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Hierarchical Temporal Memory (HTM) is an unsupervised algorithm in machine

learning. It models several fundamental neocortical computational principles.

Spatial Pooler (SP) is one of the main components of the HTM, which

continuously encodes streams of binary input from various layers and regions

into sparse distributed representations. In this paper, the goal is to evaluate the

sparsification in the SP algorithm from the perspective of information theory by

the information bottleneck (IB), Cramer-Rao lower bound, and Fisher information

matrix. This paper makes two main contributions. First, we introduce a new upper

bound for the standard information bottleneck relation, which we refer to as

modified-IB in this paper. This measure is used to evaluate the performance of the

SP algorithm in different sparsity levels and various amounts of noise. The MNIST,

Fashion-MNIST and NYC-Taxi datasets were fed to the SP algorithm separately.

The SP algorithm with learning was found to be resistant to noise. Adding up to

40% noise to the input resulted in no discernible change in the output. Using the

probabilistic mapping method and Hidden Markov Model, the sparse SP output

representation was reconstructed in the input space. In the modified-IB relation,

it is numerically calculated that a lower noise level and a higher sparsity level in

the SP algorithm lead to a more effective reconstruction and SP with 2% sparsity

produces the best results. Our second contribution is to prove mathematically

that more sparsity leads to better performance of the SP algorithm. The data

distribution was considered the Cauchy distribution, and the Cramer–Rao lower

bound was analyzed to estimate SP’s output at different sparsity levels.

KEYWORDS

Spatial Pooler (SP), Hierarchical Temporal Memory (HTM), sparsity, standard information
bottleneck (IB), modified-information bottleneck (modified-IB), Fisher information
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1. Introduction

Hierarchical Temporal Memory (HTM) is an unsupervised
learning algorithm and a unique artificial intelligence method
inspired by the neocortex (Hawkins et al., 2016). The neocortex
plays an important role in the human cerebral cortex, accounting
for about half of the brain’s volume. It is responsible for behavioral
and emotional responses and the greatest cognitive functions
(Ghazanfar and Schroeder, 2006; Wang, 2022). The neocortex
has a hierarchical and homogeneous structure in which higher
parts learn general features and lower parts process stimuli (Clark
et al., 2002; O’Reilly and Norman, 2002; Friston and Buzsáki,
2016). The neocortex consists of neurons, synapses, and segments
(Menzel and Giurfa, 2001). Through synapses and segments,
neurons can communicate with one another (Marois and Ivanoff,
2005). Essentially, two types of horizontal and vertical connections
transmit information to the cell through the synapse. Horizontal
connections represent context inputs, and vertical connections
represent feedback and feedforward information (Barack and
Krakauer, 2021). HTM is a theoretical model that resembles
the neocortex in many respects; for example, it can memorize
sequences and then recall them. With the help of a tree-
shaped hierarchy neural network, The HTM algorithm extends
and combines techniques used in bayesian networks, spatial and
temporal clustering algorithms, and sparse distributed memory. It
is a new model of the deep learning process, which is a highly
efficient technique in artificial intelligence algorithms. HTM is an
online learning method that does not require multiple training
epochs. It is a one-shot learning process because almost all the
necessary synaptic connections are formed in the first learning
round. This algorithm is able to predict and recognize sequences
with such robustness without suffering from the usual limitations
of conventional neural networks that hinder their training. HTM
is a predictive framework, so upon the model receiving each
new input, it tries to predict the next events of the world. The
HTM algorithm is not only used to detect the next value in a
sequence but also to detect anomalies in a sequence. There are
four components in HTM: SDR Encoder, Spatial Pooler (SP),
Temporal Memory (TM), and Classifier. SP is one of the main
components of the HTM, which continuously encodes streams of
binary sensory input from various layers and regions within the
neocortex into sparse distributed representations (SDR) (Cui et al.,
2017). So the information is processed sparsely and encoded inside
the HTM neurons as in biological neuronal networks (Finelli et al.,
2008).

In Spatial Pooler, similar spatial patterns are grouped into
highly sparse output representations of cortical mini-columns
(Kaas, 2012; Ahmad and Scheinkman, 2019). In SP, there are two
main tasks: the first task is to produce similar sparse outputs
for similar inputs. The second critical task is to ensure that the
output sparsity is fixed regardless of the number of bits in the
binary input. Like normalization in other neural networks, these
properties act as constraints on the behavior of neurons, which
facilitates the training process (Hawkins et al., 2011). The SP
algorithm is based on sparse coding techniques. According to
the sparse coding theory, sparse activations in the brain’s sensory
cortex reduce brain energy consumption while maintaining most
of the information (Foldiak, 2003; McClelland and Bayne, 2016).

In sparse coding, the cost function is optimized to combine a
low reconstruction error with a high sparsity (Olshausen and
Field, 1996). The receptive fields produced by sparse coding when
applied to natural images are similar to those of brain V1 neurons
(visual area); consequently, the sparse coding framework appears
responsible for explaining early sensory neurons’ functionality (Lee
et al., 2006; Paiton et al., 2020). The sparse representation is noise-
resistant, and it is suitable for face recognition (Wei et al., 2022),
speech recognition (Kwek et al., 2022), and image reconstruction
(Deeba et al., 2020).

The sparse coding aims to form associative memory with
minimal crosstalk, reduce power consumption, and prevent
information loss (Hu and Zeng, 2022). So, in addition to the
usefulness of sparsity in the HTM-SP algorithm, the concept of
sparsity is helpful in various fields, such as image processing
(Peng et al., 2018), medical imaging (Li et al., 2021), machine
learning algorithms (Li, 2013), dictionary learning (Wang et al.,
2019), denoising (Zhou et al., 2022), sampling theory (Nagahara
and Yamamoto, 2022), and signal recovery (Abiantun et al.,
2019). In the sparse representation models, a small number of
coefficients contain a significant amount of energy (Ravishankar
and Bresler, 2012). The SP algorithm has a fixed-sparsity
representation of the input (Ahmad and Hawkins, 2016). A fixed
level of sparsity in presynaptic inputs results in reliable and
robust recognition of presynaptic activation patterns (Olshausen
and Field, 2004). In the case of highly variable sparsity, it is
difficult to detect input patterns with low activation density.
On the other hand, input patterns with high activation density
cause action potentials in downstream neurons. Therefore, false
negative errors will occur in the case of low-density patterns,
and false positive errors will occur in the case of high-density
patterns. In general, it is desirable to have a fixed sparsity
since it ensures that all input patterns can be detected equally.
The fixed sparsity is approximately 2%, it means that only 2%
of columns in the SP algorithm are activated (Hawkins et al.,
2016).

1.1. Our contributions

This paper analyzes the sparsification in the HTM-SP algorithm
from an information theory perspective. So, we applied the IB
relation to investigate the accuracy of SP output reconstruction
at different sparsity levels and various amounts of noise for
the first time. Moreover, we proposed a new MNIST relation,
which was employed to resolve the reconstruction problem.
Then the Fisher information matrix and Cramer-Rao lower
bound are used to prove mathematically that more sparsity
leads to better performance of the HTM-SP algorithm. The data
distribution is considered the Cauchy distribution, although similar
analyses could have been conducted with other distributions.
Here, the modified-IB is introduced as an upper bound for
IB. Furthermore, its applicability is tested on the sparsity-
noise impact of SP algorithm by using both standard and
modified-IB. However, the application of the modified-IB is by
no means limited to the HTM or its SP algorithm. In fact,
the modified-IB can be used in any other study, replacing
the standard IB.
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FIGURE 1

Representation of Markov Chain in the information bottleneck (IB)
framework.

1.2. Paper organization

The structure of this paper is arranged as follows. Section “2
Preliminaries” reviews all the preliminary details to improve the
paper’s readability. In section “3 Our work,” our work is explained.
Numerical experiments and simulations of the proposed modified-
IB method are in section “4 Numerical Results related to our new IB
relation.” Finally, in section “5 Conclusion,” the paper is concluded.

2. Preliminaries

The purpose of this section is to explain some of the scientific
terms used in the rest of the paper, including the information
bottleneck1 relation, Fisher information Matrix2, and Cramer-Rao
lower bounds3.

2.1. Information bottleneck

The Information bottleneck (IB) method is introduced by
Tishby et al. (2000) and is used to find a maximally compressed
representation in the X→ Y → Z Markov chain that transmits
information from input random variable X to output random
variable Z through a compressed representation Y to preserve as
much relevant information as possible, as shown in Figure 1.

The objective of the IB is to find the optimal representation Y,
which involves minimizing the following Lagrangian cost function:

LIB = I(X;Y)− βI(Y;Z) (1)

Where I(_; _) is the mutual information. I(X;Y) represents the
compression or pruning term that discards irrelevant information
by minimizing the mutual information between Y and source X
and I(Y;Z) preserving relevant information to ensure Y predicts
Z by maximizing the mutual information between Y and Z. The
multiplier β ≥ 0 is a hyperparameter that controls the trade-off
between these two terms (Alemi et al., 2016). A small β generally
indicates more compression, whereas a large β indicates that more
relevant information is being maintained.

2.2. Fisher information and Cramer–Rao
lower bound definition

The Fisher information matrix (FIM) measures the
amount of information the data can provide about the

unknown parameter in an estimation problem (Stein et al.,
2014). In order to quantify the Fisher information (FI)
based on log-likelihoods, the following definitions are
presented:

I(θ) = Eθ

{[
l′(x; θ)

]2
}
=

∫ [
l′(x; θ)

]2 f (x; θ)dx (2)

I(θ) = −Eθ

{[
l′′(x; θ)

]}
= −

∫ [
∂2

∂θ2 log f (x; θ)
]

f (x; θ)dx (3)

In these equations, f (x; θ) is the probability distribution
function of a random variable X, where X depends on the parameter
θ ∈ 2 and l(x; θ) denotes the log-likelihood function.

The Fisher information of the probability family is a symmetric
and positive semi-definite matrix valued function, where the ijth
entry is as follows:

Ii,j(θ) = Eθ

[(
∂

∂θi
log pθ(X)

)(
∂

∂θj
log pθ(X)

)]
(4)

The Cramer-Rao inequality, which is the right-hand side
expression in (5), explains the relationship between FIM
and error variance in the following manner. It is almost
a direct result of a famous mathematics inequality known
as the Cauchy-Schwartz inequality (Hoffmann and Kunze,
1971).

var[θ̂] ≥
1

nI(θ)
(5)

In this case, n represents the sample vector’s size, I(θ) represents
the Fisher Information Matrix (FIM), and θ̂ represents the unbiased
estimator of θ .

3. Our work

3.1. A new upper bound for IB relation on
the SP algorithm

The learning aim is to find a function that minimizes the
uncertainty of the output given the input while avoiding irrelevant
information as much as possible. Tishby et al. (2000) introduced
this viewpoint as the Information Bottleneck (IB), a fundamental
concept in information theory.

This paper aims to apply the IB relation, for the first time, to
analyze the effect of sparsity and noise on data reconstruction in the
HTM-Spatial pooler algorithm and propose a modified-IB relation.

The IB method has an extraordinary application in various
fields of machine learning and related domains (Riguzzi and Di
Mauro, 2012; Goldfeld and Polyanskiy, 2020; Zuo et al., 2021;
Musat and Andonie, 2022). It also applies to other areas, such
as neuroscience (Schneidman et al., 2001; Buddha et al., 2013;
Tucker et al., 2022). Tishby and Zaslavsky (2015) used the IB
method to evaluate the deep neural networks’ performance and
determine the reasons for their success. Despite the impressive
successes of deep neural networks, they have been criticized
for the lack of sufficient information from inside the network
and for being unable to understand the internal structure and
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FIGURE 2

Representation of Markov Chain in the modified-information
bottleneck (IB) framework.

optimization process in recent years. The IB method has almost
solved this problem and opened the deep learning black box. The
experimental evidence in Shwartz-Ziv and Tishby (2017) indicated
that deep neural networks implicitly solve the information
bottleneck optimization problem, i.e., compress the input while
preserving the associated information related to the output. The
IB principle has been applied to complex and high-dimensional
data in numerous studies, including improving and analyzing the
learning of deep neural networks (Gu et al., 2020; Raj et al.,
2020; Li and Liu, 2021; Vera et al., 2022), learning disentangled
and invariant representations (Achille and Soatto, 2018), and
enhancing robustness against adversarial attacks (Fischer, 2020).
Scientists are still interested in this topic as it is still an open
issue.

In this paper, the SP algorithm was fed with 60,000
MNIST data as a training set and produced the sparse
representation. A probabilistic mapping method and Hidden
Markov Model (HMM) were used to reconstruct the sparse SP
output representation in the input space (Mnatzaganian et al.,
2017). Although some information has been lost during the
reconstruction process, it is unquestionable that the reconstructed
data is similar to the original data. Using the standard IB
relation (described in equation 6), we can accurately assess
the similarity between input data and the data reconstructed
by the SP algorithm at various sparsity levels and various
amounts of noise. Therefore, we analyze how sparsity and
noise affect reconstruction accuracy using the standard IB.
It is the first time someone has calculated the standard IB
relation for the SP algorithm and quantitatively compared
the reconstructed data with the original data. Furthermore,
we proposed a modified- IB relation (Figure 2), which was
applied to measure the similarity in the SP’s reconstruction
problem. Then we compare these two measures, as shown in
Figure 3.

LIB = I(X;Y)− β1I(Y;Z) (6)

LM−IB = I(X;Y)− β2I(X;Z) (7)

The mathematical comparison of LIB and LM−IB
(assuming β1 = β2) easily demonstrates that LM−IB is greater
thanLIB. Because in the X→ Y → Z Markov chain, it is obvious

FIGURE 3

A block diagram of the proposed method. The Hierarchical
Temporal Memory (HTM)-Spatial Pooler (SP) output at various
sparsity levels and different amounts of noise are reconstructed by
the probabilistic mapping method and Hidden Markov Model
(HMM) algorithm; Afterward, the standard information bottleneck
(IB) and modified IB are computed and compared with each other.

that as the distance between two nodes increases, more information
is lost along the way:

I(X;Z) ≤ I(Y;Z) (8)

So,

LM−IB ≥ LIB (9)

It was stated in section “2.1 Information bottleneck” that LIB
represents the information bottleneck, which should be minimized.
As a result, we have proved that LM−IB ≥ LIB. If we decrease LM−IB,
LIB must also decrease because it is less than LM−IB .

So, min(LM−IB) ≥ min(LIB). Therefore, we demonstrate
LM−IB is an upper bound of the information bottleneck method,
and its minimization incorporates additional information. LM−IB
minimization also includes the information derived from the
information bottleneck method.

3.2. The corresponding comparisons on
the SP algorithm

A lower bound on variance is a handy feature of any unbiased
estimator. Using this lower bound, selecting the most appropriate
estimator based on possible minimal variance is possible (Tune,
2012; Huang et al., 2020; Khorasani et al., 2020). The Cramer-Rao
Lower Bound (CRLB) is the most popular lower bounds in the
literature due to its attractiveness and ease of evaluation (Rao et al.,
1973; D’Amico et al., 2022). As stated in the Cramer-Rao inequality
(Dogandzic and Nehorai, 2001), the diagonal terms of the inverse of
the Fisher information Matrix (FIM) (assuming it exists) represent
asymptotic lower bounds on any unbiased estimator’s variance. The
Fisher information matrix measures the amount of information the
data can provide about the unknown parameter in an estimation
problem (Stein et al., 2014). A parameter can be more accurately
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estimated when the data contains more information about the
parameter. Information amount is determined by considering how
the likelihood of observing the acquired data changes with the
parameter value. In the absence of a significant change in the
likelihood of the data with respect to the parameter value, the data
contains very little information about the parameter. The Cramer–
Rao lower bound can be used as a benchmark to determine the
accuracy of a method. When the estimator’s variance is equal to the
CRLB, it is considered the most efficient estimator. The purpose
of this section is to demonstrate that CRLB will be decreased as a
consequence of data sparsification. The claims are proved by using
the Cauchy distribution. We first examine the sparsity variation of
output caused by the filter in the SP algorithm and then explore
three scenarios (as described below) in which the CRLB of the
estimation error is calculated to examine the effect of SP’s output
sparsity on the estimation error.

• Compute CRLB when SP’s output is not sparse.
• Compute CRLB when SP’s output has the

maximum Sparsity.
• Compute CRLB when adding noise to the SP’s output.

Let’s consider the first scenario where the input data (X)
follows the Cauchy distribution, so xθ ∼ C(x0, γ) and θ = (x0, γ)T ;
therefore, multiple parameters must be estimated. The first step in
determining CRLB is defining a Fisher information matrix for the
two main parameters of Cauchy distribution (x0 and γ). A log-
likelihood function l(x; θ) based on the Cauchy distribution is
written as follows.

f (x; θ) = f (x; x0, γ) =
1

πγ[1+ ( x−x0
γ

)2]
= (10)

γ

π(γ2 + (x− x0)2)

Where x0 indicates the location parameter of the peak and shifts
the graph along the x-axis, and γ indicates the scale parameter of
the graph, which can be either shorter or taller. And then

l(x; θ) = ln f (x; θ) = ln(γ)− ln(π)− ln(γ2
+ (x− x0)

2) (11)

The Fisher information matrix can be determined by
computing the first and second derivatives of ln f (x; θ):

∂ l(x; θ)
∂θ

= (
∂ l(x; θ)

∂x0
,
∂ l(x; θ)

∂γ
)T
= (12)

(
2(x− x0)

γ2 + (x− x0)2 ,
1
γ
−

2γ

γ2 + (x− x0)2 )

And

∂2l(x; θ)
∂θ2 =

 ∂2l(x;θ)
∂x2

0

∂2l(x;θ)
∂x0∂γ

∂2l(x;θ)
∂γ∂x0

∂2l(x;θ)
∂γ2

 = (13)


−4γ2

+2[γ2
+(x−x0)

2
]

[γ2+(x−x0)2]2
−4γ(x−x0)
[γ2+(x−x0)2]2

−4γ(x−x0)
[γ2+(x−x0)2]2

−1
γ2 −

2
γ2+(x−x0)2 +

4γ2

[γ2+(x−x0)2]2


Equation (14) provides Fisher’s information matrix, and the

calculations related to this part are contained in the Supplementary
Appendix 1.

I(θ) = −Eθ[
∂2l(x; θ)

∂θ2 ] =

[ 1
2γ2 0

0 1
2γ2

]
(14)

As a result,x0’s Fisher information contained in the random
variable X is equivalent to I11(θ) =

1
2γ2 , and γ’s Fisher information

is equal to I22(θ) =
1

2γ 2 .
So, according to their general definition, the Cramer-Rao lower

bound for the estimation error for both parameters x0 and γ

is CRLB = I(θ)−1.

CBRLBx0 = I−1
11 (θ) = 2γ2 (15)

CBRLBγ = I−1
22 (θ) = 2γ2 (16)

This article examines the effect of Sparsity on the error bound
of SP’s output reconstruction. For this purpose, we explore an
ideal state of Sparsity (the maximum Sparsity) in which all the
information is contained in one SP’s output element, and all the rest
are zero after the sparsification process, x = [xsparse] so x0 = xsparse
and γ = 0.

TABLE 1 Some other distributions that can be used in our experiments.

Distribution PDF/PMF Parameter Fisher information Cramer-Rao lower
bound

Gaussian
1

δ
√

2π
exp−

(x− µ)

2δ2 µ, δ2

 1
δ2 0

0
1

2δ4

 CRLBµ = δ2

CRLBδ2 = 2δ4

Pareto
αxα

m
xα+1

xm > 0

α > 0


α2

x2
m

0

0
1
α2

 CRLBxm =
x2

m
α2

CRLBα = α2

Exponential λ exp−λx λ > 0
1
λ2 λ2

Poisson
λk exp−λ

k!
λ ∈ (0,∞)

1
λ

λ

Bernoulli


q = 1− p if k = 0

p if k = 1

0 ≤ p ≤ 1

q = 1− p

1
pq

pq
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By substituting γ = 0 in the Fisher information matrix in (14),
the following result in (17) is obtained:

I11(θ) = I22(θ) = ∞ (17)

Therefore, the Cramer-Rao lower bound for these two
parameters is equal to zero, which means that the SP’s output
reconstruction error is zero when we have the SP with maximum
Sparsity.

CBRLBx0 = CBRLBγ = 0 (18)

TABLE 2 The comparison of the modified-information bottleneck (IB)
and standard information bottleneck (IB) methods with different β values
in the reconstruction of the Hierarchical Temporal Memory (HTM)-Spatial
Pooler (SP) algorithm using different sparsity (column-activation
parameter) on MNIST dataset.

PPPPPMethod
β 10−2 10−1 100 101

2% sparsity Modified-IB 0.3247 0.3247 0.3242 0.3199
Standard IB 0.3247 0.3244 0.3217 0.2947

10% sparsity Modified-IB 0.3306 0.3306 0.3301 0.3256
Standard IB 0.3306 0.3303 0.3277 0.3016

20% sparsity Modified-IB 0.338 0.338 0.3378 0.3358
Standard IB 0.338 0.3378 0.336 0.318

30% sparsity Modified-IB 0.4013 0.4013 0.401 0.3988
Standard IB 0.4013 0.4012 0.4001 0.3893

40% sparsity Modified-IB 0.41 0.41 0.4097 0.407
Standard IB 0.41 0.4099 0.409 0.4003

TABLE 3 The comparison of the modified-information bottleneck (IB)
and standard information bottleneck (IB) methods with different β values
in the reconstruction of the Hierarchical Temporal Memory (HTM)-Spatial
Pooler (SP) algorithm using different sparsity (column-activation
parameter) on Fashion-MNIST dataset.

PPPPPMethod
β 10−2 10−1 100 101

2% sparsity Modified-IB 0.3429 0.3429 0.3407 0.3209
Standard IB 0.3429 0.3425 0.3389 0.3029

10% sparsity Modified-IB 0.3608 0.3608 0.3586 0.3388
Standard IB 0.3608 0.3604 0.3568 0.3208

20% sparsity Modified-IB 0.3712 0.3712 0.3710 0.3692
Standard IB 0.3712 0.3708 0.3672 0.3312

30% sparsity Modified-IB 0.4355 0.4355 0.4351 0.4315
Standard IB 0.4355 0.4353 0.4335 0.4155

40% sparsity Modified-IB 0.4493 0.4493 0.4490 0.4463
Standard IB 0.4493 0.4492 0.4482 0.4392

TABLE 4 The comparison of the modified-information bottleneck (IB)
and standard information bottleneck (IB) methods with different β values
in the reconstruction of the Hierarchical Temporal Memory (HTM)-Spatial
Pooler (SP) algorithm using different sparsity (column-activation
parameter) on NYC-Taxi dataset.

PPPPPMethod
β 10−2 10−1 100 101

2% sparsity Modified-IB 0.1121 0.1121 0.1099 0.0901
Standard IB 0.1121 0.1116 0.1071 0.0621

10% sparsity Modified-IB 0.1488 0.1488 0.1461 0.1218
Standard IB 0.1488 0.1483 0.1438 0.0988

20% sparsity Modified-IB 0.1560 0.1560 0.1558 0.1540
Standard IB 0.1560 0.1557 0.1530 0.1260

30% sparsity Modified-IB 0.2284 0.2284 0.2281 0.2254
Standard IB 0.2284 0.2282 0.2264 0.2084

40% sparsity Modified-IB 0.2512 0.2512 0.2509 0.2482
Standard IB 0.2512 0.2511 0.2502 0.2412

Tests were conducted with other distributions, including
Normal, Poisson, Exponential, and Bernoulli. Once again, the
results indicated that the CRLB is zero when the Sparsity of the SP’s
output is maximum.

Next, we assume that the SP’s output has decreased its Sparsity.
For example, we decrease SP’s output sparsity by adding a constant
value λ to all of its elements. The aim is to investigate the relation
between the Cramer-Rao lower bound and decreasing the SP’s
output sparsity.

Let’s assume that the input data (X) follows the Cauchy
distribution, so xθ ∼ C(x0, γ). In this case, the parameters of the
new vector (X + λ) will change as follows:

xλ = x0(λ+ Xθ) = λ+ x0(Xθ) = λ+ x0 (19)

γλ = γ(λ+ Xθ) = γ(Xθ) = γ (20)

To incorporate these changes, the second derivative of the log-
likelihood function in equation (13) is rewritten as follows:

∂2l(x; θ)
∂θ2 = (21)
−4γ2

+2[γ2
+(x−x0−λ)2

]

[γ2+(x−x0−λ)2]2
−4γ(x−x0−λ)
[γ2+(x−x0−λ)2]2

−4γ(x−x0−λ)
[γ2+(x−x0−λ)2]2

−1
γ2 −

2
γ2+(x−x0−λ)2 +

4γ2

[γ2+(x−x0−λ)2]2


Therefore, The Fisher information matrix can be expressed as

follows:

I(θ) = −Eθ[
∂2l(x; θ)

∂θ2 ] =

[ 1
2γ2 0

0 1
2γ2

]
(22)

The CRLB, which is the inverse matrix of Fisher information,
can be expressed as follows:

CBRLBx0 = I−1
11 (θ) = 2γ2 (23)

CBRLBγ = I−1
22 (θ) = 2γ2 (24)

This analysis allows us to compare the CRLB in equations (23)
and (24) to the CRLBs calculated for the SP’s output before adding
constant λ value, equations (15) and (16). Explicitly, it is shown that
a decrease in sparsity does not change the Cramer-Rao lower bound
in the Cauchy distribution. It should be noted that, in this particular
test, if the data followed a Gaussian distribution, the decrease in
sparsity would increase the Cramer-Rao lower bound (Khorasani
et al., 2020). Consequently, a Gaussian distribution is considered
the worst-case scenario in estimating unknown parameters. As
stated before, these experiments can be performed with other
distributions, including Gaussian, Pareto, Poisson, Exponential,
and Bernoulli. Table 1 summarizes the properties of these five
distributions, as well as the Fisher information matrix and the
Cramer-Rao lower bound.
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FIGURE 4

An analysis of the Spatial Pooler (SP) algorithm’s behavior against
different levels of input noise during learning process by different
iterations value is presented. The performance of the SP algorithm
without learning (red line) is greatly affected by small amounts of
noise. In contrast, even 40% noise does not significantly affect the
output of the SP algorithm with learning (green line), after which the
curve’s slope gradually changes.

FIGURE 5

Noise effects on the modified-information bottleneck (IB) relation
at β = 10 for different sparsity levels. With a higher sparsity level, the
Spatial Pooler (SP) algorithm is more resistant to noise, and the
modified-IB relation provides the best results.

4. Numerical results related to our
new IB relation

This section examines the effect of different sparsity levels
and various amounts of noise on the SP algorithm’s output
reconstruction. The SP algorithm was fed with 60,000 MNIST
data as a training set and produced the sparse representation. We
add 0, 10, 20, 30, and 40% noise values to the input of the SP
algorithm for each SP’s sparsity (Column-activation = 2, 10, 20,
30, and 40%), and the output is obtained. A probabilistic mapping
method and Hidden Markov Model were used to reconstruct the
sparse SP output representation in the input space (Mnatzaganian
et al., 2017). The SP algorithm was simulated using the mHTM4

implementation. To examine the accuracy of the SP output
reconstruction, we used the standard IB relation and proposed a
new upper bound for it. The results of comparing the modified-IB

FIGURE 6

At different sparsity levels, standard information bottleneck (IB) is
always lower than modified-IB.

and standard IB at different sparsity levels of the SP algorithm are
reported in Table 2.

According to the above experiments, the most accurate
reconstruction occurs when the sparsity of the SP algorithm is high
(2% sparsity), whereas reducing the sparsity in the SP algorithm
increases the reconstruction error. In this experiment, it can be seen
that standard IB is always lower than or equal to modified-IB, which
is in accordance with our previously stated fact that modified-IB is
an upper bound for the standard IB.

Using the Fashion-MNIST and NYC-Taxi datasets, we repeated
all of the experiments, and compared the Modified-IB and Standard
IB methods with different β values in the reconstruction of
the HTM-SP algorithm using different sparsity. As shown in
Tables 3, 4, SP with 2% sparsity produces the best results and the
Modified-IB is always greater than or equal to the standard IB in
these two datasets, as expected.

Following this, we evaluate the noise robustness of the SP
algorithm during the learning process by adding different amounts
of noise to its input. The SP algorithm was trained using the noisy
MNIST image as input for each noise level (between 0 and 75%)
by randomly flipping active bits to inactive bits and inactive bits
to active bits for the given percentage of the pixels. Twenty-one
iterations are necessary for the learning process to ensure that the
SP has a stable output representation. As shown in Figure 4, the
SP algorithm with learning (green line) was more robust against
noise than the SP algorithm without learning (red line). It was
found that the learned outputs remained virtually unchanged (or
with relatively small changes) after adding a significant amount
of noise to the input, as it is almost smooth until 40% noise.
Therefore, even adding up to 40% noise to the input resulted
in no discernible change in the output of the SP algorithm with
learning. The following experiments of this paper used the SP
algorithm with learning due to its advantages over the SP without
learning.

As shown in Figure 5, the effect of SP’s sparsity and input noise
on SP’s output reconstruction was quantified using the modified-
IB relation. This experiment demonstrated that the original data
performs better than the noisy data, and by increasing the sparsity
of the SP algorithm, the noise entropy decreases. So, the addition of
noise causes a higher reconstruction error. The IB curve is almost
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FIGURE 7

(A) The effects of sparsity on the modified-information bottleneck (IB) relation at β = 10 for different noise levels. With a lower noise level and
sparsity = 2%, the modified-IB relation provides the best results. (B) The graph on the left has been zoomed in the range of 0–5 to gain more clarity
and to show the sparsity = 2% is the most appropriate sparsity in the Spatial Pooler (SP) algorithm.

FIGURE 8

Analysis of the Spatial Pooler (SP) algorithm’s against different levels of input noise during learning process by different iterations value. (A) The
change of the SP outputs is plotted as a function of the noise level (Cui et al., 2017). (B) Noise effects on the Standard information bottleneck (IB)
relation at β = 10 for fixed sparsity 2% and in different iterations. (C) Noise effects on the Modified-IB relation at β = 10 for fixed sparsity 2% and in
different iterations. In iteration 40, the SP algorithm is more resistant to noise, and the Standard IB relation provides the best results.

smooth, up to 40% noise, then changes dramatically. Therefore,
adding up to 40% noise to the input results in no discernible
change in the output of the SP algorithm. It is possible to measure
the resistance to noise of the SP algorithm by the modified-IB
relation (at different sparsity levels), and the result of Figure 5 is
in accordance with the result of Figure 4.

As in the previous case, we concluded that the higher sparsity
in the SP algorithm leads to a better reconstruction of the output,
and standard IB is always lower than modified-IB (Figure 6).

Again, the SP algorithm is quantitatively evaluated using the
modified-IB relation at different sparsity levels and noise, as shown
in (A) in Figure 7. For more clarity, in Figure 7 the graph (A) has
been zoomed in the range of 0 to 5, as shown in (B). Accordingly,
the (A) and (B) graphs in Figure 7 show some interesting results:

• If there is no noise (green line), modified-IB is smaller, and the
SP algorithm is more accurate.
• If the sparsity level is low and the noise level is high,

modified IB expresses a higher number indicating that the SP
algorithm is inaccurate.
• The optimal situation is sparsity = 2% since modified-IB has

the lowest value for all noises at this point.
• In the case of sparsity = 2%, the noises of 0 to 40% are almost

adjacent, whereas the noises of 50–80% are far apart. Thus, we
can conclude that adding up to 40% noise to the input results
in no significant change in the output of the SP algorithm.

To further analysis the applicability of our method, we perform
the same experience as in Cui et al. (2017) on random sparse inputs
and tested the effect of noise on the SP algorithm in different
iterations. In Figure 8A, presents the results of Figure 4 in reference
(Cui et al., 2017). Figures 8B, C, are the results of application
of IB and modified-IB in the same experience. In this figure an
analysis of the SP algorithm’s behavior at different levels of input
noise during the learning process with different iteration values
is shown. The performance of the SP algorithm without learning

FIGURE 9

Modified-information bottleneck (IB) is an upper bound for the
standard IB.
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(blue line) is greatly affected by small amounts of noise. In contrast,
even 40% noise does not significantly affect the output of the
SP algorithm with learning (Purple line), after which the curve’s
slope gradually changes. As indicated in those figures, the results
from reference (Cui et al., 2017) is in accordance with results
from IB and Modified-IB. Figures 8B, C demonstrate that the SP
algorithm preforms better when algorithm iterations are higher and
the SP is in the learning phase (Purple line). In this case, even
40% noise does not significantly affect the SP algorithm output. In
addition, Figure 9 shows that Modified-IB is an upper bound for
Standard-IB, as we expected.

5. Conclusion

This paper aimed to evaluate the sparsification in the SP
algorithm from the perspective of information theory as measured
by the information bottleneck, Cramer-Rao lower bound, and
Fisher information matrix. Two main contributions were made in
this paper. First, we introduced a new upper bound for the standard
information bottleneck relation. This measure has been used to
evaluate the performance of the SP algorithm in different sparsity
levels and various amounts of noise. The MNIST dataset was fed
as input to the SP algorithm. The SP algorithm with learning was
found to be resistant to noise. Adding up to 40% noise to the
input resulted in no discernible change in the output. Using the
probabilistic mapping method and Hidden Markov Model, the
sparse SP output representation was reconstructed in the input
space. The purpose was to assess the similarity between input data
and the data reconstructed by the SP algorithm. SP with 2% sparsity
produced the best results. The claims are numerically validated
by the standard information bottleneck relation and its proposed
new version (modified-IB). The results show that a lower amount
of noise and a higher sparsity level in the SP algorithm improved
reconstruction accuracy. This finding, which is based solely on
information theory measures, is in coherence with empirical
result. we have proved what was previously only an experimental
observation. Our second contribution was to prove mathematically
that more sparsity leads to better performance of the SP algorithm.
So, we analyzed the relationship between the Cramer–Rao lower
bound on the estimation of the SP’s output and the Sparsity
of the SP’s output and also the relation of sparsity and adding
noise to the SP’s output. Accordingly, this paper investigated the
effects of varying the sparsity of the SP, followed by comparing the
error bounds before and after sparsification. The data distribution
was considered the Cauchy distribution, although similar analyses
could have been conducted with other distributions, including
Gaussian, Pareto, Poisson, Exponential, and Bernoulli. As a result
of this research, it will be possible to reduce recovery errors during
compression and transmission procedures.
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