15,960 research outputs found

    Sparse multivariate Gaussian mixture regression

    Get PDF
    Fitting a multivariate Gaussian mixture to data represents an attractive, as well as challenging problem, in especial when sparsity in the solution is demanded. Achieving this objective requires the concurrent update of all parameters (weight, centers, and precisions) of all multivariate Gaussian functions during the learning process. Such is the focus of this paper, which presents a novel method founded on the minimization of the error of the generalized logarithmic utility function (GLUF). This choice, which allows us to move smoothly from the mean square error (MSE) criterion to the one based on the logarithmic error, yields an optimization problem that resembles a locally convex problem and can be solved with a quasi-Newton method. The GLUF framework also facilitates the comparative study between both extremes, concluding that the classical MSE optimization is not the most adequate for the task. The performance of the proposed novel technique is demonstrated on simulated as well as realistic scenarios

    From here to infinity - sparse finite versus Dirichlet process mixtures in model-based clustering

    Get PDF
    In model-based-clustering mixture models are used to group data points into clusters. A useful concept introduced for Gaussian mixtures by Malsiner Walli et al (2016) are sparse finite mixtures, where the prior distribution on the weight distribution of a mixture with KK components is chosen in such a way that a priori the number of clusters in the data is random and is allowed to be smaller than KK with high probability. The number of cluster is then inferred a posteriori from the data. The present paper makes the following contributions in the context of sparse finite mixture modelling. First, it is illustrated that the concept of sparse finite mixture is very generic and easily extended to cluster various types of non-Gaussian data, in particular discrete data and continuous multivariate data arising from non-Gaussian clusters. Second, sparse finite mixtures are compared to Dirichlet process mixtures with respect to their ability to identify the number of clusters. For both model classes, a random hyper prior is considered for the parameters determining the weight distribution. By suitable matching of these priors, it is shown that the choice of this hyper prior is far more influential on the cluster solution than whether a sparse finite mixture or a Dirichlet process mixture is taken into consideration.Comment: Accepted versio

    Sparsity-Promoting Bayesian Dynamic Linear Models

    Get PDF
    Sparsity-promoting priors have become increasingly popular over recent years due to an increased number of regression and classification applications involving a large number of predictors. In time series applications where observations are collected over time, it is often unrealistic to assume that the underlying sparsity pattern is fixed. We propose here an original class of flexible Bayesian linear models for dynamic sparsity modelling. The proposed class of models expands upon the existing Bayesian literature on sparse regression using generalized multivariate hyperbolic distributions. The properties of the models are explored through both analytic results and simulation studies. We demonstrate the model on a financial application where it is shown that it accurately represents the patterns seen in the analysis of stock and derivative data, and is able to detect major events by filtering an artificial portfolio of assets

    Gaussian Process Structural Equation Models with Latent Variables

    Full text link
    In a variety of disciplines such as social sciences, psychology, medicine and economics, the recorded data are considered to be noisy measurements of latent variables connected by some causal structure. This corresponds to a family of graphical models known as the structural equation model with latent variables. While linear non-Gaussian variants have been well-studied, inference in nonparametric structural equation models is still underdeveloped. We introduce a sparse Gaussian process parameterization that defines a non-linear structure connecting latent variables, unlike common formulations of Gaussian process latent variable models. The sparse parameterization is given a full Bayesian treatment without compromising Markov chain Monte Carlo efficiency. We compare the stability of the sampling procedure and the predictive ability of the model against the current practice.Comment: 12 pages, 6 figure
    • …
    corecore