfortunately, he was unable to
make up his mind and switched several times between the two types of listening
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Figure 7: Solid lines correspond to Test 1 and dotted lines correspond to Test 2.
(a) The convergence measure for each subject calculated as

∑o
l′=1[EI]l′ plotted

as a function of iterations and means across subjects that converged (see Tab. 1).
(b) Added target-gains shapings given the optimal parameters for the tests that
converged (see Table. 1).
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Figure 8: Reproducibility: Predictions of the IRF (left figures) and the EI
(right figures) for subject 4 after the 30’th (final) iteration from (a): test 1 and
from: (b) test 2. Crosses indicate observations, dotted lines indicate compar-
isons and circles show the suggested next comparison (although the test stops
at this point).

strategies. Consequently, IHAPS found him to be inconsistent and did not
converge. Thirdly, due to a numerical issue, the active criterion was not working
properly in the last part of the second test with subject 9. Therefore, this test
did not completely convergence to zero. This is somewhat misleading, because
effectively, the last part of the examples presented to subject 9 in the second
test was chosen randomly due to the numerical issue. Indirectly, IHAPS thus
refrained from optimization and performed generalization instead. Without the
numerical issue, the second test with subject 9 probably would have converged
completely based on her behavior from the first test (see Fig. 7a).

Generally, IHAPS was able to obtain a personalized setting of the two meta-
HA parameters for eight of the ten hearing-impaired subjects. Obviously, if a
user does not have a consistent preference or is unable to distinguish any settings
from each other, IHAPS cannot and shall not obtain an optimal setting. Ideally,
IHAPS should be able to identify when it has not obtained an optimal setting for
the user, i.e., that a session does not converge. Since, each user’s true optimum
is unknown, only well-founded speculations can be made. Nevertheless, for
all tests that converged according to the average EI, IHAPS suggested a setting
that the subject preferred significantly over the prescribed setting. Furthermore,
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Figure 9: Convergence: Predictions of the IRF (left figures) and the EI (right
figures) for subject 4 after the 16’th iteration from (a): test 1 and from: (b) test
2. Crosses indicate observations, dotted lines indicate comparisons and circles
show the suggested next comparison.

,

the session of subject 7 did not converge and he did not prefer the suggested
setting over the baseline. The comments given after the test by subject 7 explain
why the system was unable to obtain an optimal setting for subject 7, as the
system cannot deal with subjects that change their opinion during a test. It is
speculated that if subject 7 had indicated that two (or even a couple) of settings
were equally good, the test would have been successful. This might have been
achieved with more thorough instructions about what the test was actually
about. For instance, subject 7 could have been instructed to intentionally stick
with only one objective at the time, instead of switching between them during
a single test. However, this would have biased the results. Nevertheless, it is
desirable that IHAPS by the average EI seems to indicate if a test successfully
obtains a (near) optimal setting, even though the average EI appears to be
somewhat conservative (indicated by asterixes in Fig. 7a).

The reproducibility is actually better than what can be concluded from in-
spection of the suggested optimal settings only, indicated by studying the close
resemblance between the predicted IRF of the two tests (shown for subject 4 in
Fig. 8a and Fig. 8b). Furthermore, by comparing Fig. 9 and Fig. 8 it is observed
that the IRF for subject 4 was already quite well captured halfway through both
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tests. Generally, this was common to all successful tests and illustrates that the
average EI is somewhat conservative for predicting of convergence.

4 Study 2: Four-Dimensional Optimization

The setup for the second study was similar to the first study described in Sec. 3.
However, instead of modifying the four target gains by two meta parameters,
all four target gains were in both hearing aids defined directly ranging from 0 to
80 dB HTL (hearing threshold level) in 5 dB HTL steps, hence x = [x1, ..., x4]>

with xi ∈ {0, 5, 10, ..., 80}. Note, that this setup did not account for any differ-
ences between a subject’s two ears, but all subjects had a similar hearing loss on
both ears. The main purpose of this study was to compare the performance of
IHAPS in a four-dimensional scenario with that of the two-dimensional scenario
in terms of reproducibility and convergence.

4.1 Algorithm details

The model was defined similar to the model used in Sec. 3, except that the
scale of the half Student’s t-distribution for the length-scale parameters, λi,
was changed since the range of each dimension xi was different. The model was
defined as

k(x,x′) = σf exp

(
−1

2
(x− x′)>P−1(x− x′)

)
, (30)

with P = diag([λ1, ..., λd]
>), (31)

σf ∼ p([θC ]d+1) = δ(σf = 4), (32)

λi ∼ p([θC ]i) = half-St(λi; 6, 100), (33)

σ ∼ p([θL]1) = half-St(σ; 6, 10), (34)

ν − 2 ∼ p([θL]2) = half-St(ν − 2; 6, 10). (35)

Again, the hyper parameters were learned by optimizing Eq. (15) using a gradi-
ent ascent method with initial values σf = 4, λi = 30, σ = exp(1), ν = 2+exp(1).

For the active learning part, evaluating the EI for all possible input values
was computational intractable in this four-dimensional scenario. Instead, the
setting, x̂∗, to constitute the next comparison was found directly by maximizing
the EI with respect to the input, x∗l , with a BFGS gradient ascent method [27].
Five uniformly-random starts of the initial value of x∗l were used for the gradient
ascent method. With only five random starts, the global maximum of the EI is
generally not discovered. This creates a similar effect as in Sec. 3, although it
was achieved differently. Likewise, the average of the EI could not be computed
in a reasonable four-dimensional grid. Instead, the average EI along the path
of the gradient ascend method was used as an estimate of the true average.
A single estimate can be very different from the true average. If for instance
the initialization of the gradient ascent method is close to the maximum, the
estimate is much larger than the true average. To remove some of this variance,
a 4-block running average was used to smooth the convergence.
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4.2 Procedure

The procedure was identical to the two-dimensional study described in Sec. 3.2,
except that the baseline setting was directly the measured audiogram.

Due to practical circumstances not all ten subjects from the first study
were able to participate in the second study. Therefore, four new test subjects
participated. Only subject 6 was deliberately not considered for the second
study, since she was clearly unable to distinguish between different settings in
the first study. It was considered not to include subject 7 either, due to the
results in the first study. However, apparently subject 7 did not have difficulties
distinguishing settings, but was only in doubt of what he preferred. Hence as
such, subject 7 constitutes an interesting case.

4.3 Results

The found best settings in the two consecutive tests and the significance-test
results are shown in Fig 10. The convergence is shown in Fig. 11. Generally,
nine of ten subjects obtained a setting that was significantly preferred over the
baseline setting given by the user’s audiogram. Subject 7 neither preferred the
obtained setting nor the baseline setting significantly. The setting resulting
from Test 1 - instead of Test 2 - was used for the significance tests for subject
11 and 13. The reason is that the two obtained settings were found to be very
different from each other. Furthermore, the two subjects reported, on their own
initiative, that the settings presented to them in the second test were in general
noticeably worse than the settings from the first test —even at the end of the
session, where at least one of the settings should have been good.

From Fig. 11, two runs—test 1 with subject 7 and test 2 with subject 11—
are seen not to have converged by the 30th iteration. Overall, the estimation
of average EI is more noisy, which makes it more unclear if particular test
converged.

In Fig. 12, the long-term power spectra of the SPL at the eardrum generated
by the (left) HA are shown for the three different settings (Test 1, Test 2,
Audiogram) for five subjects (see sub-figure caption). The measurements were
made on a KEMAR through a GRAS IEC711 coupler.

4.4 Discussion

Generally, it is satisfying that the only subject (subject 7), that did not have
a significant preference for the setting obtained with IHAPS, actually obtained
two settings which are almost identical to the baseline—both as regards the
parameters (see Fig. 10) and the output (see Fig. 12c). Remember, that this is
the subject that could not decide what type of sound he preferred in the first
study (Sec. 3). Before the experiment, this subject actually remembered that he
was not able to decide between two types of HA sound in the first experiment,
and ensured that he would not behave similarly in the second experiment. This
bias is a plausible explanation of why this subject suddenly was able to obtain
a similar HA sound in the two tests.

The reproducibility of the found settings is not perfect. However, the pro-
cessing in HAs for very different target-gains is not necessarily very different; it
depends entirely on the fitting rationale. This is the case for the two settings
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Figure 10: Optimal target-gains settings found in Test 1 (4) and Test 2 (5)
together with the measured audiogram (♦). Filled markers indicate the settings
used in the significance tests (�). The bottom left plot shows the mean (×)
and standard deviation (+) of the found parameter difference between test 2
and test 1.
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Figure 11: Estimated convergence measure for each subject and the mean con-
vergence over subjects using only the tests that converged (i.e., excluding Test
1 with subject 7 and Test 2 with subject 11).

obtained for subject 2 and 3. To realize this, compare the actual HA output
in Fig. 12a with the difference in the obtained settings for subject 2 in Fig. 10.
The settings at 1 kHz suggests a gain difference of nearly 30 dB between Test 1
and Test 2. The difference, however, results in less than 5 dB (long-term) SPL
difference at 1 kHz. Similarly, at 2 kHz the difference in the obtained setting
is around 35 dB, but results in around 7-9 dB difference in the output at 2
kHz. Other effects also occur between the two settings due to the presence of
dynamic compression in the HAs, but the long-term power spectra show that
the HA outputs for the two target gains obtained for subject 2 were not too
different after all. Nevertheless, at least the HA-output difference of 7-9 dB
around 2 kHz must have been perceptually distinguishable. The reason why
IHAPS apparently failed to obtain a similar parameter setting at 2 kHz in the
two tests for subject 2, may be because a parameter change at 2 kHz given the
other parameters results only in subtle changes of the HA output around the
hearing threshold level (HTL) of subject 2 as seen in Fig. 12a. This demonstrate
that internal dependencies among parameters in the HAs obviously need to be
included in the analysis of the reproducibility. Some subjects apparently had an
IRF with large regions with nearly identical responses as a results of their HTL
in combination with the HA processing for different parameter settings. This
was actually observed in the two dimensional case for several subjects including
the example shown in Fig. 8. Furthermore, one might speculate that the HTL
and the HA processing might have imposed multiple optima of the IRF with
equal responses, such that the corresponding settings would have equally been
preferred. With all the above in mind, it is fair to conclude that the repro-
ducibility is acceptable overall, with subjects 4, 11 and 13 being the exceptions.

An interesting effect is observed from the bottom left figure of Fig. 10. The
mean and standard deviation of the difference in the obtained optimal settings
between test 1 and test 2 show a linear increasing tendency as a function of fre-
quency. Three possible explanations (and likely a combination) are: First, after
the first test the majority of subjects explained that they primarily preferred
a full-bodied and soft sound as opposed to a thin and metallic sound. This
indicates that at least in the beginning - i.e., a large part of test 1 - subjects
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(c) Subject 7
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(d) Subject 12
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Figure 12: Power spectra of the SPL at the eardrum generated by the (left) HA
with the obtained optimal setting from Test 1 (4) and Test 2 (5) together with
the audiogram (♦) for (a) subject 2, (b) subject 4, (c) subject 7, (d) subject 12,
and (e) subject 13. The HTL of each subject at the four basis frequencies—500
Hz, 1 kHz, 2 kHz and 4 kHz—are indicated by black dots (if above 25 dB SPL).
The A-weighted SPL at the location of the KEMAR/subject was measured to
be 69.4 dB SPL. The peaks around 300 Hz are due to a Helmholtz resonance
caused by a little leakage in the earplug of the KEMAR.
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tended to focus on the low-mid frequency regions, but might have been less
aware of the subtle details at higher frequencies. Apparently, subjects were not
aware of these details until later and possibly not until the second test. This
suggests a training effect. Secondly, several subjects appeared to get tired and
thus distracted during the second test, whereby they might not have noticed
the subtle details at higher frequencies. From the results, the latter seems to be
the case for subject 11 and 13. A third and indeed possible explanation is that
the majority of the subjects had high-frequency sloping hearing losses. As a
consequence, the SPL at higher-frequency was below the HTL for the majority
of the settings. As a result, IHAPS might have learned that the high-frequency
parameters had no influence on the IRF. IHAPS should eventually be able to
learn that actually a limited range of these parameters (the settings above the
HTL) imposes a perceptual differences. However, this requires that the active
learning criterion queries settings within this limited range. This is not its main
priority in the beginning with no assessments indicating that these parameters
are important. The effect may explain the output difference around 2 kHz for
subject 2 (see Fig. 12a). Obviously, this emphasizes the importance of restrict-
ing the parameter range of the HA devices to a reasonable range, where settings
are perceptually different.

5 Conclusion and Future Directions

An interactive hearing-aid personalization system (IHAPS) based on a flexible
non-parametric Gaussian process model and on an efficient sequential design is
proposed. For ten HI subjects it was demonstrated that the system obtained
a successful individual setting of a set of HAs controlled by either two or four
parameters within ten to twenty user assessment—equivalent to a 5-10 min.
session length. The subjects significantly preferred their individual setting pro-
vided that they could distinguish between the different settings. An obvious
pitfall occurs if no perceptual difference exists for a large range of settings. Fur-
thermore, listener fatigue and training effects appeared to noticeably influence
the consistency of subjects and should be investigated more systematically.

In time, IHAPS may potentially be applicable in clinics to help both the
hearing-care professional and the client to fine-tune hearing aids more efficiently
and precisely to the client’s preferences. To get there, the reproducibility of an
individual setting should be further studied. Furthermore, the stimulus (music)
was kept constant during the experiments; hence, the obtained settings may not
generalize to other similar stimuli (music pieces). In a more realistic scenario,
the stimulus used in each assessments could be randomly chosen from a library
of music, speech and other sound types. Thereby, additional uncertainty is
introduced, but an individual setting obtained with IHAPS in this manner has
a better chance to generalize to for instance the music context in general.
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166 Mathematical Derivations

I.1 Gradient descent for bEI

Since the bEI is analytical tractable, it is possible to maximize it using gradient
ascent. Firstly, differentiation of the bEI with respect to x∗l is performed in I.1.1.
Secondly, the required terms of the GP predictive distribution are differentiated
trough by x∗l in I.1.2.

I.1.1 Gradient of EI

The gradient wrt. the query x∗l is given by
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Differentiating Eq. 3.4 and Eq. 3.5 yield
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î,l

∂x∗l

)
(I.7)

=

1
2

∂Σ∗
l,l

∂x∗
l
− ∂Σ∗
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I.1.2 Gradient of the GP

Gradients of the relevant terms in the predictive distribution of the GP wrt. the
query, x∗l , are
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where A and B are matrices in the predictive distribution of f∗, that depend
only on the training data—either directly or through the approximate inference
method—and thus, do not depend on the new query point x∗l , but are differ-

ent for different kinds of GPs. For standard GP regression A =
(
K + σ2I

)−1

and B =
(
K + σ2I

)−1
y. Note also, that for stationary kernels

∂k(x∗
l ,x

∗
l )

x∗
l

= 0.

The notation k(X ,x) (or k(x,X )) denotes a column (or row) vector of kernel
evaluations between the set of training examples X and the input x.



168 Mathematical Derivations



Bibliography

Peter Auer. Using Confidence Bounds for Exploitation-Exploration Trade-offs.
Journal of Machine Learning Research, 3:397–422, 2002. URL http://jmlr.

org/papers/volume3/auer02a/auer02a.pdf.

Bart Bakker and Tom Heskes. Task Clustering and Gating for Bayesian Mul-
titask Learning. Journal of Machine Learning Research, 4(1):83–99, Jan-
uary 2004. ISSN 1532-4435. doi: 10.1162/153244304322765658. URL
http://www.crossref.org/jmlr_DOI.html.

Deniz Baskent, Cheryl L Eiler, and Brent Edwards. Using genetic algorithms
with subjective input from human subjects: implications for fitting hearing
aids and cochlear implants. Ear and hearing, 28(3):370–80, June 2007. ISSN
0196-0202. doi: 10.1097/AUD.0b013e318047935e. URL http://www.ncbi.

nlm.nih.gov/pubmed/17485986.

Sø ren Bech and Nick Zacharov. Perceptual Audio Evaluation - The-
ory, Method and Application. John Wiley \& Sons, Ltd, 2007. ISBN
0470869240. URL http://books.google.dk/books/about/Perceptual_

Audio_Evaluation_Theory_Metho.html?id=1WGPJai1gX8C&pgis=1.

Adriana Birlutiu, Perry Groot, and Tom Heskes. Multi-task preference learning
with Gaussian processes. In Proceedings of the 17th European Symposium on
Artificial Neural Networks (ESANN), pages 123–128, 2009. URL http://

www.cs.ru.nl/~perry/publications/2009/ESANN/birlutiu-esann.pdf.

Adriana Birlutiu, Perry Groot, and Tom Heskes. Multi-task preference
learning with an application to hearing aid personalization. Neurocom-
puting, 73(7-9):1177–1185, March 2010. ISSN 09252312. doi: 10.1016/j.
neucom.2009.11.025. URL http://linkinghub.elsevier.com/retrieve/

pii/S0925231210000251.

http://jmlr.org/papers/volume3/auer02a/auer02a.pdf
http://jmlr.org/papers/volume3/auer02a/auer02a.pdf
http://www.crossref.org/jmlr_DOI.html
http://www.ncbi.nlm.nih.gov/pubmed/17485986
http://www.ncbi.nlm.nih.gov/pubmed/17485986
http://books.google.dk/books/about/Perceptual_Audio_Evaluation_Theory_Metho.html?id=1WGPJai1gX8C&pgis=1
http://books.google.dk/books/about/Perceptual_Audio_Evaluation_Theory_Metho.html?id=1WGPJai1gX8C&pgis=1
http://www.cs.ru.nl/~perry/publications/2009/ESANN/birlutiu-esann.pdf
http://www.cs.ru.nl/~perry/publications/2009/ESANN/birlutiu-esann.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0925231210000251
http://linkinghub.elsevier.com/retrieve/pii/S0925231210000251


170 BIBLIOGRAPHY

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
8th editio edition, 2006. ISBN 0-387-31073-8.

R. D. Bock and J. V. Jones. The measurement and prediction of judgment
and choice. Holden-day, 1968. URL http://psycnet.apa.org/psycinfo/

1968-35024-000.

Edwin V. Bonilla, F.V. Agakov, and Christopher K. I. Williams. Ker-
nel Multi-task Learning using Task-specific Features. In Proceedings
of Artificial Intelligence and Statistics (AISTATS), volume 11. Citeseer,
2007. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.100.2081&amp;rep=rep1&amp;type=pdf.

Edwin V. Bonilla, K.M. Chai, and Christopher K. I. Williams. Multi-task
Gaussian process prediction. Advances in Neural Information Processing Sys-
tems, 20:153–160, 2008. URL http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.143.4356&amp;rep=rep1&amp;type=pdf.

Edwin V. Bonilla, Shengbo Guo, and Scott Sanner. Gaussian Process Preference
Elicitation. Advances in Neural Information Processing Systems, 23:262–270,
2010.

ITU-R BS.1534-1. Method for the subjective assessment of intermediate quality
level of coding systems. The ITU Radiocommunication Assembly, pages 1–18,
2003. URL http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.

1534-1-200301-I!!PDF-E.pdf.

Olivier Chapelle and Lihong Li. An Empirical Evaluation of Thomp-
son Sampling. Advances in Neural Information Processing Systems, 24:
2249–2257, 2011. URL http://books.nips.cc/papers/files/nips24/

NIPS2011_1232.pdf.

Wei Chu and Zoubin Ghahramani. Preference learning with Gaussian processes.
Proceedings of the 22nd international conference on Machine learning - ICML
’05, pages 137–144, 2005a. doi: 10.1145/1102351.1102369. URL http://

portal.acm.org/citation.cfm?doid=1102351.1102369.

Wei Chu and Zoubin Ghahramani. Extensions of gaussian processes
for ranking: semi-supervised and active learning. In NIPS work-
shop on Learning to Rank, pages 29–34. Citeseer, 2005b. URL
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.

7197&amp;rep=rep1&amp;type=pdf#page=33.

Elizabeth Convery, Gitte Keidser, Harvey Dillon, and Lisa Hartley. A self-
fitting hearing aid: need and concept. Trends in amplification, 15(4):157–66,
December 2011. ISSN 1940-5588. doi: 10.1177/1084713811427707. URL
http://www.ncbi.nlm.nih.gov/pubmed/22143873.

http://psycnet.apa.org/psycinfo/1968-35024-000
http://psycnet.apa.org/psycinfo/1968-35024-000
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.2081&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.100.2081&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4356&amp;rep=rep1&amp;type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.143.4356&amp;rep=rep1&amp;type=pdf
http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-1-200301-I!!PDF-E.pdf
http://www.itu.int/dms_pubrec/itu-r/rec/bs/R-REC-BS.1534-1-200301-I!!PDF-E.pdf
http://books.nips.cc/papers/files/nips24/NIPS2011_1232.pdf
http://books.nips.cc/papers/files/nips24/NIPS2011_1232.pdf
http://portal.acm.org/citation.cfm?doid=1102351.1102369
http://portal.acm.org/citation.cfm?doid=1102351.1102369
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7197&amp;rep=rep1&amp;type=pdf#page=33
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.85.7197&amp;rep=rep1&amp;type=pdf#page=33
http://www.ncbi.nlm.nih.gov/pubmed/22143873


BIBLIOGRAPHY 171

Harvey Dillon. Hearing Aids. Boomerang Press, Turramurra, Australia,
2nd edition, 2012. ISBN 9780957816817. URL http://www.amazon.com/

Hearing-Aids-Harvey-Dillon/dp/1604068108.

Harvey Dillon, Justin A. Zakis, Hugh J. McDermott, Gitte Keidser,
Wouter Dreschler, and Elizabeth Convery. The trainable hearing
aid: What will it do for clients and clinicians? The Hear-
ing Journal, 59(4):30, 2006. doi: 10.1097/01.HJ.0000286694.20964.
4a. URL http://journals.lww.com/thehearingjournal/Abstract/2006/

04000/The_trainable_hearing_aid__What_will_it_do_for.5.aspx.

Eric A. Durant, Gregory H. Wakefield, Dianna J. VanTasell, Martin E.
Rickert, and D. J. Van Tasell. Efficient Perceptual Tuning of Hear-
ing Aids With Genetic Algorithms. IEEE Transactions on Speech and
Audio Processing, 12(2):144–155, March 2004. ISSN 1063-6676. doi:
10.1109/TSA.2003.822640. URL http://ieeexplore.ieee.org/xpls/

abs_all.jsp?arnumber=1284342http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=1284342.

David Duvenaud, Hannes Nickisch, and Carl Edward Rasmussen. Additive
Gaussian Processes. Advances in Neural Information Processing Systems, 24:
226–234, 2011.

David Duvenaud, James Robert Lloyd, Roger Grosse, Joshua B. Tenenbaum,
and Zoubin Ghahramani. Structure Discovery in Nonparametric Regres-
sion through Compositional Kernel Search. In Proceedings of the 30th In-
ternational Conference on Machine Learning (ICML), 2013. URL http:

//jmlr.org/proceedings/papers/v28/duvenaud13.pdf.

Silvia Ferrari and Francisco Cribari-Neto. Beta Regression for Modelling Rates
and Proportions. Journal of Applied Statistics, 31(7):799–815, August 2004.
ISSN 0266-4763.

Johannes Fürnkranz. Preference Learning: An Introduction. In Eyke Hüller-
meier, editor, Preference Learning, page 1. Springer, Berlin, Heidelberg, 1st
edition, 2010. ISBN 978-3-642-14124-9. doi: 10.1007/978-3-642-14125-6.
URL http://books.google.com/books?hl=en&lr=&id=nc3XcH9XSgYC&

oi=fnd&pg=PR5&dq=Preference+Learning&ots=v1zNmw_zAe&sig=

D8RvzCQVaIx4ODMCZbjRtV2kLQk.

Perry Groot, Adriana Birlutiu, and Tom Heskes. Bayesian Monte Carlo for
the Global Optimization of Expensive Functions. In Frontiers in Artificial
Intelligence and Applications, volume 215, pages 249–154, 2010. URL http:

//www.cs.ru.nl/~adrianab/groot-ecai2010.pdf.

Perry Groot, Tom Heskes, Tjeerd Dijkstra, and James M Kates. Predicting
Preference Judgments of Individual Normal and Hearing-Impaired Listeners

http://www.amazon.com/Hearing-Aids-Harvey-Dillon/dp/1604068108
http://www.amazon.com/Hearing-Aids-Harvey-Dillon/dp/1604068108
http://journals.lww.com/thehearingjournal/Abstract/2006/04000/The_trainable_hearing_aid__What_will_it_do_for.5.aspx
http://journals.lww.com/thehearingjournal/Abstract/2006/04000/The_trainable_hearing_aid__What_will_it_do_for.5.aspx
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284342 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1284342
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284342 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1284342
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1284342 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1284342
http://jmlr.org/proceedings/papers/v28/duvenaud13.pdf
http://jmlr.org/proceedings/papers/v28/duvenaud13.pdf
http://books.google.com/books?hl=en&lr=&id=nc3XcH9XSgYC&oi=fnd&pg=PR5&dq=Preference+Learning&ots=v1zNmw_zAe&sig=D8RvzCQVaIx4ODMCZbjRtV2kLQk
http://books.google.com/books?hl=en&lr=&id=nc3XcH9XSgYC&oi=fnd&pg=PR5&dq=Preference+Learning&ots=v1zNmw_zAe&sig=D8RvzCQVaIx4ODMCZbjRtV2kLQk
http://books.google.com/books?hl=en&lr=&id=nc3XcH9XSgYC&oi=fnd&pg=PR5&dq=Preference+Learning&ots=v1zNmw_zAe&sig=D8RvzCQVaIx4ODMCZbjRtV2kLQk
http://www.cs.ru.nl/~adrianab/groot-ecai2010.pdf
http://www.cs.ru.nl/~adrianab/groot-ecai2010.pdf


172 BIBLIOGRAPHY

With Gaussian Processes. IEEE Transactions on Audio, Speech & Language
Processing, 19(4):811–821, 2011. ISSN 1558-7916. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=5545403.

Tom Heskes and Bert de Vries. Incremental utility elicitation for adap-
tive personalization. In Proceedings of the 17th Belgium-Netherlands Con-
ference on Artificial Intelligence, Brussels, Koninklijke Vlaamse Academie
van Belgi\\”e voor Wetenschappen en Kunsten, pages 127–134. Citeseer,
2005. URL http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.

1.1.104.8332&amp;rep=rep1&amp;type=pdf.

Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máte Lengyel. Bayesian
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