
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 1

Sparse Multivariate Gaussian Mixture Regression
Luis Weruaga, Senior Member, IEEE, and Javier Vı́a, Senior Member, IEEE

Abstract—Fitting a multivariate Gaussian mixture to data
represents an attractive, as well as challenging problem, in
especial when sparsity in the solution is demanded. Achieving
this objective requires the concurrent update of all parameters
(weight, centers, and precisions) of all multivariate Gaussian
functions during the learning process. Such is the focus of
this paper, which presents a novel method founded on the
minimization of the error of the generalized logarithmic utility
function (GLUF). This choice, which allows us to move smoothly
from the mean square error (MSE) criterion to the one based
on the logarithmic error, yields an optimization scenario that
resembles a “locally” convex problem and can be solved with
a quasi-Newton method. The GLUF framework also facilitates
the comparative study between both extremes, concluding that
the classical MSE optimization is not adequate for the task. The
performance of the proposed novel technique is demonstrated on
simulated as well as realistic scenarios.

Index Terms—Gaussian function mixture, function approxima-
tion, regression, logarithmic utility function, sparsity.

I. INTRODUCTION

The Gaussian function has many appealing properties, such

as in universal function approximation [1], minimum time–

frequency dispersion [2], and outcome of the central limit the-

orem. Fitting a Gaussian function mixture (GFM) on data has

proven very useful in selected problems of signal and informa-

tion processing [3]–[10]. Despite function approximation and

data regression with GFM counts with solid foundations [11]–

[14], several questions still remain open, such as the update

of the Gaussian variance, or the development of mechanisms

that promote sparsity in the mixture.

The d-variate Gaussian function is defined by

ϕ(x) = w exp
(

−(x− c)TP(x− c)
)

(1)

where T denotes transpose, P is the d×d symmetric precision

matrix, which is positive definite P ≻ 0, c the d-dimensional

center, and w is the amplitude of the Gaussian. Let x repre-

sent a d-dimensional point and y(x) its reference value, the

problem we study in this paper is namely to approximate or

to represent the function of reference y(x) at given points x

Manuscript received Month DD, 2013; revised Month DD, 20WX; accepted
Month DD, 20YZ. This paper was recommended by Associate Editor.

L. Weruaga is with Khalifa University of Science, Technology & Research,
P.O. Box 573, Sharjah, UAE. Tel: +971 65978834, Fax: +971 65611789, E-
mail: weruaga@ieee.org.

J. Vı́a is with the Department of Communications Engineering, University
of Cantabria, 39005 Santander, Cantabria, Spain. Tel: +34 942201493, Fax:
+34 942201488, E-mail:jvia@gtas.dicom.unican.es

A preliminary version of this paper, limited to unidimensional non-negative
functions, was presented at the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2013), Vancouver, Canada, May
2013.

Digital Object Identifier

as a mixture of K Gaussian functions

f(x) =

K
∑

k=1

ϕk(x) (2)

where ϕk(x) is the kth Gaussian function in the mixture. Fig.

1 illustrates this problem with a two-dimensional toy scenario.

Because the precision is defined as a matrix, the multivariate

Gaussian (1) possesses large approximation capabilities. In

turn, the abundance of degrees of freedom, especially in large

dimensional input spaces, increases the risk of overfitting.

Therefore, in order to limit the capacity of the multivari-

ate Gaussian kernel, a single-value precision is often the

standard choice [11], [13], [21]. Despite this simplification,

the estimation of all Gaussian kernel parameters, including

the precision, is a challenging problem that remains largely

unsolved. For instance, in the so-called radial basis functions

(RBF) [11], [12], [14], the precision of the Gaussian functions

cannot be easily updated with gradient descent [14], [15],

as the optimization problem is non-convex. In support vector

regression (SVR) and other sparse kernel modelling methods

[13], the kernel centers are fixed to the training input data

points, and the single-value precision, which is the same for

every kernel, is not an outcome of the learning process and

must be thus determined via cross-validation. Several efforts

have been done to alleviate this situation, such as Kalman

filtering [16], growing and pruning [17], [18], self-organization

[19], or covariance update on dense regular node tiling [20],

[21]. Despite the previous efforts, and several others [22], not

all included here due to space constraints, the adaptation of

the Gaussian precision and centers, and the implementation of

mechanisms to promote sparsity in the mixture, still remain

open problems. As a consequence, current adaptive GFMs [21]

cannot beat the “curse of dimensionality.”

Fig. 1. Sparse multivariate Gaussian function mixture regression. Training
data depicted as dots.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCrea

https://core.ac.uk/display/147475353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2

A common trend in the existing late solutions for training

mixtures of Gaussian functions [17]–[22] is to use the classical

cost criterion built with the error between reference and

mixture output, despite it is well known [14], [15] that such

a choice corresponds to a high non-linear and non-convex

cost function. In this paper we propose a novel optimization

criterion to train Gaussian mixtures that seems to overcome

the drawbacks and limitations of previous GFM techniques:

• the fitting criterion is based on the generalized loga-

rithmic utility function (GLUF) [23], which can move

smoothly between the standard mean square error (MSE)

and the logarithmic error minimization,

• it turns out that in this specific scenario, the estimation

of all parameters (weight, center, and precision) of all

Gaussian functions in the mixture can be achieved by

solving a sequence of well-conditioned least squares

problems,

• furthermore, sparsity-promoting measures, mainly fo-

cused on the precision, can be easily integrated in the

original formulation.

The paper is organized as follows: the basic method for non-

negative multivariate functions is presented in Sec. II, Sec. III

contains the analysis on the impact of the user-defined param-

eters such as the GLUF bias and regularization constants, the

extension to general (positive/negative) multivariate functions

is detailed in Sec. IV, the numerical validation on simulated

and real scenarios can be found in Sec. V. Finally, a brief

discussion on the computational complexity of the proposed

method, as well as the main conclusions of the work, close

the paper.

II. NONNEGATIVE FUNCTION IDENTIFICATION

The multivariate Gaussian function (1) can be rewritten in

a compact fashion as

ϕ(x) = exp

(

−
[

xT 1
]

A

[

x

1

])

(3)

where the (d+1)× (d+1) symmetric matrix A is defined by

A =

[

P −Pc

−cTP cTPc− logw

]

. (4)

The number of distinct parameters in the symmetric matrix A

corresponds to its upper (or lower) triangular matrix

N =
(d+ 1)(d+ 2)

2
. (5)

Let us start assuming that the function of reference y(x) can

be represented as a combination of Gaussians with positive

weights.1 In this paper, we propose a cost function based on

the generalized logarithmic utility function (GLUF) [23]

uσ(z) = log(z + σ) (6)

where σ ≥ 0 is the GLUF bias. In particular, we aim to

minimize the mean square error, where the fitting error is

defined as

eσ(x) = uσ

(

y(x)
)

− uσ

(

f(x)
)

. (7)

1The more general case in which Gaussians with negative weights are
needed is addressed in Section IV.

In this way, the hyper-parameter σ allows us to smoothly move

from the traditional case of mean square (linear) error (MSE)

minimization (σ → ∞) [12],2 to the minimization of the mean

square log error (MSlogE) for σ = 0, which appears as the

“perceptually-linear” scale in speech and audio processing.

It is important to point out that the selection of the order K
is a challenging problem. Of course, in some particular appli-

cations the parameter K could be a priori known. However,

we will focus on the general case in which K is unknown,

and only an upper bound is available. Thus, we propose to find

the optimal number of Gaussians by promoting sparsity in the

precision. Hence, the optimization problem to solve contains

a regularization term with the “nuclear” norm (or trace norm)

of the precision matrix

minimize
A1,··· ,AK

1
2

∑

x

(

eσ(x)
)2

+ λ

K
∑

j=1

Tr(Pj)

subject to P1, · · · ,PK ≻ 0

(8)

where Tr(B) denotes trace of matrix B, and λ is the regu-

larization constant. Excluding the case of mean square log

error (σ = 0) with only one Gaussian shape (K = 1,

λ = 0), which can be easily convexified by means of a simple

reparameterization [24], the optimization problem in (8) is

non-convex in general, and therefore difficult to solve.

Here, we aim to find a local solution by solving the Karush-

Kuhn-Tucker (KKT) conditions [25]. In order to do that, we

first write the Lagrangian in (8) as

L = 1
2

∑

x

(

eσ(x)
)2

+
K
∑

j=1

Tr(ΦjAj) (9)

where

Φj =

[

λI − Γj 0

0T 0

]

. (10)

Here 0 is an all-zero vector,3 Γj is the matrix of Lagrange

multipliers for the jth Gaussian, and I is the identity matrix.

A. Gradient and Hessian

In order to devise a numerical method to solve (8), the

analysis of gradient and Hessian of the Lagrangian (9) is

required. It is simple to deduce that the gradient results in

∂L

∂Ak

=
∑

x

ρk(x)Rxeσ(x) + Φk (11)

where matrix Rx is the autocorrelation matrix of point x

Rx =

[

x

1

]

[

xT 1
]

(12)

and ρk(x) is the “relevance” of the kth Gaussian at point x

ρk(x) =
ϕk(x)

f(x) + σ
(13)

2Note that uσ(a) − uσ(b) ≈
1
σ
(a− b) for σ ≫ a, b.

3The length of all-one 1 or all-zero 0 column vector (or matrix) is not
shown in the notation as it can be deduced from the context.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 3

which satisfies 0 < ρk(x) < 1. The error (7) can be written

around the kth function as follows

eσ(x) = log
(

y(x) + σ
)

+ log ρk(x)− logϕk(x)

= yk(x) +
[

xT 1
]

Ak

[

x

1

]

(14)

where the reference yk(x) is

yk(x) = log
(

y(x) + σ
)

+ log ρk(x). (15)

Note that in the gradient (11), the error at each sample x is

weighted by the relevance function ρk(x).
The Hessian matrix allows us to understand the nature of

the Lagrangian (hyper)surface. The Hessian is composed of

N×N submatrices, each one relating two Gaussian functions.

In case of different functions, the submatrix corresponds to

∂2L

∂Ak∂Aℓ

=
∑

x

ρk(x)ρℓ(x) (Rx⊗Rx)

+
∑

x

ρk(x)ρℓ(x) eσ(x) (Rx⊗Rx) (16)

where ⊗ denotes Kronecker product.4 For the same function,

the Hessian results in

∂2L

∂A2
k

=
∑

x

ρ2k(x) (Rx⊗Rx)

−
∑

x

ρk(x)
(

1− ρk(x)
)

eσ(x) (Rx⊗Rx). (17)

The Hessian (16)-(17) presents essentially two terms, the first

one being positive semidefinite, while the second one, that

cannot be guaranteed such, is proportional to the error.

B. Numerical Algorithm

The KKT conditions can be written as

Gradient of the Lagrangian:
∂L

∂Ak

= 0 ∀k

Primal feasibility: Pk ≻ 0

Dual feasibility: Γk ≻ 0

Complementary Slackness: Tr(ΓkPk) = 0.

(18)

For the sake of simplicity in the presentation of the numeri-

cal method, we reorder the Gaussian parameter matrix Ak in a

column vector ak; in a similar way, the autocorrelation matrix

Rx can be “vectorized” in the column vector rx.5 According

to this notation, the error (14) can be simply written as

eσ(x) = yk(x) + rT
x
ak. (19)

4Let B be an m × n matrix and C a p × q matrix, then the Kronecker
product B⊗C is the mp × nq block matrix

B⊗C =







b11C · · · b1nC

.

.

.
. . .

.

.

.
bm1C · · · bmnC






.

5Needless to say that any reordering is valid. However, for the sake of
consistency, we assume that vector a results from vectorizing matrix A (4)
as follows: a = [p0;p1;p−1; · · · ;pd;p−d;A(1:d,d+1);A(d+1,:)], where
pj is the jth diagonal of matrix P, and A(:,d+1) is A’s rightmost column.

The solution equation resulting from the null of the gradient

(11) can be also written as
∑

x

ρk(x) rx eσ(x) + φk = 0 (20)

where φk corresponds to the vectorization of matrix Φk (10).

As the relevance ρk(x) depends on all Gaussian parameters

to be found, the null of the gradient results in a complicated

system of nonlinear equations.

Rather than solving (20), we propose to replace it with a

solution equation containing a closer approximation of the

Hessian matrix: note that in the positive-(semi)definite term of

the Hessian (17), the importance of each point x is weighted

by the square of its relevance; hence, we redefine the solution

equation (20) accordingly as
∑

x

ρ2k(x) rx eσ(x) + φk = 0. (21)

Note that if a solution to (20) results in perfect fitting, i.e.

eσ(x) = 0, it is also a solution to (21).

Upon replacement of the error (19), equation (21) becomes
∑

x

ρ2k(x) rx yk(x) +
∑

x

ρ2k(x) rxr
T
x ak = −φk (22)

which can be summarized into

gk +Hkak =

[

γk

0

]

(23)

where

Hk =
∑

x

ρ2k(x)
(

rxr
T
x

)

(24a)

gk =
∑

x

ρ2k(x) yk(x) rx + λ

[

1

0

]

(24b)

and vector γk corresponds to the vectorization of the Lagrange

multipliers matrix Γk. The solution to (23) must be accom-

plished in an iterative fashion by considering the relevance

ρk(x) to be fixed (hence so the terms Hk and gk) and

reevaluating the system terms (24) with the resulting partial

solution. Such an approach corresponds to the following quasi-

Newton recursion

a
(ξ+1)
k = −

(

H
(ξ)
k

)†

g
(ξ)
k (25)

where ξ denotes iteration and † pseudo inverse. Note that the

system matrix (24a) is equal to the positive-(semi)definite term

in the Hessian (17). This fact has a positive impact in the

speed of convergence of the algorithm (25), in special when

the convergence is approaching the (local) minimum.

So far we have optimistically assumed that the constraints

in the original optimization problem (8) are satisfied, case

for which the Lagrange multipliers γk in (23) vanish. At

each iteration (25), we need however to check if the positive

definiteness constraint is active in the resulting partial solution,

which implies P
(ξ+1)
k ⊁ 0 (equivalently γk 6= 0); if so,6 the

resulting precision matrix is not valid and it must be thus

replaced with a (appropriate) positive definite matrix.

6There exist cost-effective methods to check the positive definiteness of a
matrix without recurring to an expensive singular value decomposition.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 4

• An option is to project the resulting precision Pk =
ΘkΛkΘ

T
k (where Θk is a unitary rotation matrix and

Λk is a diagonal matrix) onto the space of positive

definite matrices, an operation accomplished with Qk =
Θk⌊Λk⌋0Θ

T
k , where ⌊ ⌋0 denotes lower clipping the

matrix elements by 0.

• The main question now is whether the tentative precision

matrix Qk yields a reduction in the cost, that is, if

L(Qk) ≤ L(Pk); because the Lagrangian is not convex,

such a projection needs not result in a cost decrease (it

may in fact yield the opposite undesired result).

• A simple and safe alternative is simply to keep the

original positive-definite precision matrix as it does not

yield a cost increase; in fact, estimating the remaining

d+1 parameters (related to the center and the amplitude

of the Gaussian) promotes a reduction of the cost.

In consequence, the number of parameters left to estimate

reduces to just d + 1, which correspond to Ak’s rightmost

column (4); let D be the diagonal matrix filled with 1 only in

the positions corresponding to the remaining d+1 parameters,

the problem left to solve is

g
(ξ)
k +H

(ξ)
k

(

(I−D)a
(ξ)
k +Dbk

)

= 0 (26)

which is accomplished by7

bk = −
(

H
(ξ)
k D

)†
(

g
(ξ)
k +H

(ξ)
k (I−D)a

(ξ)
k

)

. (27)

The final Gaussian parameters are obtained by joining the

initial precision matrix and the resulting d+1 parameters (27)

a
(ξ+1)
k = (I−D)a

(ξ)
k +Dbk. (28)

C. Problem Condition

Parametric data fitting is by nature an ill-posed problem, in

especial when the number of parameters to estimate is larger

than the size of the training data. Here the appropriate esti-

mation of the kth Gaussian parameters can be compromised

when matrix Hk becomes ill conditioned.8 In such an event,

avoiding the inverse problem at all may be even preferable. A

less conservative option though is to introduce a regularization

with respect to a reference point, that is, to solve

minimize
A

(ξ)
1 ,··· ,A

(ξ)
K

L(ξ) + µ
K
∑

j=1

∥

∥∆
(ξ)
j

∥

∥

2

subject to P
(ξ)
1 , · · · ,P

(ξ)
K ≻ 0

(29)

where ∆
(ξ)
j = A

(ξ)
j − A

(ξ−1)
j , µ > 0 is the regularization

hyper-parameter. The regularization term is aimed to prevent

consecutive solutions from differing by a large amount. It is

simple to deduce that, with this modification (29), the quasi-

Newton iteration (25) becomes

a
(ξ+1)
k = −

(

H
(ξ)
k + µI

)−1
(

g
(ξ)
k − µa

(ξ)
k

)

. (30)

7Note that the operation (27) is accomplished by the inversion of a (d+1)-
column square matrix.

8Matrix Hk corresponds to a N -point local linear fitting problem, for which
at least N different points are required for a unique solution.

The resulting diagonal loading of the system matrix Hk

is well known to alleviate the possible ill-condition of that

matrix. It is also well known that such a regularization

may come at the expense of slowing down the convergence

of the algorithm. Variable loading alternatives [26] with a

good compromise between regularization and speed could be

adopted in this scenario though. This option can be stated with

the following optimization problem

minimize
A

(ξ)
1 ,··· ,A

(ξ)
K

L(ξ) + µ

K
∑

j=1

∆
T (ξ)
j T

(ξ−1)
j ∆

(ξ)
j

subject to P
(ξ)
1 , · · · ,P

(ξ)
K ≻ 0

(31)

where T
(ξ)
k is the positive definite regularization matrix, which

may be parametric and will thus have to be evaluated at every

iteration. For instance, in (29) this matrix simply corresponds

to the identity, Tk = I, but in [26] it is built with the

inverse of the system matrix, Tk = H−1
k . Further study on

such alternatives is beyond the scope of the paper but worth

undertaking.

D. Algorithm Initialization

Not less important is the way the resulting iterative algo-

rithm is initialized. Obviously, the Gaussian functions must

be initially placed in the proximity of the data. Formally,

one needs to prevent ρk(x) ≃ 0, ∀k for any datapoint

x, which would imply that the point x is being “ignored”

by all Gaussian functions. In addition to that, the functions

must sufficiently overlap with each other. These requirements

point out to a method for clustering high-dimensional data

as initialization mechanism. The first solution we considered

was the popular Gaussian mixture models (GMM) trained

with the EM algorithm [27]. This method results in an

heterogeneous Gaussian mixture that represents the input data

under a probabilistic perspective. However, given that the input

data x simply corresponds to locations at which the reference

function has been sampled, it results thus more appropriate

to cluster the data on regions with similar shape and size.

An adequate method for that purpose is the popular k-means

algorithm. This method guarantees a uniform clustering with

Voronoi regions of similar (hyper)volume. This part covers the

initialization of center and precision; the weight initialization

is not critical, simply w > σ.

E. Alternative Model

Keeping all Gaussian parameters under a unique matrix A

(4) results in a compact formulation and a simple system

matrix (24). However, one might like to be able to constraint

the Gaussian center c to a certain fixed position (to the

input data points for instance) or within a certain area, or

to include sparsity measures over the Gaussian weights w.

Setting constraints to the center and/or the weight is however

problematic because those terms are somewhat hidden in the

parametric matrix A.

An alternative parameterization to address these intentions

is namely the original one (1), which we bring here again

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 5

Algorithm 1 Sparse Multivariate Gaussian Regression

input: x, y(x) and σ, λ, µ, K .

output: Gaussian parameters Zk (or in vector form zk).

initialize Z
(1)
k for k = 1, · · · ,K , such that P

(1)
k ≻ 0

repeat

f (ξ)(x) =
∑K

k=1 ϕ
(ξ)
k (x)

e
(ξ)
σ (x) = log

(

y(x) + σ
)

− log
(

f (ξ)(x) + σ
)

for kth Gaussian function do

ρ
(ξ)
k (x) = ϕ

(ξ)
k (x)/

(

f (ξ)(x) + σ
)

.

e
(ξ)
k =

∑

x

(

ρ
(ξ)
k (x)

)2
s
(ξ)
xk e

(ξ)
σ (x) + λ

[

1T 0T
]T

H
(ξ)
k =

∑

x

(

ρ
(ξ)
k (x)

)2
s
(ξ)
xk s

(ξ)T
xk

z
(ξ+1)
k = z

(ξ)
k +

(

H
(ξ)
k + µI

)−1

e
(ξ)
k

if P
(ξ+1)
k ⊁ 0 then

z
(ξ+1)
k = z

(ξ)
k +

(

D
(

H
(ξ)
k + µI

)

D
)†

e
(ξ)
k

end if

end for

until convergence

albeit in a more compact form

ϕ(x) = exp
(

−(x− c)TP(x− c) + logw
)

. (32)

Precision P, center c and weight are now explicit parameters

in the model. We reorder the Gaussian parameters in a single

matrix as follows

Z =

[

P c

cT logw

]

. (33)

The gradient of the Lagrangian results in this case in

∂L

∂Zk

=
∑

x

ρk(x)Sxk eσ(x) + Φk (34)

where

Sxk =

[

(x− ck)(x− ck)
T −Pk(x− ck)

−(x− ck)
TPk −1

]

. (35)

On the other hand, the Hessian presents the following three

terms

∂2L

∂Z2
k

=
∑

x

ρ2k(x)
(

Sxk⊗ Sxk

)

+
∑

x

ρk(x)
(

1− ρk(x)
)

eσ(x)
(

Sxk⊗ Sxk

)

+
∑

x

ρk(x) eσ(x)
∂Sxk

∂Zk

. (36)

Only the first term in the Hessian (36) is positive

(semi)definite. This term presents a polynomial dependance

with the Gaussian parameters, hence the associated Lagrangian

surface is not quadratic (as it was in case of (17)), but it

is convex. Thus, a quasi-Newton algorithm, similar to the

one disclosed in Sec. II-B, is appropriate to accomplish the

solution. Such a numerical method is brought in Algorithm 1.

With this alternative parametric model (32), the amplitude w
of the Gaussian function is embedded in a system parameter.

Thus, additional constraints can be imposed to the Gaussian

weights w = [w1, · · · , wK]. For instance, a popular method-

ology to achieve sparsity on a weighted mixture is

minimize
Zk

∑

x

(

eσ(x)
)2

+ δ‖w‖p (37)

where the additional regularization term ‖w‖p corresponds to

the p-norm ℓp (in the weight space)

‖w‖p =

K
∑

k=1

|wk|
p

(38)

and the hyper-parameter δ ≥ 0 is the regularization tradeoff.

It is now well understood that any norm such 0 < p ≤ 1
corresponds to natural mathematical measures of sparsity [28]

(unlike ℓ2). The case ℓ1 captures special interest because it

does not compromise the convexity of the main cost function.

However, since the regularization term (38) is built with the

p-power of the amplitude, while the parameter to estimate cor-

responds to its logarithm, this problem (37) is not easy to solve

numerically in a compact fashion. A tentative methodology to

include this regularization is namely to alternate the original

method with the ℓp weight penalization algorithm. In case of

ℓ1, a reweighed LS weight update would be

w
(ξ+1)
k = w

(ξ)
k ·

w
(ξ)
k

w
(ξ)
k + δ

. (39)

On the other hand, constraints on the center (and obviously

on the precision) can be also easily embedded in the opti-

mization problem. For instance, setting the centers to a fixed

position simply results in a reduction (by d) of the system

parameters, while keeping the centers within certain margins

can be accomplished with a similar methodology to the one

detailed around (26).

III. IMPACT OF USER-DEFINED CONSTANTS

A. Mean Square Log-Error (MSlogE) Criterion

The GLUF bias σ allows us to move from the MSlogE

(σ = 0) to the classical MSE minimization (σ → ∞). This

section covers the first case. For σ = 0 the relevance function

ρk(x) takes a value close to 0 in those regions where the

kth Gaussian function is not dominant, while in neighbouring

regions to the Gaussian the relevance gets often close to 1.

This fact makes the non-convex term in the Hessian (17)

negligible because ρ(1 − ρ) ≃ 0 at the extremes ρ ≃ 0 and

ρ . 1. In summary, the resulting Hessian (17) depends only

on the input data x in a vicinity of the Gaussian function, and

the cost function can be thus considered “locally” quadratic.

The importance of the relevance function is illustrated with

a toy unidimensional experiment in Fig. 2: each Gaussian

function, which in logarithmic scale results as an inverted

parabola, follows closely its reference (15) over the local

region determined by the respective relevance function.

In regard to the Hessian cross terms (16), and supported on

the previous reasoning, we can state that the product between

the relevance of weakly-overlapping Gaussian functions be-

comes negligible, that is, ρkρℓ ≃ 0 for k 6= ℓ. The independent

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 6

0

0.2

0.4

0.6

0.8

1

Gaussian mixture fitting

10
−1

10
0

local quadratic fitting

0

1

relevance

Fig. 2. Gaussian mixture fitting for GLUF bias σ = 0. Gaussian mixture in
linear scale (top), in logarithmic scale (middle), and corresponding relevance
functions (bottom). Dots correspond to the references (15) and their size
reflects the importance of the data in the estimation.

update of each Gaussian function, as proposed with (20),

is thus an adequate and computationally efficient approach

(versus inverting the global Hessian).

B. Mean Square Error (MSE) Minimization

The classical MSE minimization presents manifesting dif-

ferences with respect to the previous case. When the GLUF

bias is very large, σ → ∞, the Hessian (36) (scaled by σ2)

converges to

lim
σ→∞

σ2 ∂
2L

∂Z2
k

=
∑

x

ϕ2
k(x)

(

Sxk ⊗ Sxk

)

+
∑

x

ϕk(x)e(x)

(

Sxk⊗ Sxk +
∂Sxk

∂Zk

)

(40)

where e(x) corresponds to the linear error

e(x) = y(x)− f(x) (41)

because ρ(1 − ρ) → ρ, σρ → ϕ and σeσ → e. On the other

hand, the full gradient (scaled by σ2 as well) becomes

lim
σ→∞

σ2 ∂L

∂Zk

=
∑

x

ϕk(x)Sxk e(x). (42)

This result (42) matches, as expected, the expression already

deduced for the generalized Gaussian radial basis functions

(RBF) [14]. It is worth mentioning that this former MSE-

driven RBF training is based on a plain gradient-descent

algorithm, where the value of the step sizes (for w, c and P)

must be properly selected to assure the algorithm convergence.

Given the difficulty for maintaining stability in the precision,

in the practice only weights and centers are updated.

The MSE criterion, under the GLUF-based analysis in (40)

and (42), presents the following two distinctive characteristics:

1) The error at each point x turns out weighted by the very

activation function ϕk(x). As the relevance function

ρk(x) is thus present in neither the Hessian (40) nor the

gradient (42), competition among the Gaussian functions

for the data does not exist.

2) The error (41) has a severe non-linear dependence with

the Gaussian parameters, and it cannot be thus reordered

in a nearly-linear relation as (14).

From our experience, the performance of the proposed method

for large σ values, such as σ > y(x), results in slow and

stiff convergence. Loosely speaking, as competition among

the Gaussian functions here does not exist, each one deals

with the data in its vicinity, determined by ϕk(x), regardless

of which other Gaussian functions are there. This way of

independent working, instead of cooperative, leads to poor

suboptimal solutions. We intuit that the lack of relevance

ρk(x) here could be replaced by a global Hessian involving all

parameters from all Gaussian functions. That option is how-

ever difficult to implement and computationally prohibitive.

In consequence our attempts at devising a Newton (or quasi-

Newton) algorithm based on the Hessian (40) and the gradient

(42) has not led to conclusive results. Therefore, if an MSE

minimization is strictly required, we suggest to train the

system for low/moderate values of σ, and upon convergence,

to train only the weights w under the MSE criterion.

C. Sparsity Control: λ and δ

Pursuing sparsity on the precision (8) may somewhat com-

promise the fitting task itself, that is, by forcing the precision to

be low, the fitting performance (or MSE) may falter. This fact

raises the question about the best value of the regularization

constant λ for a given problem: a big value yields “wide”

overlapping Gaussians functions, unable to fit gently in the

data; on the other hand, a low value may not promote enough

a sparse mixture, thus likely to produce an over-fitted solution.

As the optimal regularization hyper-parameter depends on the

structure of the very data [29], its analytical determination

is in the practice difficult. Supported on this discussion, the

iterative training algorithm is suggested with two sequential

stages (similar strategy is used in compressive sensing):

1) in the first stage, the regularization on the precision is

active, that is, λ > 0; the MSE at every iteration is

evaluated and monitored: when the MSE experiences a

steady increase/stall, the second stage becomes active,

2) in the second stage, the regularization hyper-parameter

is set to zero, λ = 0 (or decreased monotonically), until

final convergence.

A desired outcome of enforcing sparsity in the precision by

means of λ > 0 is that of neighbouring Gaussian functions

converging to an equivalent function if they are not useful in

reducing the MSE. This function merge applies to the center

and precision, but not to the weight. This situation, although

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

effectively sparse, is not such from a computational perspec-

tive as non-zero weight elements are required to evaluate the

Gaussian mixture. The inclusion of sparsity measures in the

weight (39) by means of δ helps get rid of those undesired

replicas, thus achieving explicit mixture sparsity.

IV. EXTENSION TO GENERAL FUNCTIONS

The condition y(x) ≥ 0 renders the proposed technique

inadequate with general functions (that is positive and/or neg-

ative) because the original error (7) may include the logarithm

of negative numbers. A straightforward (and naı̈ve) way to

extend the previous methodology to general functions is to

consider the new nonnegative function of reference b + y(x)
such that b > |y(x)| instead. The resulting solution consists

thus of a nonnegative Gaussian mixture plus a negative con-

stant term equal to −b (which can be treated as a Gaussian

of null precision). One could also choose the nonnegative

function b− y(x) as reference function instead, which would

yield a positive constant term equal to b plus a negative

Gaussian mixture, a solution that differs clearly from the

first alternative. These cases unveil the presence of multiple

(possibly infinite) valid solutions.

We opt to follow a different path by defining the fitting

function as follows

f(x) = f+(x)− f−(x) (43)

where f+(x) ≥ 0 is the positive contribution of the mixture,

and f−(x) ≥ 0 the negative one. In relation to those, we

introduce two references y+(x) and y−(x) defined as

y+(x) = y(x) + f−(x) (44a)

y−(x) = − y(x) + f+(x) . (44b)

Let us assume for a moment that f−(x) were a priori available,

hence y+(x) would be a proper reference for estimating

f+(x); obviously f−(x) is unknown, but the proposed state-

ment (44) unveils the fact that the estimation of f+(x) is

reciprocally linked to the estimation of f−(x).
We thus rephrase the problem as that of obtaining the

following nonnegative function

F (x) = f+(x) + f−(x) (45)

and define the fitting error as

eσ(x) = uσ

(

y+(x) + y−(x)
)

− uσ

(

F (x)
)

(46)

enforcing the obvious constraints y+(x) ≥ 0 and y−(x) ≥ 0.

The optimization problem to solve becomes thus

minimize
f+,f−

∑

x

(

eσ(x)
)2

+ λ

K
∑

j=1

Tr(Pj) + δ‖w‖1

subject to y+(x), y−(x) ≥ 0 and P1, · · · ,PK ≻ 0.

(47)

The weight-regularization term ‖w‖1 is present because the

trivial case y(x) = 0 yields f+(x) = f−(x), which has

infinite solutions; we are thus only interested in the solution

f+(x), f−(x) = 0, which is promoted by the additional

regularization term.

In what follows, we outline the strategy to solve this

optimization problem, focusing on the positive contribution

f+ of the mixture.

• The condition y+(x) ≥ 0 can be enforced by lower zero-

clipping the reference itself.

• Regarding condition y−(x) ≥ 0, at any iteration the best

(non-negative) estimation of y−(x) is the very negative

part of the mixture f−(x).

By following the previous arguments, we redefine the global

error (46) for the positive term as follows

e+σ (x) = uσ

(

⌊y+(x)⌋0 + f−(x)
)

− uσ

(

F (x)
)

= uσ+f−(x)

(

⌊y+(x)⌋0
)

− uσ+f−(x)

(

f+(x)
)

(48)

where ⌊z⌋ǫ denotes lower clipping z by ǫ. Based on the

alternative parametric model detailed in Sec. II-E, the solution

equation here results in
∑

x

ρ2k(x)Sxk e
+
σ (x) + Φk = 0 (49)

for k ∈ f+, where the relevance function is

ρk(x) =
ϕk(x)

f+(x) + f−(x) + σ
. (50)

The solution equation for the negative contribution f− of

the mixture is obtained by simply swapping superscript +

and − in the former equations. The numerical algorithm to

solve this problem is composed of two numerical processes,

following exactly the original one detailed in Sec. II-B, each

one for the update of the positive and for the negative

contributions in the mixture. These two numerical processes

work actually as one, as the error (48) and the relevance (50)

are both built with all Gaussian functions.

V. RESULTS

In order to illustrate the qualitative performance of the

proposed method we use several synthetic scenarios with low

dimensions. A quantitative performance analysis is also carried

out on realistic scenarios of large dimensional data.

A. Synthetic Scenarios

The aim of the first experiment is to demonstrate the effect

of the regularization for the precision and that for the weight,

managed by the hyper-parameters λ and δ respectively, on a

simple yet insightful scenario. The training dataset consists of

L = 40 points in the interval [0, 6] sampling the chirp function

y(x) = cos
(

2x+ 0.08x3
)

.

The general method in Sec. IV was used, the size of the

Gaussian mixture was K = 40, and the GLUF bias is small

σ = 0.01, and the diagonal loading was set to µ = 0.1. Three

methods were used in the experiment:

1) No regularization on the precision, λ = 0, but regular-

ization on the weights δ = 0.05.

2) Regularization on the precision, λ = 0.001 (as well as

on the weights δ = 0.05).

3) Least-squares support vector regression (LS-SVR) with

Gaussian kernel.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 8

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Fig. 3. Gaussian mixture fitting on a general (positive/negative) function: case
λ = 0, δ > 0 (top), case λ, δ > 0 (middle), and Gaussian SVR (bottom). In
each picture: training samples (dots), individual Gaussian elements (dashed),
and resulting Gaussian mixture (solid)

The results after 50 iterations are shown in Figure 3 from top

to bottom respectively. The first case, with λ = 0, shows clear

signs of over fitting as it reaches a situation of negligible fitting

error. On the contrary, the regularization on the precision

promotes “wider” Gaussian functions that compete against

each other for the data; the solution results in an optimal

number of relevant Gaussian elements, equal to the number

of lobes in the chirp signal. Finally, the performance of the

SVR is well known to depend on the selection of the Gaussian

kernel variance; the variance selected here yields poor fitting

on the narrower chirp lobes; obviously, one could have selected

a smaller variance to improve the fitting on that region; in any

case, SVR’s factor of utilization9 in this scenario never drops

below 100%.

The second scenario corresponds to the identification of the

two-dimensional mexican sombrero function, defined by

y(x1, x2) = sinc

(

3
√

x2
1 + x2

2

)

(51)

where sinc(a) = sin(a)/(πa). Given that this function has

circular symmetry, its identification with a sparse Gaussian

mixture is somewhat challenging. The dataset was obtained

by selecting a random point inside every cell of a regular

9-segment cartesian division within the interval [−3, 3]; no

noise was added to the data. A Gaussian mixture of K = 81
elements, equal to the training dataset size (K = L), was used

in the experiment. The previous three methods were used here;

in all cases, the precision was initially set to a value of 3 (in

SVR, this value is a hyper-parameter, and thus fixed for all

Gaussian kernels). The results after 50 iterations are shown in

Figure 4. The outcome of this experiment follows:

1) the weight regularization (λ = 0, δ > 0) cannot defeat

over-fitting, and the utilization falls to 52%,

2) the method with regularization in the precision (λ > 0,

δ > 0) achieves good learning and generalization per-

formance with 34% of the Gaussian elements,

3) the SVR presents similar performance than the previous

method, but with a 100% utilization.

In the previous qualitative experiments, learning and gen-

eralization has been assessed visually. In the next synthetic

scenario, a formal methodology, 10-fold cross validation, is

used: the dataset is randomly divided into 10 blocks of data;

for every block, each method is trained on the remaining

blocks and tested on the hold-out block; results, averaged

over all test blocks, thus reflect predictive performance of

unseen cases. The experiment deals with the identification of

9The factor of utilization refers to the percentage of Gaussian elements that
result in non-zero weight after training.

−2

0

2

−3
−2

−1
0

1
2

3

−0.2

0

0.2

0.4

0.6

0.8

1

−2

0

2

−3
−2

−1
0

1
2

3

−0.2

0

0.2

0.4

0.6

0.8

1

−2

0

2

−3
−2

−1
0

1
2

3

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 4. Identification of the mexican sombrero function (51). Propose method for λ = 0, δ > 0 (left), λ, δ > 0 (middle), and Gaussian SVR (right).

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 9

the deterministic component of the four-dimensional variant

of the add10 function suggested in the DELVE database

y(x) = 5 + 5 sin(3πx1x2) + 10(x3 − 0.5)2 + 5x4 + η (52)

where xi ∈ [0, 1] and η is zero-mean Gaussian noise. The

dataset corresponds to random points inside every hypercell of

a regular 7-segment cartesian division; this procedure results

in L = 74 = 2401 points, at which the function (52) was

evaluated. Given that the function is positive in the range of

interest, we selected the original algorithm for non-negative

functions detailed in Table 1: the number of Gaussian elements

was K = 40; as the space dimension is d = 4, the number

of parameters in each Gaussian becomes N = 15. The LS-

SVR and ǫ-insensitive SVR [13] were selected as comparative

methods. The precision of the Gaussian kernel was obtained by

exhaustively assessing with cross validation the average LS-

SVR performance on the clean and noisy datasets; the best

performance resulted with a value of precision equal to 7.

The interpolation and the regression ability of each method

was tested on the purely deterministic data and a noisy version

thereof (η with variance equal to 1) respectively. The result

of this experiment after 100 iterations is brought in Table

I. The values correspond to the normalized MSE I , i.e., the

ratio between the MSE of the method and the variance of the

reference y(x)

I =

∑

x

(

y(x)− f(x)
)2

∑

x
(y(x)− y)

2 . (53)

where y =
∑

x
y(x)/

∑

x
1 is the average value of the

reference function. The column “Lin” corresponds to the least-

squares linear fit. The 10-fold cross validation delivers two

values, namely, the testing error and the training error: these

two values close to each other indicates good generalization

abilities.

GFM LS-SVR ǫ-SVR Lin

η2 Itest Itrain Itest Itrain Itest Itest

0 8.4e−3
6.6e−3

1.6e
−3

3.7e−4
1.7e−2

0.76

1 9.6e
−2

7.2e−2
1.1e−1

3.9e−2
0.42 0.79

TABLE I
NORMALIZED MEAN SQUARE ERROR IN THE ADD10 DATASET.

The proposed GFM method presents excellent generaliza-

tion and learning capabilities. Given the low number of Gaus-

sian functions (K = 40), the final utilization results in 100%.

LS-SVR performance in this scenario is also excellent,10: in

the noiseless case its learning capabilities are somewhat ahead

of the proposed GFM, but in the regression test, SVR shows

signs of overfitting, falling slightly behind GFM. However,

the major difference arises when comparing the number of

parameters to estimate: the proposed GFM deals with only

KN = 600 parameters, while SVR complexity is equal to the

size of the dataset L = 2401.

10On the contrary, ǫ-SVR yields poor performance because the stochastic
component in the data is not heavy-tailed; its numerical optimization method
turned out also computationally prohibitive.

B. Real Scenarios

We consider now selected regression datasets from

the DELVE and UCI repositories, in particular, kin8,

pumadyn8, abalone and energy (heating and cooling)

[32]. In all cases, the dimension of the input space is equal

to d = 8. The reference y(x) in the kin8, abalone and

energy datasets was non-negative. Therefore, two variants

of the proposed regression methodology were tested:

1) the identification of the positive function y(x) with

the original method (GM) for non-negative functions,

detailed in Sec. II,

2) the identification of the function y(x) − b with the

general method (GM±) detailed in Sec. IV, where b
is equal to the average value of the reference.

On the other hand, support vector regression with quadratic

loss was used as main comparative method. The precision of

the Gaussian kernel was obtained by exhaustively assessing

with cross validation the average LS-SVR performance on

every dataset (in case of kin and pumadyn, the value

was selected from the average performance for the high “h”

and medium “m” noise).11 In every scenario, the number of

Gaussian functions is K = 50: as the number of parameters

of each Gaussian is N = 45, the total number of system

parameters results thus in 2,250.

Table II contains the result of these experiments with 10-fold

cross validation averaged over ten runs. The performance of

two additional state-of-the-art methods (codenamed M1 and

M2) is also included: CMAC-based regression [30] and a

regression tree [31] were selected for both kin and pumadyn,

and linear regression robust to outliers (least absolute error)

and a regression random forest [32], [33] for abalone and

energy.

For each column the best performance has been highlighted

in boldface. Except for the case kin8f “fair linearity”, the

proposed GFM method outperforms SVR in all other scenar-

ios. In some cases the differences are not very significative, but

the results confirm the proposed approach as an interesting al-

ternative to be considered. In the scenario energy, proposed

recently [32], GFM outperforms the random forest by nearly

an order of magnitude. It is also interesting to note that there

the size of the dataset (768) is much lower than the GFM

size N , yet overfitting does not occur. Finally, selecting GFM

or GFM± in an specific scenario is nearly arbitrary as the

performance seems to be comparable. Our suggestion though

is to use GFM when the data has an obvious non-negative

nature (such as in abalone and energy).

VI. DISCUSSION

The computational complexity of the proposed method is

dominated by the solution of the K linear equation systems

in (23). The cost of each one of these problems is of the

order O(d6) and therefore the overall computational cost per

iteration is O(Kd6). The number of iterations until con-

vergence can depend on several factors such as the GLUF

11Furthermore, given the rigidity of SVR kernel, the raw input data and the
input data normalised in the interval [0, 1] have been tested, having selected
whichever leads to better performance.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 10

kin8nm kin8nh kin8fm kin8fh puma8nm puma8nh abalone heat cool

Optimal 4.1e−2
3.0e−1

2.2e−2
2.5e−1

2.9e−2
2.5e−1 — — —

Lin 6.7e−1
8.1e−1

6.9e−2
3.1e−1

4.8e−1
6.3e−1

5.3e−1
9.2e−2

2.0e−1

GFM 1.6e−1
5.0e−1

5.4e−2
2.9e−1

3.9e
−2

3.3e
−1

4.3e
−1

3.6e
−3

2.1e
−2

GFM± 8.9e
−2

3.3e
−1

4.7e−2
3.1e−1

4.5e−2
3.4e−1

4.3e−1
7.8e−3

3.1e−2

LS-SVR 1.8e−1
6.3e−1

2.7e
−2

2.6e
−1

4.6e−2
5.5e−1

4.3e
−1

5.2e−3
2.3e−2

M1 9.1e−2
3.3e−1

9.5e−2
3.0e−1

4.0e−2
3.3e−1

5.1e−1
9.7e−2

1.3e−1

M2 4.5e−1
6.1e−1

2.0e−1
4.3e−1

5.0e−2
3.4e−2

4.4e−1
1.0e−2

7.3e−2

TABLE II
PERFORMANCE ANALYSIS ON DATASETS FROM DELVE AND UCI REPOSITORIES.

bias σ, the dimensionality of the problem, and the hyper-

parameter µ to ensure the proper conditioning of the successive

optimization problems. Although a thorough analysis of the

convergence properties is beyond the scope of this paper,

we must mention that the overall speed of the proposed

technique can be reduced, for instance, by using regularization

techniques beyond the diagonal loading (as suggested in Sec.

II-C), by parallelizing the solution of the K linear systems,

by relaxing the precision of the intermediate solutions of

the linear equations systems, or by taking into account that

the solutions of (23) in consecutive iterations should not be

very different, that is, we can use a warm-start approach for

speeding up the solution of the linear equation systems.

The results presented on this paper refer to the method

based on equation (21), which corresponds to a modifica-

tion of the original equation (20) with the aim of including

the (positive-definite term of the) Hessian as system matrix,

therewith improving the speed of convergence. Fig. 5 validates

this choice on the experiments of Table I: on the noiseless

scenario (η = 0), the proposed alternative (21) delivers steady

learning performance, while (20) stalls at some point during

the training. Apart from the case of perfect fitting, in which

both equations can share the same solution, an analytical study

on the differences/connections between both does not seem

easy. Based on empirical evidence, we thus firmly suggest to

include the square of the relevance as in (21).

Finally, given that the parametric complexity of the general

multivariate Gaussian functions grows (5) with the square of

the space dimension d, its use in problems with very large

dimensions turns out problematic. Therefore, another way

to alleviate the computational complexity in the regression

machine is namely to reduce its basic parametric size N . Some

20 40 60 80 100

10
−2

10
−1

10
0

ξ

Fig. 5. Speed of convergence for the iterative method based on the solution
equation (20) (dashed) and that of equation (21) (solid).

options worth taking into consideration are:

1) a diagonal precision matrix (with only d parameters),

2) a Gaussian radial basis function, with the same precision

in all dimensions (and thus a single precision value),

3) the center set to a fixed value, such as a data point.

Obviously, the reduction in degrees of freedom implies that

the identification capabilities of each function shrink. This

option is likely to have a twofold effect though, namely, in

theory the capacity of the machine reduces accordingly and

its generalization performance must improve therewith. The

dilemma that immediately arises is whether a full-fledged

GFM with few elements is a better option than a larger mixture

of simpler Gaussian functions. In that sense, the combination

of the last two options above, namely a radial basis function

(single-valued parametric precision) with its center fixed to a

data point, is an interesting option as it compares seamlessly to

support vector machines, having in addition the flexibility of

a parametric Gaussian kernel variance/precision. Deep study

on these alternatives is a promising exciting research avenue

worth undertaking in the future.

VII. CONCLUSIONS

Multivariate Gaussian mixture approximation driven by the

mean square error (MSE) criterion is well-known to result in

a highly non-linear and non-convex problem. The generalized

logarithmic utility function (GLUF) has allowed us to revamp

this challenging problem into another one whose gradient and

Hessian resembles that of a “locally” convex problem. The

numerical implementation results in several iterative least-

squares inversion problems, each one involving the parameters

of each individual multivariate Gaussian function. In conse-

quence, the proposed method can be optimized for running

in parallel-computing hardware. The method, devised initially

for non-negative reference functions, has been easily extended

to general functions. Its performance has been explored on

synthetic and real scenarios, delivering very competitive gen-

eralization and learning abilities.

REFERENCES

[1] J. Park and I. Sandberg, “Universal approximation using radial-basis
function networks,” Neural Comput., vol. 3, pp. 246–257, Jun. 1991.

[2] L. Cohen, Time–frequency analysis. Prentice Hall, 1995.
[3] P. Yee and S. Haykin, “A dynamic regularized radial basis function

network for nonlinear, nonstationary time series prediction,” IEEE Trans.
Signal Process., vol. 47, no. 9, pp. 2503–2521, Sep. 1999.

[4] S. Seshagiri and H. Khalil, “Output feedback control of nonlinear
systems using RBF neural networks,” IEEE Trans. Neural Netw., vol.
11, pp. 69–79, Jan. 2000.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 11

[5] T. Blu and M. Unser, “Wavelets, fractals, and radial basis functions,”
IEEE Trans. Signal Process., vol. 50, pp. 543–553, Mar. 2002.

[6] M. Yee, B. Yeap, and L. Hanzo, “Radial basis function-assisted turbo
equalization” IEEE Trans. Commun., vol. 51, pp. 664–675, Apr. 2003.

[7] N. Gkalelis, V. Mezaris, I. Kompatsiaris, and T. Stathaki, “Mixture
subclass discriminant analysis link to restricted Gaussian model and
other generalizations,” IEEE Trans. Neural Netw. Learn. Syst., vol. 24,
no. 1, pp. 8–21, Jan. 2013.

[8] C. Tseng and S. Lee, “Design of fractional order digital differentiator
using radial basis function,” IEEE Trans. Circuits Syst. I, Reg. Papers,
vol. 57, no. 7, pp. 1708–1718, Jul. 2010.

[9] J. Jacobs, “Bayesian support vector regression with automatic relevance
determination kernel for modelling of antenna input characteristics,”
IEEE Trans. Antennas Propag., vol. 60, no. 4, pp. 2114–2118, Apr.
2012.

[10] L. Weruaga, ”Redundant time–frequency marginals for chirplet decom-
position,” IEEE Intl. Wksp. Mach. Learn. Signal Process. 2012, pp. 1–5.

[11] S. Chen, C. Cowan, and P. Grant, “Orthogonal least squares learning
algorithm for radial basis function networks,” IEEE Trans. Neural Netw.,
vol. 2, no. 2, pp. 302–309, Mar. 1991.

[12] P. Yee and S. Haykin. Regularized radial basis function networks:

Theory and applications, Wiley, 2001.
[13] B. Schölkopf and A. Smola. Learning with kernels. MIT Press, 2002.
[14] S. O. Haykin, Neural networks and learning machines (3rd Ed.), Prentice

Hall, Upper Saddle River, NJ, 2008.
[15] N. Karayiannis, “Reformulated radial basis neural networks trained by

gradient descent,” IEEE Trans. Neural Netw., vol. 10, no. 3, pp. 657–
671, May 1999.

[16] D. Simon, “Training radial basis neural networks with the extended
Kalman filter,” Neurocomp., vol. 48, pp. 455–475, 2002.

[17] G. Huang, P. Saratchandran, and N. Sundararajan, “A generalized
growing and pruning RBF (GGAP-RBF) neural network for function
approximation,” IEEE Trans. Neural Netw., vol. 16, no. 1, pp. 57–67,
Jan. 2005.

[18] M. Bortman and M. Aladjem, “A growing and pruning method for radial
basis function networks,” IEEE Trans. Neural Netw., vol. 20, no. 6, pp.
1039–1045, Jun. 2009.

[19] J. Lian, Y. Lee, S. Sudhoff, and S. Zak, “Self-organizing radial basis
function network for real-time approximation of continuous-time dynam-
ical systems,” IEEE Trans. Neural Netw., vol. 19, no. 3, pp. 460–474,
Mar. 2008.

[20] S. Chen, X. Hong, B. Luk, and C. Harris, “Construction of tuneable
radial basis function networks using orthogonal forward selection,” IEEE
Syst., Man, Cybern., vol. 39, no. 2, pp. 457–466, Apr. 2009.

[21] H. Huan, D. Hien, and H. Tue, “Efficient algorithm for training interpo-
lation RBF networks with equally spaced nodes,” IEEE Trans. Neural

Netw., vol. 22, no. 6, pp. 982–988, Jun. 2011.
[22] T. Xie, H. Yu, J. Hewlett, P. Rózycki, and B. Wilamowski, “Fast

and efficient second-order method for training radial basis function
networks,” IEEE Trans. Neural Netw. Learn. Syst., vol. 23, no. 4, pp.
609–619, Apr. 2012.

[23] C. Friedman, Utility-based learning from data, CRC Press, 2010.
[24] H. Guo, “A simple algorithm for fitting a Gaussian function,” IEEE

Signal Process. Mag., vol. 28, no. 5, pp. 134–137, Sep. 2011.
[25] S. Boyd and L. Vandenberghe, Convex optimization, Cambridge Univer-

sity Press, 2004.
[26] J. Gu and P. J. Wolfe “Robust adaptive beamforming using variable

loading,” IEEE Wksp. Sensor Array Multichan. Process. 2006, pp. 1–5.
[27] J. A. Bilmes, “A gentle tutorial of the EM algorithm and its application to

parameter estimation for Gaussian mixture and hidden Markov models,”
Tech. Rep. 97-021, Intl. Comp. Sci. Inst., Berkeley CA, 1997.

[28] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52,
no. 4, pp. 1289–1306, Apr. 2006,

[29] K. Hlaváčková-Schindler, “Tikhonov regularization parameter in re-
producing kernel Hilbert spaces with respect to the sensitivity of the
solution,” Intl. Conf. Artif. Neural Netw. (ICANN) 2008, pp. 215–224.

[30] L. Weruaga and B. Kieslinger, “Tikhonov training of the CMAC neural
network,” IEEE Trans. Neural Netw., vol. 17, no. 3, pp. 613–622, May
2006.

[31] Y. Morimoto, H. Ishii, and S. Morishita, “Efficient construction of
regression trees with range and region splitting,” Mach. Learn., vol.
45, no. 3, pp. 235–259, Dec. 2001.

[32] A. Tsanasa and A. Xifara, “Accurate quantitative estimation of energy
performance of residential buildings using statistical machine learning
tools,” Energy Buildings, vol. 49, pp. 560–567, Jun. 2012.

[33] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32,
Oct. 2001.

PLACE
PHOTO
HERE

Luis Weruaga (M’95, SM’11) received the M.S.
degree in telecommunications engineering in 1990
from the University of Vigo, and the Ph.D. in the
same field in 1994 from the Polytechnic University
of Madrid, Spain. From 1995 to 1998 he worked for
Telefonica Spain as a R&D engineer, period in which
he co-worked in Graphnet Inc. (Teaneck, NJ) for one
year. In 1998 he joined Sema Group Spain as head of
its DSP unit, becoming Assist. Prof. in signal and

communications theory at Cartagena University of
Technology, Spain one year later. In 2003 he joined

the Austrian Academy of Sciences, Vienna, where he worked for almost
seven years. During that time, he was also adjunct lecturer at the Technical
University of Vienna. Since 2010 he is Assoc. Prof. at Khalifa University
(KUSTAR), United Arab Emirates. He has published more than sixty papers
in conference and peer-reviewed journals, and holds two patents. His main
technical interest are time–frequency analysis and machine learning.

PLACE
PHOTO
HERE

Javier Vı́a (M’08, SM’12) received his telecommu-
nication engineer degree and his Ph.D. in electrical
engineering from the University of Cantabria, Spain
in 2002 and 2007, respectively. In 2002 he joined
the Department of Communications Engineering,
University of Cantabria, Spain, where he is currently
Associate Professor. He has spent visiting periods
at the Smart Antennas Research Group of Stanford
University, and at the Department of Electronics
and Computer Engineering (Hong Kong University
of Science and Technology). Dr. Vı́a has actively

participated in several European and Spanish research projects. His current
research interests include blind channel estimation and equalization in wireless
communication systems, multivariate statistical analysis, quaternion signal
processing and kernel methods.

