4 research outputs found

    Vehicle Logo Recognition Based on Sparse Representation

    Get PDF
    车标识别技术融合了计算机视觉、模式识别与图像处理等多个研究方向,是当前智能交通领域的研究热点之一。现有的车标识别方法大多需要进行车标的精确定位,而车标普遍存在污损、光照、部分遮挡等情况,目前还没有一种有效的方法能够对这些车标进行准确定位,这在很大程度上影响了车标的识别率,也使得现有车标识别方法在实际应用中受到制约。 针对现有车标识别方法的不足,本文在深入研究稀疏表示理论的基础上,提出了基于稀疏表示的车标识别方法。由于稀疏表示能够对信号进行简洁的表示,而最简洁的表示往往具有天然的判别性能。本文利用稀疏表示这一独特的优越性实现对车标的自动识别。相关实验结果表明,基于稀疏表示的车标识别方法对于车标...Vehicle logo recognition (VLR) which relate to computer vision, pattern recognition and image processing and so on, is one of the focus of Intelligence Traffic System. Most of the existing VLR methods need accurate vehicle logo location, but there is no effective method to accurately locate the logo which is subject to illumination, corrosion and part occlusion. It has a great influence on the rec...学位:工程硕士院系专业:信息科学与技术学院_电子与通信工程学号:2312010115296

    Information-theoretic analysis of Hierarchical Temporal Memory-Spatial Pooler algorithm with a new upper bound for the standard information bottleneck method

    Get PDF
    Hierarchical Temporal Memory (HTM) is an unsupervised algorithm in machine learning. It models several fundamental neocortical computational principles. Spatial Pooler (SP) is one of the main components of the HTM, which continuously encodes streams of binary input from various layers and regions into sparse distributed representations. In this paper, the goal is to evaluate the sparsification in the SP algorithm from the perspective of information theory by the information bottleneck (IB), Cramer-Rao lower bound, and Fisher information matrix. This paper makes two main contributions. First, we introduce a new upper bound for the standard information bottleneck relation, which we refer to as modified-IB in this paper. This measure is used to evaluate the performance of the SP algorithm in different sparsity levels and various amounts of noise. The MNIST, Fashion-MNIST and NYC-Taxi datasets were fed to the SP algorithm separately. The SP algorithm with learning was found to be resistant to noise. Adding up to 40% noise to the input resulted in no discernible change in the output. Using the probabilistic mapping method and Hidden Markov Model, the sparse SP output representation was reconstructed in the input space. In the modified-IB relation, it is numerically calculated that a lower noise level and a higher sparsity level in the SP algorithm lead to a more effective reconstruction and SP with 2% sparsity produces the best results. Our second contribution is to prove mathematically that more sparsity leads to better performance of the SP algorithm. The data distribution was considered the Cauchy distribution, and the Cramer–Rao lower bound was analyzed to estimate SP’s output at different sparsity levels

    Sparse machine learning models in bioinformatics

    Get PDF
    The meaning of parsimony is twofold in machine learning: either the structure or (and) the parameter of a model can be sparse. Sparse models have many strengths. First, sparsity is an important regularization principle to reduce model complexity and therefore avoid overfitting. Second, in many fields, for example bioinformatics, many high-dimensional data may be generated by a very few number of hidden factors, thus it is more reasonable to use a proper sparse model than a dense model. Third, a sparse model is often easy to interpret. In this dissertation, we investigate the sparse machine learning models and their applications in high-dimensional biological data analysis. We focus our research on five types of sparse models as follows. First, sparse representation is a parsimonious principle that a sample can be approximated by a sparse linear combination of basis vectors. We explore existing sparse representation models and propose our own sparse representation methods for high dimensional biological data analysis. We derive different sparse representation models from a Bayesian perspective. Two generic dictionary learning frameworks are proposed. Also, kernel and supervised dictionary learning approaches are devised. Furthermore, we propose fast active-set and decomposition methods for the optimization of sparse coding models. Second, gene-sample-time data are promising in clinical study, but challenging in computation. We propose sparse tensor decomposition methods and kernel methods for the dimensionality reduction and classification of such data. As the extensions of matrix factorization, tensor decomposition techniques can reduce the dimensionality of the gene-sample-time data dramatically, and the kernel methods can run very efficiently on such data. Third, we explore two sparse regularized linear models for multi-class problems in bioinformatics. Our first method is called the nearest-border classification technique for data with many classes. Our second method is a hierarchical model. It can simultaneously select features and classify samples. Our experiment, on breast tumor subtyping, shows that this model outperforms the one-versus-all strategy in some cases. Fourth, we propose to use spectral clustering approaches for clustering microarray time-series data. The approaches are based on two transformations that have been recently introduced, especially for gene expression time-series data, namely, alignment-based and variation-based transformations. Both transformations have been devised in order to take into account temporal relationships in the data, and have been shown to increase the ability of a clustering method in detecting co-expressed genes. We investigate the performances of these transformations methods, when combined with spectral clustering on two microarray time-series datasets, and discuss their strengths and weaknesses. Our experiments on two well known real-life datasets show the superiority of the alignment-based over the variation-based transformation for finding meaningful groups of co-expressed genes. Fifth, we propose the max-min high-order dynamic Bayesian network (MMHO-DBN) learning algorithm, in order to reconstruct time-delayed gene regulatory networks. Due to the small sample size of the training data and the power-low nature of gene regulatory networks, the structure of the network is restricted by sparsity. We also apply the qualitative probabilistic networks (QPNs) to interpret the interactions learned. Our experiments on both synthetic and real gene expression time-series data show that, MMHO-DBN can obtain better precision than some existing methods, and perform very fast. The QPN analysis can accurately predict types of influences and synergies. Additionally, since many high dimensional biological data are subject to missing values, we survey various strategies for learning models from incomplete data. We extend the existing imputation methods, originally for two-way data, to methods for gene-sample-time data. We also propose a pair-wise weighting method for computing kernel matrices from incomplete data. Computational evaluations show that both approaches work very robustly
    corecore