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Abstract

Vast amounts of data are produced all the time. Yet this data does not easily
equate to useful information: extracting information from large amounts
of high dimensional data is nontrivial. People are simply drowning in
data. A recent and growing source of high-dimensional data is hyperspec-
tral imaging. Hyperspectral images allow for massive amounts of spectral
information to be contained in a single image. In this thesis, a robust su-
pervised machine learning algorithm is developed to efficiently perform
binary object classification on hyperspectral image data by making use of
the geometry of Grassmann manifolds. This algorithm can consistently
distinguish between a large range of even very similar materials, returning
very accurate classification results with very little training data. When dis-
tinguishing between dissimilar locations like crop fields and forests, this
algorithm consistently classifies more than 95 percent of points correctly.
On more similar materials, more than 80 percent of points are classified
correctly. This algorithm will allow for very accurate information to be
extracted from these large and complicated hyperspectral images.
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Chapter 1

Introduction

From traffic footage to internet connections to satellite scans and more, the
modern world generates massive quantities of data all of the time. Just
the storage of data on such a scale is an extremely difficult endeavor, let
alone the processing. Yet eventually this data must be processed in order
to extract useful information, or it serves no good to anyone. However,
many large datasets also depend on a huge number of variables, or are
composed of a large number of pixels. In such sets of data, a single point
may be represented as an element of a very high-dimensional vector space.
This thesis will attempt to develop new techniques to efficiently process
high-dimensional data.

In particular, this thesis focuses on object classification on hyperspectral
images. Hyperspectral images promise to encodemassive amounts of infor-
mation about a spatial region into a very convenient representation. These
images merge spectral, and geometric information into a coherent picture
which is so far relatively unexplored bymathematicians. Moreover, there is
a high level of demand for efficient processing algorithms for hyperspectral
images. These images have applications in spectroscopy, food processing,
geology, counterterrorist operations, and environmental analysis. However,
simple processing algorithms are not always sufficient to make good use
of the information contained within a hyperspectral image. This thesis has
produced an algorithm for object classification on static hyperspectral im-
ages, with the hope that future work may expand upon it to develop a real
time algorithm for object classification on dynamic hyperspectral images, a
largely unexplored topic without effective algorithms.





Chapter 2

Relevant Background

2.1 The Grassmann Manifold

The Grassmann Manifold, or Grassmannian, Gr(k , n) is a compact smooth
manifold consisting of all k-dimensional subspaces of Rn . Its properties
make it a natural setting for efficient subspace tracking and dimensional
reduction algorithms. In particular, optimization on a Grassmann mani-
fold will allow for problems requiring the choice of an optimal subspace to
be solved in a manner independent of the representation of that subspace.
In this section, a representation of this manifold and some of the geomet-
ric properties which will be useful in the development and description of
numerical methods will be developed.

2.1.1 The Quotient Representation

While the Grassmannian is not itself a Lie group, it can be represented
as a quotient of Lie groups, particularly orthogonal groups. This gives
Grassmannians a natural structure as homogenous spaces.

Definition 2.1. The orthogonal group O(n) is the group of all real orthogonal
matrices A under matrix multiplication. Written formally this is

O(n) � �
A ∈ GLn(R) : AAT

� I
	
.

It can also be thought of as the set of all ordered orthonormal bases
of Rn , where each orthogonal matrix is constructed simply by appending
the basis vectors into a matrix. Most significantly, O(n) is a compact Lie
group, which is to say that it is a compact manifold with a group structure
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where the group operation is a differentiablemap from O(n)×O(n) to O(n).
Knowing that O(n) is a smooth manifold, we are first motivated to search
for the tangent space to O(n), as any quotient of orthogonal groups will
inherit some subspace of the tangent space.

Proposition 2.1. For Y ∈ O(n), the tangent space to Y is given by all matrices
A ∈ GL(n ,R) such that YTA is skew-symmetric.

Proof. This can be seen immediately by taking a differentiable path α :
(−ε, ε) → O(n) with α(0) � Y and α′(0) � A, noting that YTY � I, and
taking a derivative at 0. �

As the dimension of a Lie group is equal to the dimension of its tangent
space at the origin, this further implies that O(n) is n(n − 1)/2 dimensional.
Knowing the tangent space of O(n) is sufficient to allow for the creation
of a natural notion of length based upon the inner product on the tangent
space, which can again be inherited by the quotient group. For two tangent
vectors A and B to O(n) at Y, a natural inner product is

〈A, B〉 � trAT B.

For A � B, this induces the Frobenius norm ‖ · ‖F and a length on O(n).
Definition 2.2. If γ : [a , b]→ O(n) is a differentiable map, then the length of γ
is ∫ b

a
‖γ′(x)‖F dx.

At this point, we may define the Grassmann manifold as a quotient of
orthogonal groups.

Definition 2.3. The Grassmann manifold Gr(k , n) is the quotient manifold given
by

Gr(k , n) � O(n)/(O(k) × O(n − k)).
In particular, defining the Grassmann manifold in this manner implies

a convenient manner of representing elements of it as equivalence classes
of matrices. In particular, an element may be represented as an equivalence
class of “tall” n × p matrices with orthonormal columns, invariant under
right-multiplication by any element of O(k). This representation of the
Grassmann manifold will later in this thesis be useful for achieving maps
between arbitrary matrices and elements of a Grassmann manifold. To
more concretely grasp a point on Gr(k , n), consider an example.
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Example 2.1. The two matrices



1 0 0
0 1 0
0 0 1
0 0 0
0 0 0



and



0 1
√

2
1
√

2
1
√

2
1
2 −

1
2

−
1
√

2
1
2 −

1
2

0 0 0
0 0 0


are different representatives of the same equivalence class in Gr(3, 5).

With some effort, this representation allows for a simple expression for
the tangent space to the Grassmann manifold, noting that the Frobenius
norm on the tangent space is inherited from the orthogonal group.

Proposition 2.2. Edelman et al. (1998)
The tangent space to Gr(k , n) � O(n)/(O(k)×O(n−k)) at Y ∈ Gr(k , n) consists
of all matrices of the form

Y
(
0 −AT

A 0

) (
C 0
0 D

)
for A an (n − p) × p matrix, C ∈ O(p), and D ∈ O(n − p).

It is not immediately clear that this new definition of the Grassmann
manifold is consistent with the first given definition, that the Grassmann
manifold consists of all k-dimensional linear subspaces of Rn . To see this,
recall that the orthogonal groupmaybe represented as all ordered orthonor-
mal bases of Rn . Then O(n)/O(n − k), the so-called Stiefel manifold, may
be represented as all ordered orthogonal k-frames on Rn . Any k-frame
specifies a particular subspace ofRn , though a single subspace may be rep-
resented by multiple elements of the Stiefel manifold. This is addressed in
(O(n)/O(n−k))/O(k), as the quotient by O(k) identifies all distinct k-frames
which specify the same subspace of Rn .

2.1.2 Distance on the Grassmann Manifold

In the previous section, a Riemannian metric on Grassmannians was intro-
duced using the structure inherited from the orthogonal group. However,
there are many distinct notions of distance on Grassmann manifolds, and
many optimization problems do not indicate clearly which should be used.
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Figure 2.1 Each point inGr(1, 2) represents a line. Identifying each line with
the two points on the unit circle it intersects, a very natural notion of distance
may be defined as theminimumangle between two pairs of these intersection
points.

As such, other notions of distance may prove more natural or more effi-
cient in certain applications. In addition, calculating the distance between
two points on a Grassmann manifold using the equation in Definition 2.2
is cumbersome and computationally intensive. This section will introduce
several more geometrically motivated notions of distance.

To motivate a metric on a Grassmann manifold, one must obtain a geo-
metric notion of distance between two subspaces. Clearly neither the mini-
mum or maximum distance between points on the subspaces are sufficient,
as all subspaces intersect and distinct subspaces will always have points
arbitrarily far apart. As a simple example observe the manifold Gr(1, 2)
consisting of lines through the origin in R2, shown in Figure 2.1.

This suggests that distance between subspacesmay be defined using the
angles between them. Of course, in higher dimensions the angle between
two subspaces is not awell-defined notion. To rigorize this notion, principal
angles are introduced.

Definition 2.4. Chepushtanova (2015)
LetU andV be two elements ofGr(k , n), represented as orthonormal n×k matrices.
The principal angles θ1 , . . . , θk are recursively defined in increasing order by

θi � minimize
ui∈span(U), vi∈span(V), ‖ui ‖�‖vi ‖�1

arccos uT
i vi

subject to uT
i u j � vT

i v j � 0, j � 1, . . . , i − 1.
(2.1)

Let θ ∈ Rk denote the vector of principal angles. A common statistical
quantity, the canonical correlation of the two subspaces, is simply the vector
of the cosines of principal angles. While the optimization-based definition
of principal angles is mathematically clear, a more computationally efficient
calculation or these quantities is given by the following algorithm.
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Principal Angle Computation Chepushtanova (2015)

1. Let U,V ∈ Gr(k , n) be represented by orthonormal matrices.

2. Define (Y,Σ, Z) � svd(UTV).
3. Then θ � arccos(diag(Σ)).

While many distinct metrics and pseudometrics may be defined based on
principal angles, three have been chosen for testing in this paper.

Definition 2.5. Let U,V ∈ Gr(k , n).
The geodesic metric is defined by dg(U,V) � ‖θ‖.
The chordal metric is defined by dc(U,V) � ‖ sin θ‖.
The `-smallest pseudometric is defined by d`(U,V) �

√∑`
i�1 θ

2
i .

2.1.3 Geodesics and Parallel Transport

On a Euclidean space, the idea of moving in a straight line is a fairly simple
notion - maintain a constant velocity. Intuitively, extending this notion to
a manifold should suggest that the tangent vector along a “straight” path
should remain constant. Yet this is not possible, as the tangent space of a
manifold varies frompoint topoint,making itmore complicated tomaintain
a consistent notions of parallelism. To recapture this concept of a straight
line, one may introduce the parallel transport of a vector tangent to the
manifold. As Grassmann manifolds are Riemannian, given a Riemannian
metric on Gr(k , n) there exists a unique symmetric Riemannian connection,
immediately defining a covariant derivative. Then the parallel transport of
a tangent vector along a path is defined as a vector field restricted to the
path such that the covariant derivative is identically 0. A path is said to be
a geodesic if its tangent vectors are parallel everywhere along it.

In this section, the Riemannian metric induced from the orthogonal
group is used to define geodesics and parallel transport on a Grassmann
manifold; other metrics will result in slightly different definitions of these
concepts. On the Grassmann manifold Gr(k , n), there exist methods run-
ning in O(nk2) steps by which both geodesic curves and parallel transports
of tangent vectors along geodesics may be determined. Quickly deter-
mining these is essential to many numerical methods on the Grassmann
manifold.
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Proposition 2.3. Edelman et al. (1998)
The Grassmann manifold geodesic Y(t) with Y(0) � Y ∈ Gr(k , n) and Y′(0) � A
is given by

Y(t) � �
YV U

� (
cosΣt
sinΣt

)
VT (2.2)

where UΣVT is the compact singular value decomposition of A. The distance
as specified in Definition 2.2 along a geodesic between two points is the geodesic
distance.

Proposition 2.4. Edelman et al. (1998)
Let A and B be tangent vectors to the Grassmann manifold at Y. The parallel
transport of B along the geodesic starting at Y with initial direction Y′(0) � A is

τB(t) �
(�

YV U
� (
− sinΣt
cosΣt

)
UT

+ (I −UUT)
)

B (2.3)

where UΣVT is the compact singular value decomposition of A.

These results are particularly powerful in that after the singular value
decompositionhasbeen calculated, all remainingoperations tend to amount
tomatrixmultiplication,which is both easily parallelizable and fairly simply
made very efficient.

2.2 Hyperspectral Imaging

A hyperspectral image intuitively functions much like human eyes do.
Within human eyes, specialized cells capture incident light in three sep-
arate bands - red, green, and blue. This raw information is transferred via
an optical nerve to the brain, where it is efficiently processed and converted
into a single colored image. Similarly, in a hyperspectral image, one takes
a desired frequency range and divides it into a large number of narrow
frequency bands. A complex system of optics is placed in a hyperspectral
camera in order to be able to properly distinguish between incident photons
in each separate band. At every pixel of the image, intensity data for each
band is collected. While of course this data can then be assembled into a
single image to mirror the human brain process, leaving the bands separate
yields a far more interesting set of data. With many hyperspectral images
containing more than one-hundred frequency bands, such images essen-
tially contain hundreds of full frequency spectra, one at every pixel of the
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Figure 2.2 One possible construction of a hyperspectral camera. While the
preciseoptical arrangement varies, virtually all hyperspectral camerasuse very
similar types of designs to this one. (a)

image. A clever analysis of such an image may thus take into account both
spectroscopic and spatial information. Hyperspectral videos, or dynamic
hyperspectral images, also allow for temporal information to be analyzed.

2.2.1 Hyperspectral Camera Construction

The actual construction of a hyperspectral camera is a complicated affair,
generally involving the inclusion of complicated and expensive optical ar-
rays as in Figure 2.2 so as to be able to properly separate out the differ-
ent wavelength bands required with sufficient accuracy and loss of signal
strength. However, some progress has been made in developing more in-
expensive hyperspectral cameras, such as in Habel et al. (2012). While the
technology for hyperspectral images has existed for some time, devices ca-
pable of capturing dynamic hyperspectral images in real time are a very
new development. This is both due to the difficulty of capturing sufficient
statistics of frequency data in a short time window for a frame of a video
and due to the difficulty of transferring and creating such large amounts of
data as fast as it is being created. A promising architecture for the acquisi-
tion of hyperspectral video is demonstrated inWang et al. (2015). However,
modern hyperspectral video cameras are prohibitively expensive and thus
not accessible to most civilians. This paper focuses on the analysis of stan-
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Figure 2.3 Satellite-mounted hyperspectral cameras are capable of search-
ing huge amounts of terrain for desirable materials. Shaw and Burke (2003)

dard hyperspectral imaging due to the lack of freely available hyperspectral
video.

2.2.2 Applications of Hyperspectral Imaging

Due to the sheer amount of data contained in both dynamic and static
hyperspectral images, they are useful for a large number of tasks. The two
which are of the most interest to this thesis are remote sensing for object
detection and subsequent classification as well as dynamic object tracking.
The applicability of hyperspectral imaging to these tasks is clear - one has all
of the information necessary to detect, classify, and track objects quite easily
with the combination of frequency and spatial data which hyperspectral
cameras provide.
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Figure 2.4 Hyperspectral object classification can be used to keep track of
dangerous toxins, like oil spills in large bodies of water. (b)
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Remote Sensing

A broad overview of the uses for hyperspectral imaging in remote sensing
may be found in Shaw and Burke (2003). For such an application, con-
sider a hyperspectral camera mounted on a satellite or aircraft. As the craft
progresses, the hyperspectral camera may capture images of wide swaths
of terrain passing below as shown in Figure 2.3. However, the data need
not be time dependent provided the vehicle is moving sufficiently quickly,
although multiple images can be taken at different times. Naively, the data
corresponding to a point on the ground provides detailed knowledge of
the precise materials present at that spot, potentially giving detailed in-
formation relevant for geological, botanical, or national security purposes
such as in Figure 2.4. However, among other confounding effects, atmo-
spheric noise and scattering effects can have tremendous impacts on the
data, a problem analyzed in Griffin and Burke (2003). The strong rela-
tionship between hyperspectral device behavior and atmospheric effects is
explored and a predictive model forecasting hyperspectral camera system
performance developed in Kerekes and Baum (2003). Moreover, successful
automatic target detection algorithms have been developed in Manolakis
et al. (2003). However, the techniques there developed are strongly in-
fluenced by the specific hardware details of particular satellite-mounted
hyperspectral devices and do not rely on Grassmann manifold techniques.
Hence, it is strongly suspected thatmore efficient andmore generalmethods
may be developed so as to allow for more streamlined and more effective
classification. This task is the primary focus of this paper.

Dynamic Object Tracking

Unlike remote sensing, dynamic object tracking is a purely time-dependent
operation. In such a task, imagine trying to keep track of a truck known
to be loaded with dangerous material. An autonomous tracking algorithm
could allow a device like a drone to follow the truck, potentially saving lives.
Significant progress has been made on the problem of object tracking with
standard videos, such as with algorithms like He et al. (2014). However,
the sheer amount of data present in dynamic hyperspectral images renders
many such algorithms unable to cope. There is also an expected increase
in reward, though. While object tracking in standard video is powerful,
hyperspectral video offers many new channels over which tracking can
occur. While many gases do not emit visible light in standard conditions,
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they are likely more receptive to some lower frequency bands, allowing for
them to be tracked as well. Moreover, objects which may initially appear
identical on a standard video can be distinguished in a hyperspectral video.
Imagine that when tracking a truck, the truck passes under a bridge. Then,
a second truck not carrying any material but otherwise identical leaves the
bridge with the original staying behind. Some wavelengths of light may
be particularly well suited to passing through the truck’s exterior, allowing
for a hyperspectral image to distinguish between an empty and non-empty
truck. Some progress has been made with the tracking of gases using tools
like persistent homology as in Chepushtanova (2015) or very simplistic
dimensional reduction methods like principal component analysis as in
Gerhart et al. (2013).





Chapter 3

Literature Review

While the analysis of hyperspectral images with Grassmannian techniques
is still largely unexplored, many related algorithms do exist. In this section,
many of these algorithms are detailed. Several of these methods are used in
the object classification algorithm presented in this paper. Other methods
are included in this section in order to create a database of useful Grass-
mannian methods and dimensional reduction techniques for use in further
investigations.

3.1 Function Optimization on the Grassmann Mani-
fold

There are many techniques for dimension reduction using Grassmann
manifolds. One straightforward approach is to find the optimal reduced-
dimension subspacevia anoptimizationproblemonaGrassmannmanifold.
Somehighly efficient algorithms to perform such optimization already exist,
a few of which are detailed here.

3.1.1 Conjugate Gradient Descent

Conjugate gradient descent methods are a class of iterative methods de-
signed to find the minimum of a function. In a conjugate gradient algo-
rithm, a step down is iteratively taken along a direction specified by a sum
of the negative gradient at a point and the direction of the previous step as
illustrated by the second conjugate gradient step in Figure 3.1. In effect, an
inner product is locally defined for the optimization problem at hand and
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Figure 3.1 Conjugate gradient methods can be seen to converge far more
rapidly than standard gradient descent methods. Cockett

a Gram-Schmidt orthogonalization procedure is iteratively performed and
subtracted off. These algorithms are of particular use as they converge su-
perlinearly and each step is relatively simple to compute. Here we describe
the algorithm for implementing Polak-Ribiére conjugate gradient descent
on a Grassmann manifold, which can be implemented in O(nk2) time on
Gr(k , n).

Polak-Ribiére Conjugate Gradient toMinimize F(Y) on aGrassmann
Manifold. Edelman et al. (1998)

1. Choose initial Y0 ∈ Gr(k , n). Let FY0 be the matrix of partial
derivatives of F with respect to each element of Y0. Define G0 �

(I − Y0Yt
0)FY0 and let H0 � −G0.

2. Iterate all following steps over j from 0 until the process is termi-
nated.

3. Minimize F(Yj(t)) over all t where Yj(t) is the geodesic starting at
Yj with initial direction H j . Let t j be the t at which the minimum
occurs and let Yj+1 � Yj(t j).

4. Define G j+1 � (I − Yj+1Yt
j+1)FYj+1 .
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5. Parallel transport both G j and H j along Yj(t) to the point Yj+1,
calling these τG j and τH j .

6. Compute the new direction of travel

H j+1 � −G j+1 + γjτH j where γj �
tr(G j+1 − τG j)t G j+1

‖G j‖F
.

7. Conjugate gradient algorithms must be occasionally reset, so let
H j+1 � −G j+1 if j + 1 ≡ 0 (mod p)(n − p).

3.1.2 Newton’s Method

Newton’s method is another iterative algorithm which can find the mini-
mum of a function. In a single Newton’s method step, a step is taken in
the direction of the negative gradient by an amount which depends on the
inverse of the function’s Hessian. This method tends to converge quadrat-
ically, but each step is not as simple to compute as in a conjugate gradient
method. In particular, while conjugate gradient steps could be computed
purely in terms of the value of a function and its gradient, Newton’smethod
also requires knowledge of the Hessian. In practice, this can cause each it-
eration to be more difficult to compute relative to a conjugate gradient
step. In Edelman et al. (1998) there is a standard implementation of New-
ton’s method on a Grassmann manifold which can also be implemented in
O(nk2) time on Gr(k , n).

Of course, an iterative numerical method requires an initial guess of
a correct solution and may behave sensitively with respect to the choice
of that guess. In particular, it is important to know how inaccurate the
initial guess can be without unexpected behavior, which may effect how
far can a tracked object move in a single frame of a dynamic hyperspectral
image without being lost by the tracking algorithm, for example. When
using Newton’s method to estimate eigenspaces of operators by using the
Grassmannmanifold, a novel improvement to Newton’s method developed
in Absil et al. (2003) is of use. It tends to enlarge bases of attraction about
minima on the manifold without a significant performance cost. This leads
to a far more stable implementation.
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3.1.3 Stochastic Gradient Descent

Stochastic gradient descent is a more specialized algorithm than the pre-
vious two. It seeks to efficiently find a minimum of a function which is
written as a sum of many component differentiable functions. In particular,
if many component functions are complicated or take a very similar form to
one another, then computing the gradient of the total function by summing
the gradient of every component function becomes a particular inefficient
task. Instead, component functions can be sampled and the gradient of the
total function estimated from the gradients of those chosen components.
After the direction and step size have been determined, this method be-
haves precisely like a standard gradient descent method. A robust and
versatile version of this algorithm has been brought to a Grassmann man-
ifold in He and Zhang (2014). This paper develops an adaptive stochastic
gradient descent algorithm, where the step size is chosen adaptively so as
to optimize the convergence rate. In general, stochastic gradient descent
can only promise a linear rate of convergence, but each calculated step is
made significantly simpler than in other methods.

3.2 Linear Dimension Reduction Techniques

Many high-dimensional data sets actually contain only a smaller number
of dimensions of actual information hidden among the many other dimen-
sions. In particular, it is often the goal to take a high-dimensional data
set and obtain a compact representation with very few dimensions. Linear
dimension reduction techniques begin with data in Rn and seek to find a
k-dimensional hyperplane which characterizes the data as well as possible
without a significant loss of valuable information. Many methods have
been developed for dimension reductions. These methods are often less
stable due to the assumption of linearity and avoid the use of manifolds.
They are very simple to implement and very computationally efficient.

3.2.1 Principal Component Analysis

Principal component analysis, or PCA, is a linear dimension reduction tech-
nique. It seeks to understand inwhich directions the datamost significantly
varies, as seen visually in Figure 3.2. It produces an ordered list of vectors
of decreasing significance. In a standard dimension reduction procedure,
the first k vectors in this list may be chosen. Here is a simple method of
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Figure 3.2 Principal component analysis examines the directions ofmost ex-
treme variation in a data set. (c)

performing a principal component analysis.

Principal Component Analysis

1. Let X be the matrix of data.

2. Compute the singular value decomposition X � UΣV t .

3. The principal component decomposition of X is then given by
P � UΣ, where each column of P is a principal component of X.

4. The ith singular value provides a weighting for the ith principal
component.

Principal component analyses are exceedingly simple to compute, giv-
ing them a strong advantage over most other dimensionality reduction
techniques. However, when attempting to classify high-dimensional data,
the subspace chosen by a principal component analysis may not be useful.
Consider a facial classification problemwhere the task is to identifywhether
an individual in an image is French or German. While dimensionality re-
duction can be useful in such cases, a principal component analysis is likely
be dominated by other factors such as biological genderwhichmore heavily
influence appearance.
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There are a number of useful extensions of principal component analysis
as well. While a standard PCA is influenced heavily by any outliers in data,
a robust PCA is designed to behave in a more stable manner. Kernel PCA
methods allow for nonlinear dimensionality reduction to be performedwith
little more computation than a standard PCA. These methods use a kernel
to bring non-linear data to a linear space to be processed. However, such
methods do not tend to consider the underlying manifold structure which
the data may possess.

Many of the currently existing algorithms for dimensionality reduction
and hyperspectral image processing use variations of principal component
analysis methods. These methods are expected to produce inferior results
to themore geometric Grassmannmanifoldmethods. It is in part the goal of
this thesis to replace the use of PCAwith the use of Grassmannianmethods.

3.2.2 Support Vector Machines

Support vector machines, or SVMs, are supervised machine learning tools
useful for dimensional reductions on binary classification tasks. A standard
support vector machine takes a training set of data divided into two classes.
The support vector machine will then determine the linear subspace sepa-
rating the two classes such that the orthogonal distance between the closest
two elements of the two classes is maximized. The dimension can then
be reduced by only considering the orthogonal complement of the selected
subspace. Support vector machines can also be generalized using kernel
methods so as to be able to use nonlinear separating curves.

3.2.3 Sparse Support Vector Machines

Support vector machines can also be made more efficient through the use
of sparsity. High-dimensional data is often sparse, which is to say that
any data depends only on a small number of indices relative to the total
number of dimensions. Moreover, forms of sparsity may be induced using
clever choices of norm, particularly in this case an `1 norm. In such cases,
sparse support vector machines, or SSVMs, are of use. Inducing sparsity
causes a support vector machine to output more polarized results, strongly
favoring a fewdimensionswhilemostly neglecting all others. For very high-
dimensional systems, this allows the majority of dimensions to be ignored,
dramatically speeding up computation. The existence and methodology of
sparse support vector machines for dimension reduction is given in Bi et al.
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(2003).
Formally, a sparse support vector machine seeks to define two parallel

hyperplanes

{x : wT x + b � −1} and {x : wT x + b � 1}, (3.1)

such that the margin between them given by 2/‖w‖`1 is maximized. If
the data is separable, these two hyperplanes are to be chosen so that they
separate the two classes of data. If not, an error factor is introduced. This
leads to the optimization problem (with e the all 1s vector, D the diagonal
matrix of class labelings for each training point, X the matrix of data point
coordinates, and C a positive parameter characterizing the tradeoff between
separability and margin size),

minimize
w ,b ,ζ

‖w‖1 + CeTζ

subject to D(Xw + be) ≥ e − ζ, ζ ≥ 0.
(3.2)

Ultimately, this optimization problem may be converted into a linear
program as expressed in Chepushtanova (2015) equation (2.8). Such sparse
support vector machines have been applied to the classification of hyper-
spectral images in Chepushtanova (2015) and Chepushtanova and Kirby
(2015). The algorithm presented in this paper is a modification of the
method used in these papers. Implementation of these methods in this
thesis’s analyses have commonly reduced 12000-dimensional spaces to at
most 3 significant dimensions.

3.3 Nonlinear Dimension Reduction Techniques and
Manifold Embedding Methods

While linear dimension reduction techniques have their advantages, such as
fast computation time, they are incredibly inefficient when significant non-
linearity is introduced to a problem. Suppose, as an example, the task of
tracking a pendulum in a high-resolution video. Each frame can be viewed
as a single point in an extraordinarily high-dimensional space. However,
in actuality the pendulum possesses very few degrees of freedom, tracing
a nonlinear path through the video along a simple manifold. Nonlin-
ear dimensional reduction techniques can serve to characterize this simple
manifold rather than the vastly larger space, allowing for much simpler
processing and simpler visualization. This section will introduce a series
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of nonlinear dimension techniques. In addition, these techniques may also
serve to embed abstract manifolds into a Euclidean space where they may
be more easily analyzed.

Many of these techniques are, in a Euclidean setting, dependent on the
Manifold Hypothesis, an assumption that a high-dimensional data set does
not truly depend on the entire space it is embedded in. Instead, this hy-
pothesis posits that the data is actually sampled from an underlying lower-
dimensional smooth manifold. This reduces many data analysis questions
to determining an approximate form of the underlying sample manifold,
from which a natural geometry on the data arises. In real applications, this
hypothesis is often valid and is a good initial assumption.

3.3.1 Multidimensional Scaling

Given some collection of high-dimensional data, multidimensional scaling
is amethod of constructing a configuration of points in a lower-dimensional
Euclidean space based purely on the distances between the points. It at-
tempts to create an isometric embedding in the minimum possible dimen-
sional space. In this paper, multidimensional scaling is primarily used as an
embeddingmethod to bring points on an abstractmanifold into a Euclidean
space.

Multidimensional Scaling Kruskal and Wish (1978)

1. Take as input an specified order for a set of p datapoints and D a
p × p matrix of distances between those points.

2. Then, let M � PAP for P � I − 1
p eeT , Ai j � −

1
2 D2

i j , and e the all 1s
vector.

3. Write M � XT X.

4. Columns of X represent points of data embedded in a Euclidean
space.

While this method is extremely versatile and simple to implement, con-
structing the distance matrix can be extremely computationally intensive
for points on an abstract manifold. When used as a method to embed a
Grassmann manifold into Euclidean space, determining this distance ma-
trix requires O(p2) distance computations, each of which requires an SVD
to be computed.
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3.3.2 Locally Linear Embedding

Locally linear embedding, or LLE, is a sophisticated nonlinear dimensional
reduction technique. For each datapoint, the nearest neighbors are selected
and points are thus connected by edges, forming a distance-weighted graph
which approximates the manifold. Themethod then takes advantage of the
local linearity of the manifold in order to represent each point by a linear
combination of its neighbors, with some small error term. In each case, we
obtain a local understanding of the graph and thus the intrinsic manifold
describing the data. This manifold is then mapped to as low dimensional
a linear space as possible while preserving the observed local properties.
The method is described further in Saul and Roweis (2000) and Roweis and
Saul (2000). An analysis of this algorithm is also provided in Belkin and
Niyogi (2003). Thismethod runs inO(dn2)where d is the number of original
dimensions and n thenumber of original datapoints. This quadratic growth
in the number of datapoints canmake locally linear embedding less feasible
on extremely large datasets.

3.3.3 Laplacian Eigenmaps

Much like locally linear embedding, Laplacian eigenmaps as introduced
in Belkin and Niyogi (2003) seeks to convert data into a weighted graph
in order to understand the structure of an underlying lower-dimensional
manifold. However, the Laplacian eigenmaps algorithm is motivated by
the optimal embedding problem on amanifold, potentially obtaining better
results than locally linear embedding. In a manifold optimal embedding
problem, we seek a map to find a map f which has unit L2 norm from a
manifold to a low dimensional Euclidean space such that the integral over
a standard measure ∫

M

‖∇ f (x)‖2

is minimized. Finding such an f on a manifold can be treated as an eigen-
value problem for the Laplace-Beltrami operator. In building a nearest
neighbor graph out of data sampled on a manifold, the Laplace-Beltrami
operator may be approximated by the graph Laplacian and a similar mini-
mization process thus carried out.
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Laplacian Eigenmaps Belkin and Niyogi (2003)

1. Construct an adjacency graph. This can be done by choosing a
number of nearest neighbors for each point or by connecting all
datapoints lying within a certain distance of each other.

2. Choose a positive real parameter t. Provide a heat-kernel weight-
ing on the adjacency graph between datapoints xi and x j of

Wi j � e−
‖xi−x j ‖2

t

if xi and x j have an edge between them and 0 otherwise.

3. Define the diagonal weight matrix D by

Dii �
∑

k

Wki

and Di j � 0 for i , j. Define the graph Laplacian L by

L � D −W.

4. Compute the eigenvalues and eigenvectors for the generalized
eigenvector problem

L f � λD f ,

Note that if there areno isolatedpoints in the adjacencygraph, one
can simply invert D and obtain a standard eigenvector problem.

5. Choose a positive integer m as the number of dimensions for
a low-dimensional embedding. Choose the eigenvectors fk for
1 ≤ k ≤ m corresponding to the m smallest strictly positive eigen-
values. Define an embedding into Rm by

xi → ( f1(i), f2(i), . . . , fm(i)).
Laplacian eigenmaps very well captures local geometric information of

the data in an embedding. However, it takes the number of dimensions
which are output as a parameter specified by the user. This denies the
approach the ability to adaptively choose an ideal low-dimensional space
in which to place output. More significantly, there is as of yet no known
way in which to choose an optimum value for the parameter t, though



Grassmannian Methods for Video Data Analysis 25

experimental evidence in Belkin and Niyogi (2003) indicates that such an
optimum value likely exists and that the performance of the algorithm
can depend on the value of t. However, if the graph is sufficiently well-
connected, simply choosing t � ∞ (ensuring weights of 1 for any connected
edges) does capture a reasonable amount of information about the data’s
structure.

3.4 Grassmannian Methods for Video Data Analysis

Anumberof efficient algorithmsusingaGrassmannmanifold for tasksdeal-
ing with high-dimensional data have been developed. While this thesis’s
algorithm is not designed for dynamic hyperspectral images, this section
serves as a starting point from which Grassmannian methods for such an
analysis canbe built. This sectionwill serve todescribe howsuch algorithms
represent and process data.

3.4.1 Persistent Homology for Hyperspectral Videos

This algorithm found in Chepushtanova (2015) makes use of persistent
homology in order to understanding changes over time in a hyperspectral
video. Persistent homology is a novel technique from topological data
analysis which allows for significant topological data to be extracted as well
as the relevant length scales on which such patterns occur. Imagine as an
example two sets of planar data, one of which is randomly distributed on
[−1, 1] × [−1, 1] and the other which lies on the unit circle. The second
data set has a topological feature, namely the hole in the data which is
presumably an important feature of theway inwhich it was generated. One
tool in simplicial homology is the Vietoris-Rips complex, built by varying a
parameter ε > 0 is varied over some range of values. For each ε a simplicial
complex is generated, where some set of k + 1 points is made into a k-
simplex if the pairwise distances between them is less than ε. Examining
the simplicial homology of the generated complex as a function of ε gives
access to a tremendous amount of topological data like the presence of holes
while also providing geometric information like relevant length scales for a
set of data.

In order to apply this technique to a hyperspectral video, the videomust
first be decomposed into manageable frames which can then be compared
in order to gain temporal information. Analyzing a series of frames in
Euclidean space is too computationally intense. Instead, take an x × y
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frame with z frequency bands and reform it into an x y × z matrix. By
taking the singular value decomposition of this matrix and choosing an
orthogonal matrix as a representative, an entire frame of the hyperspectral
video may be represented as a point on a Grassmann manifold Gr(z , x y).
After bringing an entire video to the Grassmannmanifold, the Vietoris-Rips
complex is built and simplicial homologies calculated.

In Chepushtanova (2015), this technique is used in order to detect the
flow of a gas in a hyperspectral video. However, the value of this algorithm
is somewhat limited. While it is particularly good at tracking the presence
and the topological behavior of changes, it is not good at distinguishing
betweenmultiple distinct simultaneous changes, such as if a gas were being
released with a moving background behind. Moreover, this technique is
not easily capable of showing where a change is happening, only noting its
presence and its behavior.

3.4.2 GRASTA

GRASTA as presented in He et al. (2011) is a novel approach to subspace-
tracking from incomplete information. It has demonstrated usefulness in
robust matrix completion and real-time separation of background from
foreground in standard video data. GRASTA utilizes a dynamic subspace-
tracking algorithm. Note that best capturing an object moving in video
over time requires the use of a dynamically updating collection of pixels,
which is to say a different choice of subspace. In order to properly capture
behaviorwhile staying efficient, an algorithmmust both performdimension
reductions to low-dimensional subspaces while alsomaintaining the ability
to alter the subspace as time progresses should a new one become more
representative of the data.

GRASTA relies upon repeatedly updating four quantities. First, given
an estimate of the relevant low-dimensional subspace which a problem has
been reduced to, Ût , as well as the current observations, GRASTA updates
an estimated sparse vector s, weighting vector w, and dual vector y. This
is done using an ADMM algorithm, detailed shortly. These three vectors
are relevant in order to produce a new estimated subspace Ût+1. This is
carried out using an Augmented Lagrangian and a simple gradient descent
method on the Grassmann manifold to move between subspace estimates,
with the standard assumption that the optimal subspace does not change
significantly between individual time-steps. The size of the gradient steps
are chosen adaptively so as to allow for both fast convergence when a
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subspace is static and fast adaptation when the relevant subspace changes
from frame to frame. It is through alternation of these two primary steps
that GRASTA obtains a fast convergence rate. The algorithm can be found
more explicitly described in He et al. (2011), yet here it suffices to provide
a rough description and discuss t-GRASTA, a more general version of this
algorithm, in more detail.

GRASTA is an exceedingly efficient algorithm, able to process standard
video data in real time at 57 frames per second. Given an initially n-
dimensional subspace which is to be brought to d dimensions at any given
time, GRASTA requires O(nd2) steps to run, asymptotically similar to most
algorithms relying upon dimensional reduction on a Grassmann manifold.
It’s conceivable that a modification of this algorithm could be made to run
in close to real time on a hyperspectral video.

3.4.3 t-GRASTA

Presented in He et al. (2014), t-GRASTA, or transformed GRASTA, is a
generalization of GRASTA. It is particularly suited for image alignment in
the presence of large amounts of noise and corruption and dealing with
robust subspace-tracking. One of the most significant improvements of t-
GRASTA over GRASTA is in its ability to handle a changing background,
such as in the case of a camera jitter or camera attached to a moving object.
However, dealing with such a situation requires more than linear subspace-
tracking, as the geometric transforms on a video from frame to framemay be
nonlinear, leading to a generalmanifold-trackingproblem. This is remedied
in t-GRASTA by approximating this general manifold locally by a union of
subspaces, allowing Grassmannian methods to continue to play a part in a
usual subspace-tracking problem.

Much like GRASTA, t-GRASTA functions by alternating between two
computations, one of which is an alternating directions method of multi-
pliers, or ADMM, method. This method takes as input an n × d matrix
U, a normalized transformed image I ◦ τ represented in Rn where τ is the
current best estimate for the true geometric transform on the image and
the Jacobian matrix J of the image. In addition, the algorithm has four
parameters, a penalty constant ρ, a tolerance εtol , and maximum number
of iterations K. It returns a weighting vector w ∈ Rd , a collection of sparse
outliers e ∈ Rn , the parameters for a locally linear approximation to τ called
∆τ′, and a dual vector λ ∈ Rn for optimization purposes.
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ADMM Solver for a Locally Linear Problem He et al. (2014)

1. Initialize w, e, ∆τ, and λ by w � e � ∆τ � λ � 0 and initialize
µ � 1.

2. Set P �
�
U tU

�−1 U t , F �
�
J t J

�−1 J t , and

h(w , e ,∆τ) � Uw + e − I ◦ τ − J∆τ.

3. Iterate through the following steps either K times or at least one
time ending as soon as

‖h(w , e ,∆τ)‖`2 ≤ εtol .

4. In this step,weproceedwith theunderstanding that as soon as the
value of a variable is updated, its new value is used immediately
afterward in all calculations. Update the value of ∆τ by

∆τnew � F
(
Uw + e − I ◦ τ +

1
µ
λ

)
and the value of w by

wnew � P
(
I ◦ τ + J∆τ − e −

1
µ
λ

)
.

Update the value of e by making use of an element-wise soft
thresholding operator S 1

µ
which in effect acts as a slight barrier to

values significantly above 1
µ by

enew � S 1
µ

(
I ◦ τ + J∆τ −Uw −

1
µ
λ

)
.

Then update the value of λ by

λnew � λ + µh (w , e ,∆τ) ,
and µ by

µnew � ρµ.
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5. Here end the loop if ‖h(w , e ,∆τ)‖`2 ≤ εtol or if the loop has been
run through K times.

6. Output the most recent values of w , e ,∆τ, and λ.

With the ADMM method established, the full algorithm for the online
mode of t-GRASTA can be given. This algorithm takes as input a series of
L n × d` orthonormal matrices U` , chosen as representatives of particular
subspaces S` ∈ Gr(d` , n) for integer ` from 1 to n. It also requires a se-
quence of N unaligned images, which can be chosen from a video, Ii and the
parameters of the initial transformation as best as can be approximated τ0

i
for integer i from 1 to N . It returns a series of iteratively approximated sub-
spaces U`

i and the corresponding transformation parameters τL
i obtained

after the processing of the ith image.

t-GRASTA Fully Online Mode He et al. (2014)

1. Nest two loops, with the outer loop iterating through i from 1 to
N and the inner loop iterating through ` from 1 to L.

2. Produce an updated value of the Jacobian matrix J of the ith
image

J`i �
∂(Ii ◦ ζ)
∂ζ

�����ζ�τ`i
and produce an updated version of the normalized transformed
image I ◦ τ by

Ii ◦ τ
`
i �

vec
�
Ii ◦ τ`i

�

‖vec �
Ii ◦ τ`i

� ‖`2
.

3. Produce an estimate for the weight vector w`
i , the sparse outliers

e`i , the locally linear transformation approximation ∆τ`i , and the
dual vector λ`i using the ADMM algorithm with Ii ◦ τ`i , J`i , and
the current estimate of the subspace U`

i .

4. Set an augmented Lagrangian

L(U, w , e ,∆τ, λ) � ‖e‖`1 + λt h(w , e ,∆τ) + µ

2 ‖h(w , e ,∆τ)‖2
`2 .
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Compute the gradient of this Lagrangian by first letting

Γ �
�
I −U`

t (U`
t )t� �

λ`i + µh
�
w`

i , e
`
i ,∆τ

`
i

��

and then setting
∆L � Γ(w`

i )t .

5. Set the step-size η`i . This can be chosen a number of ways, but
t-GRASTA is not as sensitive to its choice as GRASTA was.

6. Update the estimated subspace

U`
i+1 � U`

i +



�
cos

�
η`i ‖Γ‖‖w`

i ‖
�
− 1

�
Ut

w`
i

‖w`
i ‖

− sin
�
η`i ‖Γ‖‖w`

i ‖
� Γ
‖Γ‖

] (w`
i )t

‖w`
i ‖
,

and the updated transformation parameters

τ`+1
i � τe

i ll + ∆τ`i .

7. Upon the completion of both loops, output all UL+1
i and τL+1

i .

For our purposes, giving the algorithm suffices, a full discussion of the
robustness and generality of the algorithm can be found in He et al. (2014)
where it was presented.



Chapter 4

Object Classification Algorithm

In order to classify objects in a hyperspectral image, an algorithm based
upon the classification on embedded Grassmann manifolds technique in
Chepushtanova (2015) has been developed. Empirical evidence suggests
that this algorithm is able to extraordinarily accurately distinguish between
different objects in a hyperspectral image. Here this algorithm and im-
plementation will be described in detail, as well as a range of parameter
variations and potential improvements which may be pursued in future
work on this topic. This algorithm has also been implemented inMATLAB,
with the code for that implementation made freely available.

Binary Supervised Classification of a Hyperspectral Image

1. Begin with a region of a hyperspectral image with n bands and a
collection of pixels with known classification, as well as the two
classes to be distinguished.

2. Divide the region into a grid of smaller blocks and iterate over
blocks.

3. From the training data, choose 9 at a time and assemble them into
a point on Gr(9, n), creating a number of training points on the
manifold.

4. For all pixels in the block, assemble the 9 surrounding pixels into
a point on Gr(9, n).
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5. Determine the matrix of pairwise distances between all points on
Gr(9, n) using a specified metric.

6. Embed the points on Gr(9, n) into a Euclidean space using mul-
tidimensional scaling.

7. Using the embedded training points, train an SSVM and select
relevant dimensions.

8. Train a standard SVM on the remaining low-dimensional space
and classify all embedded points representing pixels.

9. Return a 2-dimensional grid containing the classification result
for each pixel in the image.

Most notably, given n bands and a region containing p pixels, this algorithm
runs inO(np), though the constant involved is extremely large andgenerally
depends on the square of the number of pixels in each block.

4.0.1 Initializing the Algorithm

This is a supervised algorithm, so ultimately a set of preclassified training
data must be obtained. On images where ground truth is not available,
these locationsmust be identified by hand. Before beginning the algorithm,
a human must create a list of types of material to be classified and assign a
collection of locations on the image to each class. These pixels need not be
in the specified region of the hyperspectral image. Several attempts to use
clusteringmethods to obtain training data and thus obtain an unsupervised
algorithm were inconclusive, as such methods are extremely computation-
ally intensive and must be run before any hyperspectral band selection or
dimension reduction processes occur.

4.0.2 Determining Block Size

Following the determination of training data, the program may be initial-
ized. One of the most significant input parameters is the size of the blocks
into which the hyperspectral image is divided. In running, the vast major-
ity of this algorithm’s time is generally occupied in computing the matrix
of pairwise distances between points on the Grassmann manifold, which
when p points are on the manifold requires O(p2) operations. As such,
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shrinking the size of each block will decrease the number of distance cal-
culations which need to be carried out. However, the number of times all
other steps in the algorithm will need to be carried out will increase, so
selecting the optimal block size requires these costs to be balanced. One
further consideration when determining block size comes from the random
selection of a subset of training data. This allows for a small possibility of an
ineffective sample, which may cause significant errors in the classification
data of a single block. This effect may be mitigated by selecting a suffi-
cient quantity of training data and using fewer blocks. Generally, selecting
square blocks with a width between 10 and 15 pixels sufficiently balances
these concerns.

4.0.3 Bringing Training Data to the Grassmann Manifold

In order to bring pixels on a hyperspectral image to points on a Grassmann
manifold, the tall orthogonal matrix representation is utilized. Suppose
u1 , . . . , uk are a collection of pixels (themselves represented as column vec-
tors) known to have the same classification. Then, by appending them
together obtains a matrix M. Two distinct methods of mapping such a
matrix to an orthogonal tall matrix in a meaningful way were considered.
In the current implementation, a compact singular value decomposition is
found so that M � UΣVT for U and V orthogonal andΣ diagonal. As U has
the same dimensions as M, each such matrix M is associated with U. This
map is differentiable and numerical evidence suggests that it well captures
the properties of M relevant to a Grassmannian analysis.

However, singular value decompositions are in general computationally
intensive, so a simpler method has also been developed. However, it is
still unknown if it exhibits the same degree of stability as is possessed by
the singular value decomposition method. In this method, compute the
QR decomposition of M so that M � QR for Q orthogonal and R upper
triangular. Then, selecting the first few columns of Q so as to obtain a
matrix with the same dimensions as M implies a mapping from M to a
Grassmann manifold. As QR decompositions are significantly simpler to
calculate than SVDs, future analyses will seek to observe if this mapping
captures information as effectively.

Whichever process is used, the current implementation requires that
9 training points be selected for every point on the Grassmann manifold.
This technique is then repeated until a sufficient quantity of points on the
manifold is obtained. Sampling with replacement is acceptable, as the
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Figure 4.1 Each pixel, marked in green, is aggregated into a matrix by com-
bining it with the 8 pixels, marked in blue, surrounding it. This matrix is then
brought to the Grassmannmanifold to represent the center pixel.

difference of even a single pixel will change the representative point on
Gr(9, n).

4.0.4 Bringing Pixels to the Grassmann Manifold

The same techniques which allow for training data to be brought to a Grass-
mann manifold can also allow for each pixel to be represented on the man-
ifold. However, when analyzing training data, one could always able to
select a number of pixels with the same classification, as theirs was already
known. In the case of an arbitrary pixel, it is likely not possible to select
other pixels with the same classification, making the aggregation process
more complicated. Instead, one can work to choose with pixels which are
relatively likely to have the same classification. If the hyperspectral camera
is assumed to have a resolution such that a single pixel is far smaller than
any significant object within the image, then a simple solution is to choose
the 9 pixels closest to the initial pixel, as demonstrated in Figure 4.1. It is
for this reason that the algorithm operates on Gr(9, n) rather than any other
Grassmann manifold.

Much of the touted power of hyperspectral images comes from the
ability to merge spatial information with spectroscopic information. While
the nearest-neighbor solution described above is adequate for most cases, it
is possible thatmore sophisticated spatial configurations can also be used to
develop innovative classification techniques. Future work will focus on this
possibility. Moreover, when possible, configurations including more pixels
generally produce more accurate classification results, as Chepushtanova
(2015) demonstrates that it becomes more likely that two training classes on
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Gr(k , n) will be separable as k increases.

4.0.5 Distance Matrix Computation

At this point in the algorithm, both training points and pixels within a block
lie on a Grassmann manifold. In order to apply an embedding method, a
distance matrix must be computed. While any of the notions of distance
given in Definition 2.5 (or any other coherent metrics or pseudometrics on
a Grassmann manifold) may be used, the current implementation uses the
geodesic distance. While results from Chepushtanova (2015) suggest that
the 1-smallest pseudometric returns the most efficient classification, exper-
iments with altered metrics did very little to effect accuracy. Accordingly,
since the geodesic metric allows for more consistency with earlier notions
of parallel transport, its use was continued in this task.

This portion of the algorithm requires, by far, the most computation
time. Significant future work will focus on determining a new approach
which will avoid the use of a distance matrix, since there is no non-time
intensive manner in which one can be found on a manifold.

4.0.6 Obtaining an Embedding

Having determined a distance matrix for all points on Gr(9, n), the fol-
lowing step is to embed all data in a Euclidean space so that very simple
and fast dimension reduction techniques may be applied. To this effect,
multidimensional scaling is used. If the chordal metric is used to calculate
the distance matrix, then this embedding is an isometry as noted in Chep-
ushtanova (2015). For other metrics, there may be a small amount of error
introduced. Future analyses may focus on obtaining embeddings by using
LLE, Laplacian Eigenmaps, or Isomap.

4.0.7 Restricting to Significant Dimensions

Having obtained an embedding, all points are now represented on an ex-
tremely high-dimensional Euclidean space. The vast majority of these di-
mensions are virtually irrelevant to the analysis, so a sparse support vector
machine is trainedon the embedded trainingdata to restrict attentionpurely
to the most significant dimensions to classification. This training process
yields a vector of weights w for the SSVM. Dimensions are ordered by the
absolute value of their corresponding weight. In this order, dimensions are
kept until the absolute value of the weighting vector component drops by
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Figure 4.2 This image is the output of the algorithm a�er analyzing a large
portion of an image of Washington D.C., particularly a segment showing some
coastline. It is distinguishing between water (yellow) and grass (blue). Inland
errors are mostly due to other, non-grass and non-water objects appearing in
the image. In the water, a block error may be seen where classification results
are e�ectively random.

a factor of 10 from one entry to the next. All subsequent dimensions are
neglected.

4.0.8 Classifying All Pixels

Following this procedure, the pixel data is now simply enough represented
and in a sufficiently low-dimensional space that it may be directly classified.
A new standard support vector machine is trained on the low-dimensional
training data. All pixels in the block are then classified by this support
vector machine.

4.0.9 Obtaining the Output

This analysis is conducted separately within each block. Each result is
combined into a large 2-dimensional grid which is output as an image, like
that of Figure 4.2, which contains 16 blocks. Particularly significant in this
image is the very accurate classification of the beach as well as the block
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error. Several attempts to automatically detect such block errors have not
yet been successful, future workmay yield additional insight into this issue.





Chapter 5

Results

After being implemented, the previously described algorithm was tested
on several hyperspectral images, with the aim to gauge its capabilities and
accuracy. Analysis was primarily focused on a set of two hyperspectral
images. On the former, no ground truth was available, whereas the latter
had available ground truth. Moreover, the geometry of objects in the latter
was far simpler than in the former, causing it to be an easier test for the
algorithm. Accordingly, the former serves as a useful feasibility analysis,
while more statistical accuracy results can be obtained through an analysis
of the latter. The results from each image’s analysis are presented in this
chapter.

5.1 Feasibility Analysis

In this section, the results from the analysis of a HYDICE (Hyperspectral
Digital Imagery Collection Experiment) image of the Washington D.C. Na-
tional Mall are given. This image contains 191 wavelength bands with
wavelengths from 400 micrometers to 2500 micrometers and was taken by
a hyperspectral camera mounted on a low-flying plane. A detailed dis-
cussion of the capabilities and technical specifications of HYDICE may be
found in Mitchell (1995). No ground truth was available, and the image
contained a large number of distinct features. The classes considered most
relevant for this work were grass, forest, road, building, and water. While
each class contained a fair amount of variation, such as recognizably differ-
ent buildingmaterials or differences between saltwater and freshwater, they
were considered to be sufficiently homogenous to be characterized together.
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A visualization of this dataset may be seen in Figure 5.1. Several results
from the analysis of this image will be presented as a series of pairwise
classifications between classes of objects.

5.1.1 Water and Grass

Results distinguishing water and grass were among the easiest to obtain.
These object classes are very simple to distinguish by eye on a hyperspectral
image, so training data is more accurate and more abundant. In addition,
grass and water features tend to be larger, so significant portions of the
image can be rendered without major concerns over the presence of other
classes. As such, large images with recognizable features from the over-
all HYDICE image like Figures 5.2 and 5.3 may be generated. Moreover,
the algorithm was extraordinarily effective at distinguishing between these
classes - most SSVM dimension reductions resulted with only one signif-
icant dimension. The class separation in a block where two dimensions
were relevant may be seen in Figure 5.4. A complete classification result on
a large region like these typically requires less than 3minutes on a standard
laptop.

5.1.2 Forest and Grass

Distinguishing between a forested region and a grassy region is one of the
most difficult tasks for such a classification algorithm, as the two types
of objects look very similar over the majority of the spectrum. There are
only a few noticeable differences, as may be seen in Figures 5.5 and 5.6.
Despite this, the algorithm was still able to easily distinguish between the
two, though with noticeably more errors. In addition, about 8 dimensions
were consistently left after the dimension reduction, making visualization
more difficult and indicating a more difficult classification task. Such a
result may be seen in Figure 5.7. The algorithm’s success at this task is
particularly useful, as this distinction is extremely important for uses in
measuring deforestation and similar environmental issues.

5.1.3 Buildings and Grass

Determining whether or not a pixel is a building or grass is made more
difficult by the diverse construction of the buildings in the area. Many
buildings have wildly different spectroscopic profiles, so to guarantee ac-
curacy more pre-classified training data was required and it needed to be
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Figure 5.1 This image is a visualization of the HYDICEWashington D.C. hyper-
spectral image. It was formed by choosing 3 particularly relevant wavelength
bands and combining them into an RGB image. As such, the colors are not ac-
curate. In the topof the image, themost significant object classes identifiedare
grass, forest, water, and roads. In the bottomof the image, themost significant
object classes are grass, buildings, and roads.
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Figure 5.2 This image presents a classification result on the top le� portion
of the HYDICE image. Water is depicted in yellow and grass in blue. One can
see that the algorithm accurately classifies the top le�water and the reflecting
pool water in the bottom right. The block width was set to 15 pixels, and 13
training points were assembled on the Grassmannmanifold for each class.

Figure 5.3 This image presents a classification result on the upper le� por-
tion of the HYDICE image. Water is depicted in yellow and grass in blue. Again,
thealgorithmaccuratelydetermines the locationsofbodiesofwater. Theblock
width was set to 15 pixels, and 13 training points were assembled on the Grass-
mannmanifold for each class.
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Figure 5.4 This image displays the low-dimensional representation of the
data from a single block a�er the SSVM, when only two dimensions remained.
Red points are water training data, blue points are grass training data, and
green points are all pixels. There is a clear separation between the two classes.
The block width in this data was 25 pixels, and 13 training points were assem-
bled on the Grassmannmanifold for each class.

Figure 5.5 This imagedepicts a fairly typical spectrum for a grass pixel on the
HYDICE dataset.
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Figure 5.6 This image depicts a fairly typical spectrum for a forest pixel on
the HYDICE dataset.

Figure 5.7 This image presents a classification result in the upper portion of
the image immediately to the le� of the reflecting pool (long rectangular body
of water) in a region around the white dot seen in Figure 5.1. Grass is depicted
in yellow and forest is depicted in blue. There are more frequent errors in this
classification, but it still clearly distinguishes between a grassy region and a
forested one. This entire image is a single block, and 20 training points were
assembled on the Grassmannmanifold for each class.
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Figure 5.8 This image presents a classification result in the center of the bot-
tom of the HYDICE image, focusing on the Capitol building. Grass is depicted
in yellow and the building in blue. This classification was extremely accurate,
with almost all errors coming fromattempts to classify roads. This entire image
is a single largeblock and20 trainingpointswere assembledon theGrassmann
manifold for each class.

sampled from nearly all buildings. After carrying out this process, the
algorithm performed admirably in the classification task. When tasked
with distinguishing between grass and buildings in the vicinity of the Capi-
tol building, Figure 5.8 was obtained, clearly distinguishing the two. The
algorithm encounters difficulty when roads appear in the image, but other-
wise classifies very effectively. The number of dimensions remaining after
the SSVM was consistently between 2 and 4. Figure 5.9 demonstrates the
distribution of data in a block where 3 dimensions remained. This figure
demonstrates a large amount of clustering behavior in the pixel data, a good
sign if an supervised algorithm is to be designed at a future date.

5.2 Statistical Analysis

In this section, the results from the analysis of an AVIRIS (Airborne Visible
/ Infrared Imaging Spectrometer) dataset taken of crop fields in a large
region taken by Baumgardner et al. (2015) are given. This image contains
220 wavelength bands with wavelengths from 400 micrometers to 2500
micrometers and also uses a hyperspectral camera mounted on a low-flying
plane. In this case, while the large image is of a similar size or larger as
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Figure 5.9 This image displays the low-dimensional representation of the
data from a single block of the HYDICE image a�er the SSVM, when only three
dimensions remained. Blue points are pixel datapoints, red points are the
building training dataset, and green points are the grass training dataset. Clus-
tering behavior in the pixel data is clearly apparent. In this case there are 20
training points per class.

Grass Hay Soybeans Woods
Grass 99.0% 86.3% 100%
Hay 83.1% 65.5% 77.8%
Soybeans 83.5% 89.2% 99.0%
Woods 100% 100% 100%

Table 5.1 Each entry in this table is the percentage of correct entries in a bi-
nary classification of the classes corresponding to the row and column, when
the region being considered was actually entirely composed of the row entry’s
material. For each task, a region containing about 400 pixels was chosen, and
30 trainingpointswere generatedon theGrassmannmanifold for each class. In
general, the algorithm is able to correctly classify a largemajority of each field.
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Figure 5.10 This image is a visualization of the AVIRIS dataset. It was formed
bychoosing3particularly relevantwavelengthbandsandcombining them into
an RGB image. As such, the colors are not accurate. In this image, fieldsmay be
clearly distinguished from their surroundings, but not all di�erent crops may
be clearly distinguished from each other.
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Figure 5.11 This image displays the ground truth of the AVIRIS dataset, la-
beling all classified regions. While the entire image is not classified, su�icient
quantities are to allow for significant statistical results to be obtained.

Figure 5.12 This image displays an average spectrum from pixels chosen
from each of the four classes primarily being compared in this section. These
spectra are all muchmore similar than spectra in the HYDICE image were.
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compared to the HYDICE dataset, the section as seen in Figure 5.10 that
is being analyzed is very small, just 145 × 145 pixels. In this region, the
researchers who collected the data clearly denoted the ground truth in
Figure 5.11. This image is far more easily divided into distinct components
with different materials than the HYDICE image was. In order to obtain
error statistics, four materials were chosen. These are pastured or mowed
grass, windrowed hay, min soybeans, and woods. A typical spectrum for
eachmay be found in Figure 5.12. Thesematerials all have spectrawith very
similar characteristics, making thismore of a challenging classification task.
A subset of a field of each material was used for training data, constituting
about 125 pixels for each class. To obtain an accuracy rate, a non-training
subset of one of the fields corresponding to each class was distinguished
with the other classes, and the number of incorrect pixels counted. These
results are given in Table 5.1.

While the algorithm in general performs very well, there are a number
of surprising results from this table. Most notable among them is the
asymmetry. In general, it is very easy for this method to ascertain that an
object is not composed of hay, but very difficult to accurately proclaim that
an object is made of hay. Similarly, classifying forests is a very simple task,
asmay be expected based on howdistinct the spectra appears in Figure 5.12.
Repeated trials obtain results consistent with those in the table.
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Conclusions and Future Work

Hyperspectral imaging is still a relatively new topic, and there is still great
room for exploration and new results in the field. The extraordinary utility
of hyperspectral imaging promises that this subject will have great value
of some time. In this thesis, an algorithm for object classification in hyper-
spectral images was developed and its capabilities tested. This supervised
algorithm assembles data into points on a Grassmann manifold, which
is then embedded into a high-dimensional Euclidean space. Subsequent
dimensional reductions allow for efficient classification. This method is
versatile and powerful, and is able to process large portions of an image
relatively quickly. This result vindicates the use of Grassmannmanifolds in
the analysis of hyperspectral images. In general, results demonstrate very
low error rates on more clearly distinct materials, such as in the HYDICE
image distinguishing water from grass, when the final low-dimensional
space being considered is only one or two dimensional. In the few cases
when the algorithm’s error rate is higher, it is correlated with dimensional
reductions failing to reduce the problem to a sufficiently low number of
dimensions.

While the algorithm performs admirably, there are still many potential
improvements which can be made to benefit both its accuracy and its com-
putational efficiency. Futureworkmay focus on clustering and classification
directly on the Grassmann manifold, rather than embedding into an am-
bient Euclidean space. Such an improvement may render the result more
intuitive and may remove the need to decompose the image into blocks.
In addition, rigorous analyses of the quantity and quality of training data
required must be carried out, as it remains unknown how sensitive the al-
gorithm is to variations in training data. In addition, it is hoped that future
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work will be able to efficiently convert this algorithm into an unsupervised
method. The existing method has already served to demonstrate that data
is clustered on the Grassmann manifold a priori, so it remains feasible that
a technique like k-means clustering could serve to eliminate the need for
humans to preclassify data. Efforts to extend the existing algorithm to
multiclass classification show promise using similar methods as those in
Huang et al. (2013). Future work may more rigorously test the efficacy of
such generalizations.

Each of the previous proposals are relatively incremental improvements
to the existing algorithm. Yet there are also fundamentally distinct ways in
which a Grassmann manifold may be used to tackle this task. For example,
current work on this thesis has large relied upon non-statistical techniques.
However, there is a wealth of algorithms relying upon statistical compu-
tations on Grassmann manifolds such as in Turaga et al. (2011) or using
particle filtering methods on affine Grassmannmanifolds as in Shirazi et al.
(2014). A comprehensive literature search has revealed few extensions of
such statistical methods to the analysis of hyperspectral images, so such
an approach remains largely unexplored and may be of great value. In
addition, there is great opportunity for more physics-motivated analyses.
Future work may take advantage of the atmospheric analyses from Shaw
and Burke (2003) and Griffin and Burke (2003) to better understand how
to mitigate these confounding effects. Further, reasonable assumptions
suggest an error in every band at every pixel due to the inherent Poisson
statistics involved in detection of photons in that wavelength band. Future
methods may wish to be robust under errors of this type.

In addition to presenting this new algorithm, it is hoped that this thesis
will serve as a stepping stone for future research, both in its presented
algorithm and in the contained survey of relevant machine learning and
manifold optimization methods. A particularly tantalizing future goal is
the classification of objects in dynamic hyperspectral images in real time.
Much future work will focus on this difficult-to-achieve task. It is only
within the last several years that the technology required to capturedynamic
hyperspectral images has existed, and they are still largely inaccessible to
the general public. As such, the development of such a real-time method
would be a significant achievement and could open up an entirely new area
of data-enabled science and applications. If the proposed algorithm of this
paper is to be modified for this task, each of the goals described in the
second paragraph must be implemented. It is particularly important that
optimization occurs directly on the Grassmann manifold as that enables
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this time-intensive operation to only be carried out once every time step
instead of multiple times. This is vital for a real-time algorithm.

The new technology of hyperspectral imaging holds great promise for
machine learning algorithms. Very few previously existing technologies
contain such a vast amount of information about the world around us
in such a condensed and clear manner. It is the author’s hope that an
effective and efficient technique to analyze hyperspectral imaging will lead
to great new insights across disciplines in spectrometry, computer vision,
and remote sensing among many other uses.
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