21 research outputs found

    Algorithms for feature selection and pattern recognition on Grassmann manifolds

    Get PDF
    Includes bibliographical references.2015 Summer.This dissertation presents three distinct application-driven research projects united by ideas and topics from geometric data analysis, optimization, computational topology, and machine learning. We first consider hyperspectral band selection problem solved by using sparse support vector machines (SSVMs). A supervised embedded approach is proposed using the property of SSVMs to exhibit a model structure that includes a clearly identifiable gap between zero and non-zero feature vector weights that permits important bands to be definitively selected in conjunction with the classification problem. An SSVM is trained using bootstrap aggregating to obtain a sample of SSVM models to reduce variability in the band selection process. This preliminary sample approach for band selection is followed by a secondary band selection which involves retraining the SSVM to further reduce the set of bands retained. We propose and compare three adaptations of the SSVM band selection algorithm for the multiclass problem. We illustrate the performance of these methods on two benchmark hyperspectral data sets. Second, we propose an approach for capturing the signal variability in data using the framework of the Grassmann manifold (Grassmannian). Labeled points from each class are sampled and used to form abstract points on the Grassmannian. The resulting points have representations as orthonormal matrices and as such do not reside in Euclidean space in the usual sense. There are a variety of metrics which allow us to determine distance matrices that can be used to realize the Grassmannian as an embedding in Euclidean space. Multidimensional scaling (MDS) determines a low dimensional Euclidean embedding of the manifold, preserving or approximating the Grassmannian geometry based on the distance measure. We illustrate that we can achieve an isometric embedding of the Grassmann manifold using the chordal metric while this is not the case with other distances. However, non-isometric embeddings generated by using the smallest principal angle pseudometric on the Grassmannian lead to the best classification results: we observe that as the dimension of the Grassmannian grows, the accuracy of the classification grows to 100% in binary classification experiments. To build a classification model, we use SSVMs to perform simultaneous dimension selection. The resulting classifier selects a subset of dimensions of the embedding without loss in classification performance. Lastly, we present an application of persistent homology to the detection of chemical plumes in hyperspectral movies. The pixels of the raw hyperspectral data cubes are mapped to the geometric framework of the Grassmann manifold where they are analyzed, contrasting our approach with the more standard framework in Euclidean space. An advantage of this approach is that it allows the time slices in a hyperspectral movie to be collapsed to a sequence of points in such a way that some of the key structure within and between the slices is encoded by the points on the Grassmannian. This motivates the search for topological structure, associated with the evolution of the frames of a hyperspectral movie, within the corresponding points on the manifold. The proposed framework affords the processing of large data sets, such as the hyperspectral movies explored in this investigation, while retaining valuable discriminative information. For a particular choice of a distance metric on the Grassmannian, it is possible to generate topological signals that capture changes in the scene after a chemical release

    Adaptation of K-means-type algorithms to the Grassmann manifold, An

    Get PDF
    2019 Spring.Includes bibliographical references.The Grassmann manifold provides a robust framework for analysis of high-dimensional data through the use of subspaces. Treating data as subspaces allows for separability between data classes that is not otherwise achieved in Euclidean space, particularly with the use of the smallest principal angle pseudometric. Clustering algorithms focus on identifying similarities within data and highlighting the underlying structure. To exploit the properties of the Grassmannian for unsupervised data analysis, two variations of the popular K-means algorithm are adapted to perform clustering directly on the manifold. We provide the theoretical foundations needed for computations on the Grassmann manifold and detailed derivations of the key equations. Both algorithms are then thoroughly tested on toy data and two benchmark data sets from machine learning: the MNIST handwritten digit database and the AVIRIS Indian Pines hyperspectral data. Performance of algorithms is tested on manifolds of varying dimension. Unsupervised classification results on the benchmark data are compared to those currently found in the literature

    Pattern Recognition in High-Dimensional Data

    Get PDF
    Vast amounts of data are produced all the time. Yet this data does not easily equate to useful information: extracting information from large amounts of high dimensional data is nontrivial. People are simply drowning in data. A recent and growing source of high-dimensional data is hyperspectral imaging. Hyperspectral images allow for massive amounts of spectral information to be contained in a single image. In this thesis, a robust supervised machine learning algorithm is developed to efficiently perform binary object classification on hyperspectral image data by making use of the geometry of Grassmann manifolds. This algorithm can consistently distinguish between a large range of even very similar materials, returning very accurate classification results with very little training data. When distinguishing between dissimilar locations like crop fields and forests, this algorithm consistently classifies more than 95 percent of points correctly. On more similar materials, more than 80 percent of points are classified correctly. This algorithm will allow for very accurate information to be extracted from these large and complicated hyperspectral images

    Comparing sets of data sets on the Grassmann and flag manifolds with applications to data analysis in high and low dimensions

    Get PDF
    Includes bibliographical references.2020 Summer.This dissertation develops numerical algorithms for comparing sets of data sets utilizing shape and orientation of data clouds. Two key components for "comparing" are the distance measure between data sets and correspondingly the geodesic path in between. Both components will play a core role which connects two parts of this dissertation, namely data analysis on the Grassmann manifold and flag manifold. For the first part, we build on the well known geometric framework for analyzing and optimizing over data on the Grassmann manifold. To be specific, we extend the classical self-organizing mappings to the Grassamann manifold to visualize sets of high dimensional data sets in 2D space. We also propose an optimization problem on the Grassmannian to recover missing data. In the second part, we extend the geometric framework to the flag manifold to encode the variability of nested subspaces. There we propose a numerical algorithm for computing a geodesic path and distance between nested subspaces. We also prove theorems to show how to reduce the dimension of the algorithm for practical computations. The approach is shown to have advantages for analyzing data when the number of data points is larger than the number of features

    Doctor of Philosophy

    Get PDF
    dissertationWith the ever-increasing amount of available computing resources and sensing devices, a wide variety of high-dimensional datasets are being produced in numerous fields. The complexity and increasing popularity of these data have led to new challenges and opportunities in visualization. Since most display devices are limited to communication through two-dimensional (2D) images, many visualization methods rely on 2D projections to express high-dimensional information. Such a reduction of dimension leads to an explosion in the number of 2D representations required to visualize high-dimensional spaces, each giving a glimpse of the high-dimensional information. As a result, one of the most important challenges in visualizing high-dimensional datasets is the automatic filtration and summarization of the large exploration space consisting of all 2D projections. In this dissertation, a new type of algorithm is introduced to reduce the exploration space that identifies a small set of projections that capture the intrinsic structure of high-dimensional data. In addition, a general framework for summarizing the structure of quality measures in the space of all linear 2D projections is presented. However, identifying the representative or informative projections is only part of the challenge. Due to the high-dimensional nature of these datasets, obtaining insights and arriving at conclusions based solely on 2D representations are limited and prone to error. How to interpret the inaccuracies and resolve the ambiguity in the 2D projections is the other half of the puzzle. This dissertation introduces projection distortion error measures and interactive manipulation schemes that allow the understanding of high-dimensional structures via data manipulation in 2D projections

    Exploiting geometry, topology, and optimization for knowledge discovery in big data

    Get PDF
    2013 Summer.Includes bibliographical references.In this dissertation, we consider several topics that are united by the theme of topological and geometric data analysis. First, we consider an application in landscape ecology using a well-known vector quantization algorithm to characterize and segment the color content of natural imagery. Color information in an image may be viewed naturally as clusters of pixels with similar attributes. The inherent structure and distribution of these clusters serves to quantize the information in the image and provides a basis for classification. A friendly graphical user interface called Biological Landscape Organizer and Semi-supervised Segmenting Machine (BLOSSM) was developed to aid in this classification. We consider four different choices for color space and five different metrics in which to analyze our data, and results are compared. Second, we present a novel topologically driven clustering algorithm that blends Locally Linear Embedding (LLE) and vector quantization by mapping color information to a lower dimensional space, identifying distinct color regions, and classifying pixels together based on both a proximity measure and color content. It is observed that these techniques permit a significant reduction in color resolution while maintaining the visually important features of images. Third, we develop a novel algorithm which we call Sparse LLE that leads to sparse representations in local reconstructions by using a data weighted 1-norm regularization term in the objective function of an optimization problem. It is observed that this new formulation has proven effective at automatically determining an appropriate number of nearest neighbors for each data point. We explore various optimization techniques, namely Primal Dual Interior Point algorithms, to solve this problem, comparing the computational complexity for each. Fourth, we present a novel algorithm that can be used to determine the boundary of a data set, or the vertices of a convex hull encasing a point cloud of data, in any dimension by solving a quadratic optimization problem. In this problem, each point is written as a linear combination of its nearest neighbors where the coefficients of this linear combination are penalized if they do not construct a convex combination, revealing those points that cannot be represented in this way, the vertices of the convex hull containing the data. Finally, we exploit the relatively new tool from topological data analysis, persistent homology, and consider the use of vector bundles to re-embed data in order to improve the topological signal of a data set by embedding points sampled from a projective variety into successive Grassmannians

    Cluster Exploration using Informative Manifold Projections

    Full text link
    Dimensionality reduction (DR) is one of the key tools for the visual exploration of high-dimensional data and uncovering its cluster structure in two- or three-dimensional spaces. The vast majority of DR methods in the literature do not take into account any prior knowledge a practitioner may have regarding the dataset under consideration. We propose a novel method to generate informative embeddings which not only factor out the structure associated with different kinds of prior knowledge but also aim to reveal any remaining underlying structure. To achieve this, we employ a linear combination of two objectives: firstly, contrastive PCA that discounts the structure associated with the prior information, and secondly, kurtosis projection pursuit which ensures meaningful data separation in the obtained embeddings. We formulate this task as a manifold optimization problem and validate it empirically across a variety of datasets considering three distinct types of prior knowledge. Lastly, we provide an automated framework to perform iterative visual exploration of high-dimensional data
    corecore