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ABSTRACT

ALGORITHMS FOR FEATURE SELECTION AND PATTERN RECOGNITION ON

GRASSMANN MANIFOLDS

This dissertation presents three distinct application-driven research projects united by

ideas and topics from geometric data analysis, optimization, computational topology, and

machine learning.

We first consider hyperspectral band selection problem solved by using sparse support

vector machines (SSVMs). A supervised embedded approach is proposed using the property

of SSVMs to exhibit a model structure that includes a clearly identifiable gap between

zero and non-zero feature vector weights that permits important bands to be definitively

selected in conjunction with the classification problem. An SSVM is trained using bootstrap

aggregating to obtain a sample of SSVM models to reduce variability in the band selection

process. This preliminary sample approach for band selection is followed by a secondary band

selection which involves retraining the SSVM to further reduce the set of bands retained.

We propose and compare three adaptations of the SSVM band selection algorithm for the

multiclass problem. We illustrate the performance of these methods on two benchmark

hyperspectral data sets.

Second, we propose an approach for capturing the signal variability in data using the

framework of the Grassmann manifold (Grassmannian). Labeled points from each class are

sampled and used to form abstract points on the Grassmannian. The resulting points have

representations as orthonormal matrices and as such do not reside in Euclidean space in

the usual sense. There are a variety of metrics which allow us to determine distance ma-

trices that can be used to realize the Grassmannian as an embedding in Euclidean space.
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Multidimensional scaling (MDS) determines a low dimensional Euclidean embedding of the

manifold, preserving or approximating the Grassmannian geometry based on the distance

measure. We illustrate that we can achieve an isometric embedding of the Grassmann man-

ifold using the chordal metric while this is not the case with other distances. However,

non-isometric embeddings generated by using the smallest principal angle pseudometric on

the Grassmannian lead to the best classification results: we observe that as the dimension of

the Grassmannian grows, the accuracy of the classification grows to 100% in binary classifi-

cation experiments. To build a classification model, we use SSVMs to perform simultaneous

dimension selection. The resulting classifier selects a subset of dimensions of the embedding

without loss in classification performance.

Lastly, we present an application of persistent homology to the detection of chemical

plumes in hyperspectral movies. The pixels of the raw hyperspectral data cubes are mapped

to the geometric framework of the Grassmann manifold where they are analyzed, contrast-

ing our approach with the more standard framework in Euclidean space. An advantage of

this approach is that it allows the time slices in a hyperspectral movie to be collapsed to a

sequence of points in such a way that some of the key structure within and between the slices

is encoded by the points on the Grassmannian. This motivates the search for topological

structure, associated with the evolution of the frames of a hyperspectral movie, within the

corresponding points on the manifold. The proposed framework affords the processing of

large data sets, such as the hyperspectral movies explored in this investigation, while re-

taining valuable discriminative information. For a particular choice of a distance metric on

the Grassmannian, it is possible to generate topological signals that capture changes in the

scene after a chemical release.
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CHAPTER 1

Introduction

1.1. Overview

Nowadays it has become possible to acquire large and information-rich data sets for dif-

ferent applications. There are many difficulties associated with understanding such data

sets, e.g., the data may be incomplete, noisy and have thousands of features. Consider, for

instance, the task of predicting a diagnosis or treatment for patients by analyzing their gene

expression data. The presence of a large collection of irrelevant features in the numerous

measurements of gene expression just add to the computational complexity, without helping

much to build a prediction model. Another example of high-dimensional data is hyperspec-

tral data. Hyperspectral imagery collects data as a set of images simultaneously in tens to

hundreds of narrow wavelength bands, forming three-dimensional data cubes [1]. Each pixel

can be represented as a vector in Rn, where n is a typically large number of spectral wave-

length bands. Rich information contained in hyperspectral data can be useful for different

tasks, but some information can be noisy and redundant.

Thus, we are often interested in obtaining reduced data representation, efficient for a

particular prediction task or data visualization [2]. Some large data sets may require a

form of compression that retains their geometric structure. The goal of this dissertation

is to introduce some novel data analysis techniques and frameworks based on tools from

geometric and topological data analysis and machine learning. Below we briefly discuss

three approaches devoted to problems of dimensionality reduction and pattern recognition

in some challenging applications.
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Dimensionality reduction can be done using feature extraction or feature selection tech-

niques. Feature extraction transforms the data to a lower dimensional space. In the last

decade there has been a number of fundamental contributions to this problem of geometric

data reduction, including ISOMAP, Locally-Linear Embedding (LLE), Laplacian Eigenmaps,

and Maximum Variance Unfolding (MVU). The proof of Whitney’s easy embedding theorem

has led to a framework for constructing Bilipschitz mappings for dimension preserving data

reduction [3]. Feature selection is the process of selecting a relevant set of features while

maintaining or improving the performance of a prediction model. There exists a variety

of feature selecting techniques that are categorized into filters, wrappers, and embedded

algorithms [4]. The last group of methods perform feature selection as part of the model

construction process. For instance, learning with sparsity-inducing norms in the context of

linear or logistic regression or support vector machines (SVMs) [5] drives many redundant

feature weights to zero [6].

We use a sparsity promoting approach as a solution to the hyperspectral band selection

problem [7]. Before introducing our method, in Chapter 2 we discuss sparse SVM classifiers

(SSVMs) that simultaneously classify and automatically select features in the input space,

therefore reducing its dimension. We formulate and discuss the difference between standard

and sparse SVMs, and introduce the primal dual interior point method as a solver for SSVMs.

After this, in Chapter 3, we propose a hyperspectral band selection algorithm based on

the feature selection property of SSVMs. We introduce the band selection problem and make

an overview of the related methods in the literature. Our embedded supervised approach

contains two main steps, namely, variability reduction and final ratio-based selection. The

2-class verison of the algorithm is further extended to the multiclass case. Our results on
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two hyperspectral data sets show the effectiveness of this methodology used both separately

and in combination with other band selection strategies.

In Chapter 4, we propose a geometric approach for capturing the variability in hyper-

spectral data using the framework of the Grassmann manifold (Grassmannian) to perform

set-to-set pattern recognition. The Grassmannian can be interpreted as a linear span of a

set of data samples [8]. Original data points are organized as subspaces (abstract points) on

the Grassmannian, and then embedded into Euclidean space, where an SSVM is trained to

perform classification. The SSVM selects a subset of optimal embedding dimensions, which

can be used for improving classification rates or embedding visualization. The proposed

framework results in classification accuracy that grows up to 100% in binary classification

experiments, including high difficulty classification cases. The method is extended it to the

multiclass case, and embeddings obtained under different distance measures on the manifold

are compared and analyzed for isometry.

The Grassmannian framework affords a form of data compression while retaining data

structure. We propose using it in conjunction with a relatively new tool from topological

data analysis (TDA), persistent homology (PH), based on building simplicial complexes

on the data sets [9, 10]. PH has been used to find data structure in many applications

in biology, computer graphics, and image processing. In Chapter 5, we explore uses of

persistent homology for chemical plume detection in hyperspectral movies. We apply PH

to hyperspectral data, encoded as abstract points on a Grassmann manifold which makes it

feasible to analyze large volumes of hyperspectral data. Using PH as a multiscale method

for determining the number of connected components in data, we capture the dynamical

changes in a hyperspectal movie over time. The appropriate choice of a distance metric on

the manifold results in generating strong topological signals.
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Finally, Chapter 6 is devoted to conclusions of the dissertation and potential future work.

1.2. Definitions and Notation

We introduce our notation and definitions used in the dissertation.

• A vector in Rn is denoted with a bold lower case letter, e.g., e denotes a vector of

all ones.

• A boldface capital letter denotes a matrix, e.g., X ∈ Rm×n is a real m× n matrix.

• The symbol
.
= denotes a definition of the term to the left of the symbol by the

expression to the right of the symbol.

• The `1, `2, and `∞-norms of a vector x = (x1, x2, . . . , xn)T are defined as ‖x‖1
.
=∑n

i=1 |xi|, ‖x‖2
.
= (
∑n

i=1 |xi|2)
1
2 , and ‖x‖∞

.
= max

i
{|xi|}, respectively. The `p-norm

is given by ‖x‖p
.
= (
∑n

i=1 |xi|p)
1
p .

• For a general norm ‖·‖, the dual norm ‖·‖′ is defined as ‖x‖′ .= max
‖y‖=1

xTy. Note that

for p, q > 1, 1/p + 1/q = 1, the `p-norm and `q-norm are dual. E.g., the `2-norm is

dual to itself, and the `1-norm is dual to the `∞-norm.

• The Frobenius norm of a matrix A is given by ‖A‖F =
√∑

|Aij|2 =
√

trace(ATA).

• Classification accuracy is the number of correct predictions made divided by the

total number of predictions made.
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CHAPTER 2

Linear SVM Classifiers

2.1. Introduction

This chapter provides background material on linear support vector machines (SVMs),

with the emphasis on the `1-norm regularized SVM. The SVM is a state-of-the-art classifi-

cation method1 excellently described, for instance, in the book by Vapnik [5] or the tutorial

by Burges [11]. SVMs fall into the general category of kernel methods, i.e., methods that

depend on the data only through dot-products replaced with kernel (and, in general, non-

linear) functions [12]. In this dissertation we consider linear SVM classifiers only, i.e., those

with linear kernels, or simply, original dot-products.

The SVM is a robust supervised classification technique that has become the method

of choice to solve difficult classification problems in a wide range of application domains

such as bioinformatics [13], text classification [14], or hyperspectral remote sensing image

classification [15]. We consider a class of the SVM classifiers that are based on `1-norm

regularization, called sparse SVMs (SSVMs) [16–18]. The principal advantage of SSVMs is

that, unlike `2-norm, or standard SVMs, they promote sparsity in the decision function, and

therefore, reduce the input space dimension. We use SSVMs for hyperspectral band selection

(Chapter 3) and for classification of data on embedded Grassmannian (Chapter 4), hence,

it is important to understand the mechanism behind.

The chapter contains four sections: Section 2.2 on standard SVMs, Section 2.3 on sparse

SVMs, Section 2.4 on the primal dual interior point algorithm used to solve SSVMs, and

Section 2.5 containing a brief summary.

1 The classification problem is the problem of determining which of several sets an object is a member of.
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Figure 2.1: Separating hyperplane built by a binary SVM on non-separable data.

2.2. Standard SVMs

A standard (`2-norm) linear support vector machine (SVM) determines the optimal hy-

perplane {x : x ∈ Rn,wTx + b = 0}, maximally separating two classes of training data

{xi, di}, i = 1, . . . ,m, where di ∈ {−1,+1} are the class labels of the data points xi ∈ Rn,

w is the normal to the hyperplane, and b is the threshold [5, 11]. The class of a pattern x

is predicted by sgn(wTx + b). Figure 2.1 shows the optimal hyperplane built by an SVM

trained on non-separable data. The margin between classes is given by 2/‖w‖2 [11].

To find the maximum margin hyperplane, one solves the following constrained optimiza-

tion problem:

(2.1)

minimize
w,b,ξ

‖w‖2
2

2
+ CeTξ

subject to D(Xw + be) ≥ e− ξ,

ξ ≥ 0.

Here D is the diagonal matrix with Dii = di, X = [x1, . . . ,xm]T is the training data matrix, ξ

is an m-dimensional non-negative error slack variable, and C is a positive penalty parameter
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that determines the trade-off between the SVM errors and the margin. The formulation

(2.1) is also known as the soft-margin SVM [11]. The dual of (2.1) is

(2.2)

maximize
α

eTα− 1

2
αTDXXTDα

subject to eTDα = 0,

0 ≤ α ≤ Ce.

Support vectors (SVs) are the data points that define the classifier, namely, those cor-

responding to the positive Lagrange multipliers αi, i = 1, . . . ,m. On-boundary SVs are

characterized by 0 < αi < C and ξi = 0, they constrain the width of the margin, namely,

those lying on the hyperplanes wTx + b = ±1. Off-boundary SVs have αi = C, ξi > 0, and

non-support vectors are defined by αi = 0 and ξi = 0.

The standard SVM (2.1)-(2.2) has no feature selection instrument included, however it

is still possible to build an SVM classifier that eliminates irrelevant features by using the

`1-norm in the problem formulation. The next section explains the background and details

of this approach.

2.3. Sparse SVMs

It was shown in [19], that for any point q ∈ Rn, not lying on the plane P
.
= {x : wTx+b =

0}, the distance between q and its projection on P , p(q), is given by

(2.3) ‖q− p(q)‖ =
|wTq + b|
‖w‖′

,

where ‖·‖ denotes a general norm, ‖·‖′ is the norm dual to ‖·‖, see the definition in Section 1.2.

Based on this result, the following is true:
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(2.4)

‖q− p(q)‖2 =
|wTq + b|
‖w‖2

,

‖q− p(q)‖1 =
|wTq + b|
‖w‖∞

,

‖q− p(q)‖∞ =
|wTq + b|
‖w‖1

.

Thus, if, e.g., the `2-norm is used to measure the distance between the planes P1
.
= {x :

wTx + b = −1} and P2
.
= {x : wTx + b = 1}, the margin (distance) between the planes

P1 and P2 is 2/‖w‖2, as we have mentioned before, see also [20]. Similarly, if the `∞-norm

is used to measure the distance between the planes, the margin is 2/‖w‖1, as the `∞-norm

and `1-norm are dual. To maximize the margin 2/‖w‖1, we minimize ‖w‖1, which yields

the following optimization problem that we call the linear sparse support vector machine

(SSVM):

(2.5)

minimize
w,b,ξ

‖w‖1 + CeTξ

subject to D(Xw + be) ≥ e− ξ,

ξ ≥ 0.

Figure 2.2 contains a two-dimensional example contrasting the geometry of the SSVM (2.5)

and SVM (2.1) with b = 0 and w = (w1, w2)T and illustrating how sparsity is induced by

the `1-norm. The solution of the sparse SVM has the second component w2 = 0 due to the

pointed shape of the locus of points of ‖w‖1; this geometry is the source of the sparsity. Note

that problem (2.5) contains absolute values in the objective function: ‖w‖1 =
∑n

i=1 |wi|. To

overcome this, we introduce non-negative variables w+ and w− such that w = w+ − w−,
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Figure 2.2: Two-dimensional toy data experiment: (a) `1-norm and `2-norm separating
hyperplanes; (b) loci of points in the feature space and SVM solutions corresponding to
`1-norm and `2-norm regularization.

and (2.5) can be converted to the following linear programming (LP) problem [21]:

(2.6)

minimize
w+,w−,b,ξ

eT (w+ + w−) + CeTξ

subject to D(X(w+ −w−) + be) ≥ e− ξ,

w+,w−, ξ ≥ 0.

The dual of the problem (2.6) is also an LP:

(2.7)

maximize
α

eTα

subject to − e ≤ XTDα ≤ e

eTDα = 0,

0 ≤ α ≤ Ce.
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To find the optimal solution for LPs (2.6)-(2.7), we use the primal dual interior point method

described in [22], see Section 2.4. This is a one-phase path-following method that can

start from an infeasible point and lead directly to the optimal solution. An advantage

of this approach is that one can monitor the variation of the primal and dual variables

simultaneously.

By introducing additional nonnegative variables b+ and b− such that b = b+− b−, we can

convert the problem (2.6) into a LP of the form:

(2.8)

minimize
x

cTx

subject to Ax ≥ b,

x ≥ 0,

where x = (w+,w−, b+, b−, ξ)T ∈ R2n+m+2, c = (1, 1 . . . , 1︸ ︷︷ ︸
2n

, 0, 0, C, C, . . . , C︸ ︷︷ ︸
m

)T , b = (1, 1, . . . , 1︸ ︷︷ ︸
m

)T ,

and the matrix A ∈ Rm×(2n+m+2) has the form: A = [DX,−DX,De,−De, Im]. We con-

sider how to solve LP (2.8) by the primal dual interior point method (PDIPM) in the next

section.

2.4. Primal Dual Interior Point Method

To start, we introduce non-negative slack variables u, and problem (2.8) is converted to

the following LP:

(2.9)

minimize
x

cTx

subject to Ax− u = b,

x,u ≥ 0.
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The inequality constraints are then replaced with extra terms in the objective function:

(2.10)

minimize
x

cTx + µ
∑
i

log xi + µ
∑
j

log uj

subject to Ax− u = b,

where µ is a positive barrier parameter. As µ varies, the minimizers (x(µ),u(µ)) form

the central path inside the feasible region, and as µ gets closer to zero, this sequence of

solutions approaches the optimal solution of LP (2.9). The Lagrangian for our problem is

L(x,u,p) = cTx+µ
∑

i log xi+µ
∑

j log uj−pT (b−Ax + u), where p is the vector of dual

variables. Taking derivatives of L(x, u, p) with respect to each variable and setting them to

zero, we get the Karush-Kuhn-Tucker (KKT) first-order optimality conditions [22]:

(2.11)

ATp + µX−1e = 0,

p− µU−1e = 0,

Ax− u = b,

where X and U are diagonal matrices with the components of x and u on the diagonals,

respectively. Introducing z = µX−1e, equations (2.11) can be written in the form:

(2.12)

ATp + z = c,

Ax− u = b,

ZXe = µe,

PUe = µe,
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where P and Z are diagonal matrices of p and z, respectively. Note that the first two

equations in (2.12) are primal and dual constraints, respectively, and the last two equations

imply complementary slackness2.

The idea of PDIPM is to solve the system of equations (2.12) using Newton’s method.

Starting with an initial positive values x, u, z, and p, our aim is to find a step direction

(∆x,∆u,∆z,∆p) such that the new point (x+∆x,u+∆u, z+∆z,p+∆p) lies approximately

on the primal-dual central path at the point (x(µ),u(µ), z(µ),p(µ)). If so, it should satisfy

equations (2.12). Plugging the point (x + ∆x,u + ∆u, z + ∆z,p + ∆p) into equations(2.12),

then simplifying and dropping non-linear terms, we obtain:

(2.13)

AT∆p + ∆z = c−ATp− z := ρ,

A∆x−∆u = b−Ax + u := σ,

Z∆x + X∆z = µe−XZe,

U∆p + P∆u = µe−PUe.

Note that the system of equations (2.13) can be reduced further as the last two equations

are trivial and can be eliminated by solving them for ∆z and ∆u, and then substituting the

results into the first two equations. We get the reduced KKT system:

(2.14)

AT∆p−X−1Z∆x = ρ− µX−1e + z

A∆x−P−1U∆p = σ + µP−1e− u.

Before summarizing the algorithm, we need to know how to compute µ and determine

the step length parameter θ. Complementarity measure µ is defined by µ = δ γ
l+k

, where

2That is, for the optimal solutions to the primal and the dual, for any variable that is set to a positive value
in the primal (dual), the corresponding slack variable in the dual (primal) must be set to zero. Conversely,
if all of these constraints are satisfied for a pair of feasible solutions, then these solutions must be optimal.
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γ = zTx + pTu, 0 ≤ δ ≤ 1, and l and k are the lengths of x and p, respectively. A small

value of γ translates into a small duality gap |cTx − bTp|. To keep variables positive, the

step length parameter θ is chosen as minimum out of 0.9/(max(−∆x
x
, −∆u

u
, −∆z

z
, −∆p

p
)) and 1.

For a stopping rule we take max{γ, ‖ρ‖1, ‖σ‖1} ≤ ε for a given tolerance ε, provided that

values ‖x‖∞, ‖p‖∞, and |b| are no too large [22]. The method is summarized in Algorithm 1.

Algorithm 1: PDIPM Algorithm (Reduced KKT)

1 Initialize (x,u, z,p) > 0
2 While max{γ, ‖ρ‖1, ‖σ‖1} > ε repeat {
3 Compute ρ,σ, γ, µ
4 Solve system of equations (2.14)
5 Determine the step length θ
6 Set (x,u, z,p) := (x,u, z,p) + θ(∆x,∆u,∆z,∆p) }

2.5. Summary

In this chapter, we introduced linear sparse SVMs, solved by the primal dual interior

point method, as a tool for simultaneous classification and feature selection. The examples

of the SSVMs usage are given in Chapter 3 (hyperspectral band selection) and Chapter 4

(classification on embedded Grassmannians).
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CHAPTER 3

Hyperspectral Band Selection Using Sparse

Support Vector Machines

3.1. Introduction

A digital hyperspectral image can be considered as a three-dimensional array consisting

of two spatial dimensions and one spectral dimension. The spectral dimension consists of

images collected across tens to hundreds narrow wavelength bands and combined to form a

hyperspectral data cube, see Figure 3.1. Thus, each pixel in the data cube acquires many

bands of light intensity data from the spectrum, extending the RGB (red, green, and blue)

color model beyond the visible. Hyperspectral imaging (HSI) is used in various applications,

e.g., material identification, land cover classification, or surveillance [1].

columns of pixels

rows of 
pixels

spectral
bands

pixel vector
wavelength

si
g

n
a

l

Figure 3.1: Hyperspectral data.

It is now well established that HSI contains an abundance of useful information beyond

the visible spectrum [1]. However, processing snapshots of high-dimensional hyperspectral

data has proven to be a formidable computational and algorithmic challenge. Information

amongst the bands may be highly correlated suggesting that appropriate subset selection
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could be beneficial. It has also been observed that more bands are not necessarily better and

adding bands can actually degrade algorithm performance, a phenomenon referred to as the

Hughes effect [23]. Thus, a pre-processing step is often necessary to reduce the data volume

and remove information redundancy for subsequent data analysis, and it can be realized

by using band selection techniques. In band selection, the goal is to identify a subset of

bands in the spectrum that contain the most discriminatory information during a particular

classification task, without losing the classification accuracy. Band selection is of particular

interest in building models for specific applications such as the detection and discrimination

of chemical plumes where signatures of known chemical vapors are available.

Three general approaches to hyperspectral band selection problem have been proposed:

filters, wrappers and embedded methods [4]. A filtering method example is the band add-

on (BAO) algorithm in which selected bands increase the spectral angle mapper measure

between two spectra [24]. Filtering algorithms presented in [25] and [26] (or [27]) are based

on mutual information (MI), an absolute measure of independence or common information

between two random sources. Wrappers perform feature selection for a specific classifier

using its accuracy to evaluate the importance of each feature [28]. In [29], a wrapper-based

genetic algorithm (GA) was combined with a SVM [5] for hyperspectral feature selection.

Wrapper methods treat the selected classifier as a black box, i.e. feature selection does not

depend on its internal mechanism. In contrast to filters and wrappers, embedded methods

are specific to the chosen learning machine as they select features as part of the process of

training. There are different embedded approaches, including forward-backward methods,

optimization of scaling factors, and use of a sparsity term in the objective function [30].

SVM Recursive Feature Elimination (SVM-RFE), proposed in [31], uses the SVM feature

weight magnitudes as ranking criterion during a greedy backward selection process. In
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[32], SVM-RFE is compared to EFS-SVM, Embedded Feature Selection SVM algorithm for

hyperspectral images. The EFS-SVM embeds a weighting into the SVM kernel function and

iteratively updates the weights using a logistic function measuring each band importance.

The Recursive SVM (R-SVM) and its modification, MR-SVM, in [33] train an SVM and

calculate discriminatory power for each band from its weight in a backward elimination

procedure.

Recent trends in data analysis have seen a rise in popularity of sparsity inducing penalty

functions, in particular, the `1-norm penalty. This approach is attractive given `1-norm

optimization problems are readily handled via fast convex solvers and serve as a proxy for

`0-norm optimization problems which are prohibitively expensive. The `1-norm penalty was

initially proposed in the context of linear SVMs in [17], and also used in [16], [18] and [34].

This methodology was used for dimensionality reduction in the context of drug design, based

on training linear support vector regression (SVR) models for selecting features and then

creating a nonlinear SVR model for reduced data classification [35]. The authors also used

the bootstrap aggregating approach of [36].

An improved hybrid `1-norm SVM to reduce noise features was proposed in [37]. The

geometry of the SVM with the `1-norm regularization results in feature weights being set to

zero effectively, i.e., they serve as embedded feature selectors.

To our knowledge, the sparsity inducing `1-norm SVMs, or sparse SVMs, described in

Chapter 2, has not been exploited in the context of hyperspectral embedded band selection.

We will develop a new band selection procedure whose characteristics can be summarized as

follows:
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• A linear SSVM is used as a basic model for band selection. Unlike [17], [18], or [34],

it is solved by the primal dual interior point method (Section 2.4) that allows one

to monitor the variation of the primal and dual variables simultaneously.

• We exploit the nature of the sparsity of the SSVM algorithm and propose a weight

ratio criterion for embedded band selection. Unlike other variations of SVM, this

approach, when used with SSVMs, easily distinguishes the non-zero weights from the

zero weights in an objective manner, a feature that is critical to the implementation

of the band selection problem. The usual SVM method of selecting features from

the weights with the largest magnitudes fails to provide a rational means for band

selection in hyperspectral imagery.

• Motivated by [35], we employ the bootstrap aggregating approach of [36] to enhance

the robustness of sparse support vector machines. In contrast to [35], we restrict

our attention to linear SSVMs so that we only need to tune one learning parameter.

• We extend the binary band selection to the multiclass case by proposing three

approaches combined with one-against-one (OAO) SSVMs. Two of them are ex-

tensions of the SSVM Algorithm based on pairwise band selection between classes.

The third proposed method is a combination of the filter band selection method

WaLuMI [27] in sequence with the OAO SSVM which serves to reduce more bands

via the embedded feature selection properties of the algorithm.

• We apply the SSVM algorithm to the HSI classification problem, and show that it is

an effective technique for embedded band selection while at the same time achieving

competitively high accuracies in benchmark numerical experiments.

17



This chapter is organized as follows. Section 3.2 covers the SSVM band selection frame-

work. The experimental results are presented in Section 3.3, followed by conclusion remarks

in Section 3.4.

3.2. Band Selection via SSVMs

In this section we describe our sparse SVM approach to the hyperspectral band selection

problem. We consider the band selection algorithm for two-class data problem as well as its

extension to a multiclass data using bands selected from pairwise modeling approach.

3.2.1. Band Selection: Binary Case. We now describe the two-class band selection

algorithm. The sparsity of the SSVM weight vector w identifies bands that are candidates

for elimination. Given the data is inherently noisy there is a stochastic variability in the

vectors w and in the bands selected. In a fashion similar to [35], we address this variability

using bootstrap aggregating (bagging) [36]. In [35], the authors used bagging to reduce

variability and obtain bagged SV regression (SVR) variable selection and nonlinear SVR

classification models. We adopt the bagging technique to train our SSVM to make our selec-

tion model more robust. We replicate the training data set N times by sampling randomly

with replacement. For each pair of classes, N SSVM models are generated based on these N

sets, each resulting in a different weight vector w. As a result, for each band there is a set

(or a sample) of N weight values taken from different w’s. To reduce the number of bands,

we eliminate those with at least 95% of ”zeros” in the samples.

We illustrate the impact of the `1-norm on the solution in Figure 3.2. Both `1-norm

and `2-norm SVMs are trained on two classes from the AVIRIS Indian Pines data set [38],

described in Section 3.3.2. In contrast to the standard SVM, that uses all the bands for
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discrimination, the sparse SVM identifies two bands (out of a total of 220) that can be used

to separate the two classes.

After the bagging step, an SSVM is trained on the reduced data, and the resulting

SSVM weights are ordered by magnitude. Comparing magnitude orders, we can eliminate

more bands: if |wi|
|wi+1| = O(10M) and M > 1 for some i∗, we remove bands starting from index

i∗ + 1. For instance, in our experiments in Section 3.3.2, we have observed that M = 5, i.e.,

there is a sharp transition separating the zero from non-zero weights. We provide numerical

results in Table 3.2 to support this observation.

The method is summarized in Algorithm 2.
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Algorithm 2: Two-class Band Selection SSVM Algorithm

1 Input: Training data matrix X ∈ Rm×n, class labels di ∈ {−1,+1}, i = 1, . . . ,m, set
of kept bands S = {1, 2, . . . , n}

2 Step 1. Variability Reduction.
3 Sample with replacement from X to obtain replicate training sets X1,X2, . . . ,XN

4 Train N SSVM models fj(x) = (wj)Tx + bj → weight vectors wj, j = 1, . . . , N

5 For k = 1 : n, remove kth band if #{|wjk| < tolerance, j = 1, . . . , N} ≥ 0.95 ∗N , →
update S

6 Restrict X to selected bands: Xnew = X(:, S)
7 Step 2. Final Selection.
8 Train an SSVM model f on Xnew → w
9 Rank w values by magnitude → wr, keep ranked band indices in R

10 Go through wr and compare magnitude orders: if |wrik |/|w
r
ik+1
| = O(10M) and M > 1

for some k = k∗, remove bands from R starting from index ik∗+1 → update
S = S \ S(R)

11 Restrict Xnew to selected bands: Xnew = Xnew(:, S)
12 Output: Band selected list S, linear SSVM model f

3.2.2. Multiclass Band Selection. Hyperspectral images typically consist of more

than two classes of data, therefore we consider possible extensions of the binary Algorithm 2

to the multiclass case by proposing three methods.

Methods I and II concern using the set of bands selected in the context of binary models.

This allows us to use the results of the embedded band selection described above. Hence,

after performing binary band selection for all pairs of c classes, we have
(
c
2

)
= c(c − 1)/2

subsets of selected bands. Note that simply taking the superset or intersection of these

subsets is not an option in general as the superset can be equal to the original set of bands,

and the intersection can be the empty set. Our third approach differs from the two above in

that it is a combination of a filter method and OAO SSVMs.

• Method I: Rank selected bands by the frequency of their occurrence in all the

two-class subsets and select K bands with the highest frequency values for a chosen

number K.
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• Method II: Rank bands in each two-class subset by magnitude and take the su-

perset of the T top bands from each subset. For simplicity, T = 1 is taken, in which

case the method gives only a fixed set of selected bands.

• Method III: This approach does not use the results of the two class band selection

problem. The well-known Ward’s Linkage Strategy Using Mutual Information (Wa-

LuMI) method [27] is employed as a pre-selection filter technique, briefly discussed

in Section 3.3.2. This filter band selection step is followed by an application of the

OAO SSVM which implicitly performs an embedded band selection in view of the

sparse penalty term which effectively sets redundant weights to zero.

As mentioned in Section 3.1, for all the three methods, we adopt one-against-one (OAO)

multiclass approach 1 to compare our results with other methods in the literature. It is based

on defining a combined decision function on a set of binary classifiers. Given c classes, we

build all pairwise
(
c
2

)
`1-norm binary classifiers fij, taking training points from classes i and

j, respectively. For a testing pixel x, if fij determines the class of x to be i, we increase the

vote for class i by one. Otherwise, the vote for class j is increased by one. We repeat this

for all classifiers, and the class with the largest number of votes is assigned to x.

3.3. Experimental Results

Now we present computational results both for binary and multiclass band selection and

classification and compare them with other techniques.

3.3.1. Comparison With Other Methods. The computational results include per-

formance of the method on the AVIRIS Indian Pines [38] and Long-Wavelength Infrared

(LWIR) [40] data sets. We apply the SSVM algorithm to the binary classification problem

1We note that the classification results obtained using one-against-all (OAA) SVMs [39] were inferior com-
pared to those obtained using OAO SVMs.
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on both data bases, and also compare the results of the multiclass SSVM algorithm on the

Indian Pines data set with several other well-known techniques found in the literature. Re-

sults for both the two class problem and multiclass problem are analyzed. The techniques

used for comparison are briefly summarized below:

(1) WaLuMI: Ward’s Linkage strategy Using Mutual Information (WaLuMI) [26] (or

[27]) is a filtering band selection technique that uses no supervised information. It

is a hierarchical clustering approach that exploits band correlation using a mutual

information (MI) criterion. According to WaLuMI, bands are grouped “to minimize

the intracluster variance and maximize the intercluster variance” [27]. A distance

matrix used in a clustering process is calculated using MI. A final set of bands is se-

lected as a set of representative bands from each group such that each selected band

has the highest average correlation (mutual information) with regard to the other

bands in the corresponding cluster. After the band selection process is done, any

classification method can be performed on the reduced data to obtain classification

accuracy rates. We compare the results of this method to our binary and multiclass

SSVM results. In addition to comparing the results from WaLuMI as described in

[26, 27] to our results, we propose its application in a preprocessing state of the

c > 2 class problem. For implementation of WaLuMI for Method III we used the

software BandSelection TGRS07 [41].

(2) B-SPICE: Proposed in [42], this method performs simultaneous band selection and

endmember detection. It extends the SPICE, the Sparsity Promoting Iterated Con-

strained Endmember algorithm, with integrated band selection. It is done by adding

band weights and a band sparsity promoting term (BST) to the SPICE objective
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function. The method is a filter, and after selecting the relevant bands, the au-

thors performed one-against-one Relevance Vector Machine (RVM) classification.

We used this method for comparing results for the multiclass data.

(3) Lasso Logistic Regression: The Lasso logistic regression, or `1-norm regularized

logistic regression, proposed in [6], has become a popular tool for data classification.

We solve the following optimization problem:

min
β0,β
− 1

m

m∑
i=1

yi(β0 + xTi β)− log(1 + e(β0+xT
i β)) + λ‖β‖1,

where (β0,β) are the model parameters, λ is a tuning parameter, m is the number

of data points xi, and yi are response variables. The `1-norm induces sparsity in the

parameter, with zero components corresponding to redundant bands. We implement

this approach for binary band selection only, via available R-based glmnet-package

[43].

3.3.2. AVIRIS Indian Pines Data Set. The hyperspectral Indian Pines data set

was collected by an Aiborne Visible/Infrared Imaging Spectrometer (AVIRIS) over a small

agricultural area in Northwestern Indiana in 1992 [38]. It consists of 145× 145 pixels by 220

bands from 0.4 to 2.4 µm.2 Note, that in the literature, water absorption bands 104− 108,

150−163, and 220 are often discarded before experiments. In our experiments we include all

the 220 original bands with the idea that the band selection algorithm should ignore these

bands if it is performing as we expect. Figure 3.3 shows the image at band 31 (∼ 0.7µm)

and the ground truth of the scene. Due to availability of the ground truth, 10366 pixels were

prelabeled to be in one of the 16 classes. The unlabeled background pixels are not used in

2We note that it is common practice in the literature for this data set to refer to bands using their indices,
rather than the wavelength values, and we follow that convention here.
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Figure 3.3: AVIRIS Indian Pines data set: (a) ground truth; (b) one band image.
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Figure 3.4: Averaged spectral signatures of the Indian Pines data set classes.

our experiments. Figure 3.4 depicts averaged spectral radiance curves for each class, with

the radiance units being watts ∗ cm−2 ∗ nm−1 ∗ sr−1. We preprocessed the data by finding

the mean over all the pixels and then subtracting it from each pixel in the scene.

The data was randomly partitioned into 50% for training and 50% for testing (Table 3.1).

The training set was used to build SSVM models using bootstrap aggregating [36]. The values

of penalty parameter C were found by performing 5-fold cross-validation on the training data.

The number N of data bootstrap samples used in the SSVM Algorithm was set to 100.
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Table 3.1: The Indian Pines data set: number of training and testing pixels in each class.

Class # Training Points # Testing Points

Alfalfa 27 27

Corn-notill 717 717

Corn-min 417 417

Corn 117 117

Grass/Pasture 249 248

Grass/Trees 374 373

Grass/Pasture-mowed 13 13

Hay-windrowed 245 244

Oats 10 10

Soybeans-notill 484 484

Soybeans-min 1234 1234

Soybeans-clean 307 307

Wheat 106 106

Woods 647 647

Bldg-grass-trees-drives 190 190

Stone-steel towers 48 47

Total 5185 5181

Table 3.2: The magnitude of ordered weights obtained using the SSVM Algorithm. SSVM
produces a steep drop in the weight values. Only bands associated with the non-zero

weights are selected, i.e., before the steep drop in their magnitude.

Corn-min and Woods Corn-notill and Grass/Trees

Band Weight Band Weight

29 1.4249e-03 1 1.0202e-03

41 1.3191e-03 9 9.6991e-04

28 3.5594e-08 5 6.5283e-04

42 1.6342e-09 29 8.3022e-09

27 1.3258e-09 32 4.2466e-09

· · · · · · · · · · · ·

Using the experimental setup described above, we apply our two-class band selection

SSVM Algorithm to the Indian Pines data set. Table 3.2 lists several top weights ordered by

magnitude at the final selection step of Algorithm 2. The distinction between the zero and

non-zero weights is made clearly by the large gap O(105) in the magnitudes determined by

the ratios. For two pairs of classes, Corn-min and Woods, and Corn-notill and Grass/Trees,
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Figure 3.5: SSVM band selection for Corn-notill and Grass/Trees given the subset of bands
(1,9,5,29,32) ranked by magnitude: (a) band weights |wk| vs. band indices; (b) band weight
ratios |wk|/|wk+1| vs. ratio indices. See also Table 3.2.

the sets of bands selected are (29,41) and (1,9,5), respectively. Figure 3.5 visualizes five

top band weights |wk| and four corresponding ratios |wk|/|wk+1| for classes Corn-notill and

Grass/Trees according to Table 3.2. It is seen that the third ratio, corresponding to the ratio

with original indices |w5|/|w29|, is of order O(105), which suggests the removal of bands 29

and 32.

Table 3.3 shows the number of selected bands and classification accuracy for three pairs

of classes in comparison to the other methods. These classes were selected to illustrate the

diversity of performance of the method that is inherently dependent on the complexity and

similarity of the signatures of interest. The bands that were selected for each pair of classes

are shown in Figure 3.6 along with the spectral signatures. We plotted the difference between

two spectral signatures and the corresponding band weights in Figure 3.7.

As an embedded method, the SSVM Algorithm selects bands that contribute most to

the process of separating the classes. It is interesting to note that the SSVM selection for

Corn-min and Woods pick only two bands, 29 and 41. These bands are located precisely
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Table 3.3: Accuracy rates (%) for binary band selection.

Classes Accuracy:
SSVM Algorithm WaLuMI + SSVM Lasso Logistic Regression

all bands # Bands Kept Accuracy # Bands Kept Accuracy # Bands Kept Accuracy

Corn-min and

Woods 100.00 2 100.00 2 99.9 12 100.00

Corn-notill and

Grass/Trees 99.73 12 99.73 12 100 19 98.9

Soybeans-notill and

Soybeans-min 89.58 179 89.23 - - 127 89.52

where the difference in the spectral signatures is the largest. When we run the WaLuMI

algorithm with the number of bands preselected to be two we obtain bands 54 and 184.

Both bands occur where the difference in the signatures is smaller than for the bands se-

lected by SSVM. For the pair Corn-notill versus Grass/Trees the SSVM algorithm identified

12 bands: 121,28,35,36,34,41,42,6,72,1,9,5 (ranked by magnitude), while when WaLuMI is

preselected to compute 12 bands, it identifies - 12,22,36,50,68,88,100,127,162,165,183,209.

We note a tendency by WaLuMI to select high band indices while SSVM favors low indices.

We note that the SSVM algorithm has identified neighboring spectra as being important

in the model, e.g., bands (34, 35, 36), (5, 6) and (41, 42). One might infer that SSVM is

characterizing these frequencies as very significant for inclusion. When we look at the plot

of the difference in spectral signature, we observe that the difference in spectral signature

is changing rapidly at these locations. One can speculate that the steepness of this curve

requires more samples to capture accurately. We observe that for very similar classes, more

bands are required to separate the data, as in case of Soybeans-notill and Soybeans-min, see

Figure 3.7c. Apparently, the signatures are so similar that many more bands are required to

discriminate between them. It is interesting to observe that for this case the Lasso logistic

regression approach selected only 127 bands and demonstrated comparable accuracy. In
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Figure 3.6: Spectral signatures and weights of selected bands for: (a) Corn-min and Woods,
(b) Corn-notill and Grass/Trees, (c) Soybeans-notill and Soybeans-min.
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Figure 3.7: Difference plots of spectral signatures and weights of selected bands for: (a)
Corn-min and Woods, (b) Corn-notill and Grass/Trees, (c) Soybeans-notill and Soybeans-
min.

contrast, the Lasso logistic regression selected substantially more bands for the other cases

with comparable classification rates.

After computing the discriminatory bands for all
(

16
2

)
= 120 pairs of Indian Pines classes

according to the SSVM Algorithm, we implement the multiclass band selection described in

Section 3.2.2. Figure 3.8a shows the distribution of number of bands selected for each pair of

classes. It is apparent that some classes are so similar that sparse solutions do not exist, as in

the case studied above for Soybeans-notill and Soybeans-min. Differences in class signatures

are exploited by SSVM to identify optimal bands for classification, i.e., where the signatures
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Figure 3.8: Binary band selection for Indian Pines data: (a) a colormap reflecting the
numbers of bands selected for each of 120 subsets, i.e., pairs of classes; (b) number of
occurrences of each band.

are most distinct on average. When the spectral signatures are very similar there are no

highly discriminatory bands for SSVM to select, and the net result is that the method needs

to selects a large number of bands for successful discrimination. When the signatures are

distinct, such as for Corn-min and Woods, substantially sparser models are able to model

the decision function. According to Method I, the bands selected in the pairwise problems

are ranked by their frequencies of inclusion, i.e., the number of times they were given non-

zero values in the training phase. In Figure 3.8b the frequencies are given summed over all

120 pairs of classes. The bands with smaller indices appear to be more important in the

multiclass problem.

The overall classification accuracy rates of Methods I, II, III for different subsets of

selected bands are given in Table 3.4. The rates were obtained by training and testing mul-

ticlass OAO SSVMs on selected band sets and then performing spatial smoothing following

[42]. Namely, for each test pixel, we consider its three by three contiguous neighborhood

and assign the most frequently occurring class name in this neighborhood to the pixel. In
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Figure 3.9: Accuracy plots for OAO SSVM before and after spatial smoothing obtained by
Methods I and III.

this process we use the training pixels labels corresponding to the ground truth. Note that

spatial smoothing improves classification rates significantly, see Figure 3.9.

Table 3.4 reveals interesting aspects of the relative performance of the algorithms. First

we note that the combination of WaLuMI with SSVM (Method III) does not appear in prior

literature. The SSVM will ignore bands selected by WaLuMI that it finds redundant, i.e., it

will perform a secondary embedded band selection. We conclude that Method I is superior

to Method III when we are including more bands but Method III outperforms Method I for

smaller sets of bands. Both methods show a substantial improvement over other methods in

the literature for the multiclass problem.

Method II (Table 3.4), as described in Section 3.2.2, gave a fixed set of 57 selected bands,

with OAO SSVM with spatial smoothing classification accuracy on reduced data equal to

97.3%. This result is better than the corresponding results for Method I and Method III.
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Figure 3.10: Number of bands selected by SSVM out of 10 bands preselected by WaLuMI
for each pair of classes of the Indian Pines data set.

Note that among bands selected by Method II, there are no water absorption bands 104−108,

150− 163, and 220. As for Method I, these noisy bands were selected in 5% pairs of classes.

Method III, as a combination of WaLuMI and SSVM, can be used for further data

reduction. As we observe, the SSVM classifier drives to zero weights of some pre-selected by

WaLuMI bands. Consider, for instance, the subset of ten bands selected by WaLuMI with

indices 5, 25, 52, 55, 68, 79, 88, 100, 129, 183. The OAO SSVM applied to the data with this

set of bands, remove more bands for most pairs of classes. Figure 3.10 reflects the statistics:

we can see how many bands are selected out of 10 for each of 120 pairs of classes. The results

are sorted by number of bands.

We compared our results to those reported in [42] and [26]. We did not make comparisons

with the WaLuMI experiments described in [27], as we did not use background pixels in our

experiments. For comparison with [42], we used the results from the Table III in the paper,

run 3 (see the B-SPICE + RVM column). For comparison with [26], we took the results from
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Table 3.4: Accuracy results for multiclass band selection (%) and comparison with other
methods.

# Bands Kept Method I Method II Method III Comparison

(WaLuMI + SSVM) B-SPICE + WaLuMI +

RVM [42] NN [26]

220 98.36 - 98.36 93.9 -

124 98.24 - 97.59 93.7 -

122 98.13 - 97.59 93.2 -

103 97.74 - 97.49 93.5 -

89 97.36 - 97.47 93.6 -

80 97.14 - 96.89 - -

60 96.12 - 96.02 - -

57 95.66 97.3 96.22 - -

40 94.65 - 95.46 - 80

34 93.15 - 93.03 86.4 80

30 92.67 - 93.34 - 79

20 91.08 - 92.78 - 79

19 91.20 - 92.57 82.5 81

18 88.59 - 92.78 78.3 82

10 84.37 - 93.07 - 81

5 76.32 - 85.29 - 71

the paper, namely Nearest Neighbor (NN) classifier rates obtained on subsets determined by

WaLuMI (the WaLuMI + NN column). Note that nearest neighbor classification becomes

computationally prohibitive as the size of the image grows.

Table 3.5 shows the bands selected by our Method I and WaLuMI for number of bands

K = {1, 2, 3, 5, 10}.

3.3.3. Long-Wavelength Infrared data set. The Long-Wavelength Infrared (LWIR)

data set was collected by an interferometer in the 8 − 11 µm range of the electromagnetic

spectrum [40]. During a single scanning, the interferometer collects 20 images from differ-

ent wavelengths, 256 × 256 each. Figure 3.11 shows a color image and histogram from one

wavelength of a particular data cube. Table 3.6 contains the 20 wavelength numbers at
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Table 3.5: Bands selected by Methods I and WaLuMI for the 16-class classification
problem.

# Bands, K Bands Selected Bands Selected

by Method I by WaLuMI [26]

1 1 129

2 1,34 68,129

3 1,34,2 68,88,129

5 1,34,2,3,29 5,25,68,88,129

1,34,2,3,29, 5,25,100,55,183,

10 32,41,39,28,42 129,79,52,68,88

which the data collection was made. A single data collection event consists of releasing a

pre-determined quantity of a chemical liquid into the air to create an aerosol cloud for vapor

detection against natural background. The 256×256×20 cubes are collected successively, i.e.,

a hyperspectral movie, to record the entire event from ’pre-burst’ to ‘post-burst’. The three

chemicals used in the experiments are Glacial Acetic Acid (GAA), Methyl Salicylate (MeS),

and Triethyl Phosphate (TEP). We consider this data as three classes for classification and

band selection.

The data was preprocessed using the approach described in [44]. We summarize the

approach as follows:

(1) background estimation: approximately 50 pre-blast spectral cubes were used and a

basis for the background determined for each pixel.

(2) background removal: the background was then projected away using the singular

value decomposition basis for the background at each pixel;

(3) k-means clustering: the resulting background removed pixels were clustered into

groups, with each group representing a distinct chemical.

As for the Indian Pines data set analyzed above, we are interested in selecting bands

that are the most useful for distinguishing the chemical vapor in airborne plumes. For
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Figure 3.11: An image from one wavelength of a LWIR data cube. Note that the speckling in
the image due to the black pixels results from missing measurements where the interferometer
was unresponsive. These zero valued pixels were not used in the analysis.

Table 3.6: The LWIR data set wavelengths.

Band index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wavenumber (cm−1) 1011 1034 1049 1068 1094 1107 1137 1148 1160 1183 1205 1216 1237 914 936 946 957 971 984 998

this reason we will focus on applying the SSVM Algorithm to the two class classification

problem. We split the 12749 pixels of GAA, 13274 pixels of MeS, and 11986 pixels of TEP

in half to obtain training and testing sets. Given the size of the data sets we took 10% of

training pixels from each class and sampled randomly with replacement. We used number

of bootstraps N = 100 and used tolerance equal to 10−8 to identify the zero weights at the

variability reduction step. The final selection was based on difference in weight magnitudes.

The values of C were determined via 5-fold cross-validation on the training data. This data

set is clearly linearly separable and the classification results on the test data were essentially

perfect. The contribution of this example is the identification of the appropriate bands for

the discrimination of these chemicals. The accuracy rates and the band selection results are
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Figure 3.12: Spectral signatures and selected bands for: (a) GAA and MeS, (b) GAA and
TEP, (c) MeS and TEP.

shown in Table 3.7. Figure 3.12 depicts plots of spectral signatures combined with selected

band weights for the three pairs of the chemicals.

Table 3.7: The LWIR data set: accuracy rates (%) for binary band selection.

Class # Bands Bands Selected Accuracy Rate on

Reduced Data (%)

GAA and MeS 5 19,20,4,5,10 100

GAA and TEP 11 3,14,11,10,17,9,8,7,2,1,18 99.9

MeS and TEP 9 14,3,19,2,17,4,7,9,16 99.9

3.4. Summary

We proposed `1-norm penalized sparse SVMs as an embedded tool for hyperspectral

band selection. It is a supervised technique that simultaneously performs band selection

and classification. We compared the band selection of the SSVM Algorithm to WaLuMI

and Lasso logistic regression for several illustrative classes of the Indian Pines Data Set and

compared the bands selected and the classification performance. The SSVM Algorithm

selected bands were evaluated using the plot of the difference in spectral curves of the

classes. We observed that single bands resided at optimal peaks in these curves. In addition,

sets of two or three adjacent bands were selected by the SSVM Algorithm where the slope
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of this curve was steep suggesting that multiple bands were needed for sampling. The

SSVM Algorithm is trained using bagging to obtain multiple SSVM models and reduce the

variability in the band selection. This preliminary band selection is followed by a secondary

band selection which involves retraining the SSVM. We used the steep drop in the magnitude

of the weights to identify zero weights.

The SSVM Algorithm for binary band selection was extended to the multiclass classifi-

cation problem using one-against-one (OAO) SSVMs. Three methods were proposed for the

multiclass band selection problem. Methods I and II are extensions to the binary band se-

lection; Method III combines a well-known method, WaLuMI, as a preprocessor, with OAO

SSVMs. Spatial smoothing by majority filter was used to improve the accuracy rates for dif-

ferent sets of kept bands. Results on both the Indian Pines and the LWIR data sets suggest

that the methodology shows promise for both the band selection problem and as a technique

that can be combined with other band selection strategies to improve performance.
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CHAPTER 4

Classification of Data on Embedded Grassmannians

4.1. Introduction

In this chapter, we pursue classification using comparison between multiple observations

of subject classes encoded as linear subspaces. This set-to-set pattern recognition approach

captures the signal variability in data. A collection of subspaces has a natural mathematical

structure known as the Grassmann manifold (Grassmannian). The Grassmannian is referred

to as an abstract manifold since it does not reside in Euclidean space, i.e., its properties are

not described by n-tuples with the distances between them measured via inner products.

Recently it has become an active area of research to develop computational algorithms on

non-Euclidean spaces [8, 45, 46].

Nash’s famous isometric embedding theorem shows under what conditions abstract Rie-

mannian manifolds (Grassmann manifolds are a special case of these), equipped with a

Riemannian metric, can be embedded into Euclidean space such that the distances be-

tween points on the manifold are preserved [47]. Note that while Nash’s isometric (distance-

preserving) embeddings exist in general, in this study we consider the existence of an iso-

metric embedding in the context of metric spaces, which is not always guaranteed and can

be based on the choice of a metric. For instance, according to [48], there is no isometric

embedding from any nonempty open subset of the sphere S into any Euclidean space, while

the trivial inclusion S ⊂ R3 is an isometric embedding of Riemannian manifolds.

A set of points on the Grassmann manifold can be embedded into Euclidean space using

projection maps described in [49]. This embedding is isometric if the chordal (projection)
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metric is used. We propose an approach for embedding points on the Grassmannian into Eu-

clidean space via multidimensional scaling (MDS), see, e.g., [50] and references therein. The

result is a configuration of points in Euclidean space whose Euclidean distances approximate

the distances measured on the abstract manifold. The choice of a metric is important, as it

changes the geometry of the embedding. For instance, an MDS embedding is isometric if the

chordal distance is used on the manifold, while this is not true for other (pseudo)metrics.

Geometric approaches have been proposed for characterizing data on manifolds, i.e.,

nonlinear objects that behave locally like Euclidean space. These data driven approaches for

manifold learning include, e.g., isometric mapping (ISOMAP) [51], local linear embedding

(LLE) [52], and Laplacian Eigenmaps [53]. A number of practical algorithms based on

ISOMAP and LLE have been proposed for applications to hyperspectral imagery, see, e.g.,

[54]. We note that in these methods, a manifold coordinate system is derived from computing

the geodesic distances between the hyperspectral pixels, i.e., they are algorithms operating in

pixel space. The algorithms applied to pixel space are using manifolds as a model for the data.

In our approach, that we also illustrate on hyperspectral data, we first encode sets of pixel

vectors as subspaces which are viewed as points on a Grassmann manifold, the existence of

which is theoretically guaranteed. The Grassmann manifold is then embedded into Euclidean

space using MDS. Mapping into Euclidean space is followed by SSVM classification and

selection of a subset of dimensions of the embedding based on the sparsity of the SSVM

model (Chapter 2). The resulting sparse embeddings, i.e. embeddings with several selected

dimensions only, are used for embedded data visualization and model reduction purposes

[55].

This chapter has the following outline. In Section 4.2 we describe the mathematical

framework behind encoding collections of pixels as subspaces using the geometry of the
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Grassmann manifold. In Section 4.3 we outline the methodology for approximating an

isometric embedding of the Grassmannian. The algorithm is summarized in Section 4.4

and the experimental results are discussed in Section 4.5. We summarize our findings in

Section 4.6.

4.2. The Grassmannian Framework

In the proposed framework, we use the geometric structure of the Grassmann manifold

to represent sets of points as subspaces and study the relationship between them.

Definition 4.2.1. The real Grassmann manifold (Grassmannian) G(k, n) is the

manifold of points that parameterize k-dimensional linear subspaces of the real n-dimensional

Euclidean space, Rn, 0 < k ≤ n.

The Grassmannian G(k, n) is a compact manifold of dimension k(n − k), and it is a

non-Euclidean homogeneous space of the orthogonal group O(n) (that consists of n × n

orthogonal matrices), given by O(n)/(O(k) × O(n − k)) [8]. A point on G(k, n), i.e., a k-

dimensional subspace, can be non-uniquely represented by a basis, i.e. an n × k matrix U

with orthonormal columns (UTU = Ik). Two points on G(k, n) are considered to be the same

if they span the same subspace, i.e., notationally, U1 = U2 when span(U1) = span(U2).

To organize original data as points on the Grassmann manifold, we repeatedly sample

random k points from the same class to obtain “tall and skinny” matrices Yi ∈ Rn×k, with

n being the original data dimension, namely, the number of features. The next step is to

compute the reduced singular value decomposition (SVD) Yi = UiΣiV
T
i , where the n × k

matrix Ui has orthonormal columns, the k×k matrix Σi is diagonal, and the k×k matrix Vi

is orthonormal [56]. The Ui is associated to the column space of Yi, R(Yi), a k-dimensional

subspace of Rn, and thus can represent a point on the Grassmannian, see Figure 4.1.
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⏟
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Figure 4.1: Constructing subspaces on a Grassmannian manifold from original data points.

Once the points on G(k, n) are computed, we can generate a matrix of pairwise distances

between them. Formally, the Riemannian distance between two subspaces on G(k, n) is the

length of the shortest curve connecting them (the geodesic) [45]. There is a way to define

distances on the Grassmannian using the principal angles between two subspaces [56].

Definition 4.2.2. Let U1 and U2 be two orthonormal n × k matrices. The principal

angles 0 ≤ θmin = θ1 ≤ θ2 ≤ . . . ≤ θk = θmax ≤ π/2 between two subspaces span(U1) =

span(U2) are defined recursively by

θi
.
= minimize

ui∈span(U1)
vi∈span(U2)
‖ui‖=‖vi‖=1

arccos uTi vi

subject to uTi uj = 0, vTi vj = 0, j = 1, . . . i− 1.

In practice, the vector of principal angles θ
.
= (θ1, θ2, . . . θk) between two subspaces, given

by orthonormal bases U1 and U2, can be computed using the SVD [56], see Algorithm 3.

Note that the vectors {ui} and {vi} are principal vectors between the subspaces spanned by

U1 and U2.

Let us now define the following distance measures between two subspaces P and Q on

the Grassmannian (Figure 4.2):
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Algorithm 3: Principal Angles

1 Input: Orthonormal matrices U1,U2 ∈ Rn×k

2 (Y,Σ,Z)← svd(UT
1 U2)

3 θ = arccos(diag(Σ))
4 Output: Vector of principal angles θ

• The geodesic or arc length distance is given by

dg(P ,Q) = (
k∑
i=1

θ2
i )

1/2 = ‖θ‖2.

• The chordal or projection distance is given by

dc(P ,Q) = (
k∑
i=1

(sin θi)
2)1/2 = ‖sin θ‖2.

• The third distance is chosen to be a pseudometric given by

dl(P ,Q) = (
l∑

i=1

θ2
i )

1/2, l < k,

and, in particular, the smallest principal angle pseudometric distance is

d1(P ,Q) = θmin = θ1.

Note that dl is not a metric, as, if dim(P ∩ Q) ≥ l, then dl(P ,Q) = 0.1 However, the

use of it (and, in particular, d1) as a distance measure allows for higher accuracy rates in

binary experiments for most subspace dimension k values and results in one-dimensional

classification models in the case of d1 [55].

Note that these distance measures lead to different geometries on the Grassmann man-

ifold. In the next section we propose a way to embed G(k, n) into Euclidean space using

1E.g., d1 = θ1 is zero when two different subspaces intersect at least in a line.
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Figure 4.2: Computing principal angles and a distance d between two points on the Grass-
mannian G(k, n): subspaces span(U1) and span(U2) are represented by orthonormal bases
U1 and U2.

multidimensional scaling (MDS). We also discuss the resulting MDS embeddings for different

geometries and compare them to the well-known projection embedding [49].

4.3. Embedding via MDS

According to [49], the Grassmann manifold G(k, n) can be interpreted as a submanifold of

Euclidean space, via the representation of k-dimensional subspaces (given by their bases Ui)

by the projection matrices Pi = UiU
T
i . More precisely, if the chordal distance dc is used, this

embedding is isometric (i.e., distance-preserving), and the points are located on a sphere of

radius
√
k(n− k)/n in RN , with N =

(
n+1

2

)
−1 = n(n+1)

2
−1 and dc(U1,U2) = 1√

2
‖P1−P2‖F .

Note that N does not depend on k, and becomes very large if the original data has large

input space dimension n. To embed points on G(k, n) into Euclidean space of much lower

dimension, we propose using multidimensional scaling procedure described, e.g., in [50].

Multidimensional scaling constructs a configuration of points in Euclidean space, only

using the information about distances (dissimilarities) between the objects. As the next

step of our approach, we use this tool to embed a set of points on the Grassmannian into

Euclidean space of the dimension to be determined during the MDS procedure.
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Given p points on G(k, n), sampled from raw data, we first generate a symmetric matrix

of pairwise distances between the points, D ∈ Rp×p, with Dii = 0 and Dij ≥ 0, using one

of the distance measures introduced in Section 4.2. Then we perform the sequence of steps

described in Algorithm 4.

Algorithm 4: Multidimensional Scaling

1 Input: Distance matrix D ∈ Rp×p

2 Compute B = HAH, where the centering matrix H = I− 1
p
eeT and Aij = −1

2
D2
ij (e

is a vector of p ones)

3 Compute ΓΛΓT = XXT , where X := ΓΛ
1
2

4 Output: Configuration of points X ∈ Rd, where d = rank(B) = rank(X)

Note that since Be = 0e, then B always has (at least one) zero eigenvalue corresponding

to the eigenvector e. Therefore, d = rank(B) = rank(X) ≤ p− 1, i.e., the dimension of the

embedding space is never higher than p− 1, where p is the number of points on G(k, n).

It can be proved that if B is positive-semidefinite (i.e., all the eigenvalues of B are

nonnegative), then D is Euclidean2 (the converse is also true) [50]. If this is the case,

MDS provides an isometric (or distance-preserving) embedding into Rd. If B is not positive

semidefinite, the embedding, using positive eigenvalues of B only, is adopted as the best

approximation we can derive for our non-Euclidean distance matrix D. (Note that in case

of small in magnitude negative eigenvalues our loss is little.)

We observe that distances chosen on the Grassmannian provide different MDS embed-

dings and classification accuracy results (Section 4.5). For instance, the chordal distance

between subspaces results in isometric (distance-preserving) embeddings for any value of k,

while the geodesic and pseudometric distances do not. This observation agrees with the

2A distance matrix D is Euclidean if there exists a configuration of points in some Euclidean space whose
interpoint distances are given by D.
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results obtained for the projection embeddings in [49]: recall that the representation of k-

dimensional subspaces in Rn by their projection matrices gives a high-dimensional isometric

embedding of G(k, n) into Euclidean space using dc. In fact, a configuration obtained by

MDS and a configuration obtained via projection matrices using the chordal distance are

similar, subject to translation, rotation, and scaling. To show this, one can use Procrustes

analysis that removes the translational, scaling and rotational components from one config-

uration so that the optimal alignment between the two embeddings is achieved [50, 57], see

Algorithm 5.

Algorithm 5: Procrustes analysis

1 Input: X ∈ RN1 and Y ∈ RN2 , N2 ≥ N1

2 place N2 −N1 columns of zeros at the end of matrix X
3 mean-center both X and Y to have the centroids at the origin

4 find the rotation matrix A = HGT from (H,Σ,G)← svd(YTX)

5 find the scaling factor ρ = trace(XTYYTX)1/2/trace(XTX)

6 rotate and scale X to X̄ = ρXA
7 calculate the Procrustes statistic

R = 1− (trace(XTYYTX)1/2)2/(trace(XTX)trace(YTY))
8 Output: Matched to Y configuration X̄ and statistic R

We illustrate the similarity of MDS and projection embeddings for the chordal distance

dc via Procrustes analysis on 50 points randomly generated on G(2, 10). Figure 4.3 depicts

three configurations in Euclidean space, projected on the plane: the MDS embedding X, the

projection embedding Y, and the MDS embedding matched to the the projection embedding

obtained using Procrustes analysis, X̄. We observe perfect matching between X̄ and Y with

the Procrustes statistic R = 0 (meaning the matching is optimal). In contrast to this,

MDS and projection embeddings obtained by using distances dg and d1 are not matched

by Procrustes analysis, see Figures 4.4 and 4.5. This is also justified by nonzero Procrustes
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Figure 4.3: Comparison of the MDS and projection embedding configurations obtained from
points on G(2, 10) using the chordal distance dc: MDS configuration X, matched MDS
configuration X̄ obtained by Procrustes analysis, and projection configuration Y.

statistic values, which are R = 0.1215 for the geodesic and R = 0.4014 for the smallest angle

distances, respectively.

Based on the analysis above, we conclude that MDS allows for low-dimensional em-

beddings of G(k, n) into Euclidean space, with distances preserved when using the chordal

distance, and distances approximated when using the geodesic or pseudometric distances.

An MDS embedding is similar to an embedding via projection matrices, but the latter, in

contrast, have significantly higher dimensions given a large enough ambient dimension n.

Thus, we adopt MDS for the Grassmannian embedding step, followed by classification and

dimension selection in Euclidean space.

4.4. Classification and Dimension Selection

Once we have obtained a configuration of points in d-dimensional Euclidean space, we

assign each point a class label from the original class of pixels, as the way the point is
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Figure 4.4: Comparison of the MDS and projection embedding configurations obtained from
points on G(2, 10) using the geodesic distance dg: MDS configuration X, matched MDS
configuration X̄ obtained by Procrustes analysis, and projection configuration Y.
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Figure 4.5: Comparison of the MDS and projection embedding configurations obtained from
points on G(2, 10) using the smallest principle angle distance d1: MDS configuration X,
matched MDS configuration X̄ obtained by Procrustes analysis, and projection configuration
Y.

46



Algorithm 6: Dimension Selection

1 Input: Configuration of labeled points X ∈ Rd (embedding space)

2 Train an SSVM model → weight vector (w1, w2, . . . , wd)
T

3 Rank the weights by magnitude: (wi1 , wi2 , . . . , wid)T such that
|wi1| ≥ |wi2| ≥ . . . ≥ |wid |

4 If |wik |/|wik+1
| = O(10M) and M > 1 for some k = k∗, remove dimensions starting

from index ik∗+1

5 Output: Selected dimensions

computed allows one to retain this information. We can now perform classification and

dimension selection for further study and model reduction by training a sparse support

vector machine (SSVM), refer to Chapter 2.

Recall that the SSVM is a supervised classification method that seeks for the optimal

separating hyperplane between two classes of data, and builds a sparse model due to the

`1-norm regularization term in the objective function. The sparsity of the weight vector in

the decision function, can be used to reduce the number of data features. Note that in our

case, a set of features to be reduced by the SSVM is a set of d dimensions of the embedding

space Rd. In general, feature selection reduces the size of the data, and, consequently,

the computational cost for further experiments, improves classification rates, or eliminates

redundant features. In our case, the optimal dimensions determined by the SSVM can be

used for model reduction and embedding visualization, which we demonstrate in Section 4.5.

The approach for selecting embedded dimensions based on the SSVM is summarized in

Algorithm 6.

Table 4.1 illustrates how this works in practice. The dimension selection results are given

for two classes of the AVIRIS Indian Pines data set [38], Corn-notill and Grass/Pasture,

encoded on G(10, 220) and embedded into R199 using the distances d1 and dc. In both cases

there is a gap in between “important” dimensions corresponding to heavier weights and
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Table 4.1: Two classes of the AVIRIS Indian Pines data set, Corn-Notill and
Grass/Pasture: SSVM dimension selection of MDS embedding space using d1 and dc

distances on G(10, 220):

pseudometric d1 chordal dc

Dimension Weight Dimension Weight

1 4.1658e+01 1 4.4606e+00

2 3.9670e-08 10 6.7933e-01

3 8.6623e-09 29 2.6502e-01

12 8.2808e-09 82 2.0162e-01

20 7.7610e-09 30 6.3833e-02

22 7.1066e-09 8 2.7234e-02

14 7.0018e-09 74 1.2370e-06

· · · · · · · · · · · ·

the dimensions to be eliminated, determined by Algorithm 6. In particular, dimension 1 is

selected if d1 is used, and dimensions (1,10,29,82,30,8) are selected if dc is used.

Our approach is summarized in Algorithm 7.

Algorithm 7: Classification on Embedded Grassmannians

1 From original data points in Rn, compute p points on G(k, n) for chosen k and p
2 Compute pairwise distances between the points (e.g., dc, dg, or d1)

3 Embed points on G(k, n) into Rd via MDS (Algorithm 4)

4 Train an SSVM and select dimensions in Rd (Algorithm 6)

The SSVM is a binary classifier, so in case of c > 2 data classes, we realize an embedding

by MDS using a distance matrix D that contains pairwise distances between all the points

from different classes. Using one-against-one (OAO) SSVM approach (see Section 3.2.2), we

can classify c classes in Rd by training
(
c
2

)
= c(c−1)

2
binary models, and then applying majority

voting to assign class labels to testing points. Note that the dimension of the embedding in

the multiclass case is much higher than in the binary case, provided we compute the same

number of points for each class. The pairwise multidimensional scaling is not applicable, as

the resulting c(c−1)
2

two-class embedding spaces have different dimensions.
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4.5. Experimental Results

We apply our method to classification of labeled hyperspectral imagery. The experimental

results are obtained on the Indian Pines and Pavia University data sets.

4.5.1. AVIRIS Indian Pines Data Set. This data set has been described in detail

in Section 3.3.2. Note that for this data set, the Grassmannian is G(k, 220), where k is the

dimension of subspaces to be chosen, and n = 220 is the ambient (pixel) dimension. For a

typical experiment, we constructed 100 subspaces per class, with 50 for training and 50 for

testing. We have found this optimal number experimentally, by training SSVMs on different

number of points embedded into Euclidean space, using the chordal, the geodesic, and the

smallest principal angle distances.

By realizing MDS embeddings of G(k, n) under different distances frameworks, we ob-

served that the chordal distance dc provided distance-preserving embeddings, while the geo-

desic distance dg and the pseudometric d1 resulted in no isometry.3 Recall that k-dimensional

subspaces in Rn can also be embedded isometrically into RN , with N =
(
n+1

2

)
− 1, via a pro-

jection embedding using the chordal distance dc. For n = 220, N becomes
(

221
2

)
−1 = 24309,

while MDS embeds G(k, 220) into Rd, where d ≤ p − 1 = 199, provided we have p = 200

points on G(k, 220) sampled from the original data. It is worth mentioning that the isome-

try under the chordal distance framework did not necessarily result in the best classification

models. In fact, we found that for some k values, the d1 distance framework provided the

highest accuracy rates in two-class experiments.

Figure 4.6 illustrates configurations of points in Euclidean space obtained by embedding

points on G(k, 220) via MDS under the d1 framework, for various subspace dimension values

3Recall that the diagnostic for isometry is the spectrum of the MDS matrix B. If there are no negative
eigenvalues present (i.e., B is positive-semidefinite) then the distance matrix D is Euclidean.
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Figure 4.6: Pseudometric d1 embeddings of G(k, 220) via MDS for the Indian Pines data
set classes for various k (the two dimensions correspond to the top eigenvectors of B):
(a) Corn-notill (o) versus Grass/Pasture (+); (b) Corn-notill (o), Soybeans-notill (+), and
Soybeans-min (4).

k. Here we have examples for two and three classes of the Indian Pines data set. Note that

the two-dimensional representation of the configurations is obtained by using two dimensions

corresponding to the top eigenvalues of the matrix B. We see the classes separation becoming

stronger as we increase the dimension k of the subspaces.

Table 4.2 shows results for two-class experiments on G(10, 220): classes Corn-notill vs.

Grass/Pasture and Soybeans-notill vs. Soybeans-min. As we have mentioned before, only

the chordal distance provides isometric embeddings (the number of negative eigenvalues of B

is zero). However, the best SSVM accuracy rates are obtained by using the pseudometric d1.

Note that the classes Soybeans-notill and Soybeans-min are separated with 100% accuracy,

which is known to be the best result for this high difficulty classification problem, see also

[55].

The sparse SVM selects the optimal dimensions of embedding spaces. For the chordal and

geodesic distances, we obtain different combinations of selected embeddings. The use of the
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Table 4.2: Two-class experiments for the Indian Pines data set: p = 200 points on
G(10, 220). The results are averaged over 10 runs.

Classes Number of negative
eigenvalues of B

SSVM Accuracy (%) Number of
dimensions selected

dc dg d1 dc dg d1 dc dg d1

Corn-notill vs. 0 3.9 95.9 100 100 100 1.1 3.9 1

Grass/Pasture

Soybeans-notill
vs.

0 2.7 91.3 87.2 74 100 24.5 46.9 1

Soybeans-min

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

(a)

−0.05 −0.04 −0.03 −0.02 −0.01 0 0.01 0.02 0.03 0.04 0.05

(b)

Figure 4.7: Two-class pseudometric d1 embeddings ofG(10, 220) using one dimension selected
by the SSVM for: (a) Corn-notill (2) and Grass/Pasture (o) classes; (b) Soybean-min (o)
and Soybeans-notill (2) classes.

pseudometric d1 in our framework resulted in one selected dimension for both experiments

in Table 4.2, which can be used as a projection direction to visualize the embedded data

separation, see Figure 4.7. An interesting observation from our experiments is that for the

pseudometric framework our algorithm always selected the first dimension of an embedding

corresponding to the first principal direction of MDS with the largest eigenvalue of the MDS

matrix B.

More results on SSVM accuracy, as a function of subspace dimension k, are given in

Figure 4.8. First, we note that different geometry of the three G(k, 220) frameworks results in

different functions as k grows. Second, the d1 framework overperforms the other two (chordal

51



5 10 15 20 25 30
0.88

0.9

0.92

0.94

0.96

0.98

1

Dimension of subspaces k

A
c

c
u

ra
c

y

 

 

Chordal

Pseudo

Geodesic

Direct SSVM

(a)

5 10 15 20 25 30
0.7

0.75

0.8

0.85

0.9

0.95

1

Dimension of subspaces k

A
c

c
u

ra
c

y

 

 

Chordal

Pseudo

Geodesic

Direct SSVM

(b)

Figure 4.8: SSVM accuracy as a function of k for the Indian Pines data set for chordal,
geodesic, and pseudometric d1 frameworks on G(k, 220). Comparison with (direct) SSVM
accuracy obtained on the original data points for: (a) Corn-notill and Grass/Pasture; (b)
Soybeans-notill and Soybean-min. (Results are averaged over 10 runs.)

and geodesic) for both low difficulty (Corn-notill and Grass/Pasture) and high difficulty

(Soybeans-notill and Soybean-min) classification tasks, as well as the direct applications of

SSVMs to the original data points.

As described in Section 4.4, in case of more than two classes, we realize configuration

of points in Euclidean space by embedding all the subspaces from different classes at one

setting, using a matrix that contains pairwise distances between all the points on G(k, 220).

Figure 4.9 shows accuracy rate versus subspace dimension k for nine-class experiments4 using

different distances: chordal dc , geodesic dg, and pseudometrics d1 = θ1, d2 = (θ2
1 + θ2

2)1/2

and d3 = (θ2
1 +θ2

2 +θ2
3)1/2. The plots reflect the difference in the geometry of the frameworks.

For instance, as we increase k in G(k, 220), the pseudometric d1 will be zero or close to zero

for most of the data, due to the high concentration of subspaces on the manifold, causing

decrease in classification rates. The other measures are more discriminative as k grows,

4Classes included: Corn-notill, Corn-min, Grass/Pasture, Grass/Trees, Hay-windrowed, Soybeans-notill,
Soybeans-min, Soybeans-clean, and Woods.
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Figure 4.9: SSVM accuracy as a function of k for nine classes of the Indian Pines data
set, using chordal dc , geodesic dg, and pseudometric distances d1, d2 and d3 on G(k, 220).
(Results are averaged over 10 runs.)

compare, e.g., d1 and d2: the use of even two principal angles in the pseudometric results in

better performance starting from k = 5.

4.5.2. Pavia University Data Set. This hyperspectral data set was collected by the

Reflective Optics Spectrographic Imaging System (ROSIS) imaging spectrometer over the

urban area of the University of Pavia, Italy [58]. The image size in pixels is 610× 340, and

the number of spectral bands is 103, with spectral range from 0.43 to 0.86µm. Note that

for this data set, the Grassmannian becomes G(k, 103), where k is a subspace dimension

parameter. Figure 4.10 shows the nine reference classes of interest and one band image. As

the previous data set, this data was also mean-centered and randomly partitioned into 50%

for training and 50% for testing.

Table 4.3 contains typical binary results for two pairs of classes, Asphalt vs. Trees and

Asphalt vs. Gravel, on embedded G(k, n). Similar to the Indian Pines data set binary

experiments, we observe that the pseudometric d1 framework results in better classification
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Figure 4.10: ROSIS Pavia University data set: (a) ground truth; (b) one band image.

Table 4.3: Two-class experiments for the Pavia University data set: p = 200 points on
G(10, 103). The results are averaged over 10 runs.

Classes Number of negative
eigenvalues of B

SSVM Accuracy (%) Number of
dimensions selected

dc dg d1 dc dg d1 dc dg d1

Asphalt vs. 0 29.1 94.6 100 100 100 1 1.7 1

Trees

Asphalt vs. 0 25 93.6 91.3 83.3 100 22.5 57.3 1

Gravel

rates, and one-dimension SSVM-based selection in embedding spaces. Isometric embeddings

were obtained using the chordal distance framework.

Choosing higher subspace dimensions k does not necessarily results in better prediction,

depending on the geometry of the framework. For instance, Figure 4.11 shows that when

k > 15, the smallest angle distance d1 = θ1 stops being discriminative. Note that for k ≤ 15,

in both pairs, Asphalt and Gravel (high difficulty classification case) and Asphalt and Trees

(low difficulty classification case), d1 framework overperforms the other two (dg and dc).

Thus, d1 can be robust, but on the other hand, if we increase k too high, the geometry of
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Figure 4.11: SSVM accuracy as a function of k for the Pavia University data set classes for
chordal, geodesic, and pseudometric d1 frameworks on G(k, 103): (a) Asphalt and Gravel;
(b) Asphalt and Trees. (Results are averaged over 10 runs.)

the manifold may change such that the smallest angle distances become close or equal to

zero for many subspaces.

Figure 4.12 contains plots of accuracy as a function of k for all the nine classes of the Pavia

University data set. By varying k in the G(k, 103) settings, we compare SSVM results under

dc, dg, d1, d2, and d3 frameworks that have different geometry. We notice that the smallest

angle distance d1 framework outperforms the other ones for smaller k values, but it becomes

non-discriminative starting from k = 15. We observe that including more principal angles in a

distance measure results in better SSVM performance, as k grows (e.g., compare plots for the

pseudometrics d1, d2 and d3). The interpretation is the following: by including more original

points in a subspace, we make the points on the Grassmannian share more information, and

as a result, we need more principal angles between the subspaces to discriminate between

them.

55



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Dimension of subspaces k

A
c

c
u

ra
c

y

 

 

Chordal

Geodesic

Pseudo 1

Pseudo 2

Pseudo 3

Figure 4.12: SSVM accuracy as a function of k for nine classes of the Pavia University data
set, using chordal dc , geodesic dg, and pseudometric distances d1, d2 and d3 on G(k, 103).
(Results are averaged over 10 runs.)

4.6. Summary

The proposed approach shows how to take raw data (generally not on a manifold) and en-

code it on the GrassmannianG(k, n), enabling the exploitation of a rich geometric framework.

We observed that the smallest principal angle pseudometric provided the best classification

accuracy in our binary experiments, for particular k values, including the high difficulty clas-

sification pairs of classes of both data sets. We note that in some experiments under the d1

framework, higher k values did not result in better prediction, meaning that the subspaces

intersect at least in a line, forcing the smallest angle distance to be zero. SSVMs effect

sparse dimension selection for optimal binary classification, even as low as one-dimension for

pseudometric d1 embeddings. We observed that only the chordal distance provides isometric

embeddings which agrees with [49].

In case of c > 2 classes of data, we realize an “all-in-one” embedding, by forming a

distance matrix D from pairwise distances between all the points constructed on G(k, n)
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from different classes. Note that although this increases the dimension of the embedding,

pairwise MDS results in c(c−1)
2

embeddings that differ in dimension sizes, therefore making an

application of OAO SSVM impossible. An interesting observation we have made is that for

bigger k’s, the smallest principle angle pseudometric may be less discriminative compared to

the other distances that include two or more principal angles. High-dimensional subspaces

may have zero smallest principal angle for most of the data, due to intersection occurring

between them.

Future work may include comparison of points on G(k, n) to points G(j, n) where k 6= j.

Also, it would be interesting to use a patch-based approach for constructing subspaces on

the Grassmannian: instead of sampling the set of pixels randomly from each class, it can

be done by taking the points that are close to each other, i.e. lying in some neighborhood

“patch”.
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CHAPTER 5

An Application of Persistent Homology on

Grassmann Manifolds for the Detection of Signals

in Hyperspectral Imagery

5.1. Introduction

In this chapter, we present an application of persistent homology to the detection of

chemical plumes in hyperspectral imagery [59]. Recall that a digital hyperspectral image is

a three-dimensional array consisting of two spatial dimensions and one spectral dimension,

called a data cube, see Figures 5.1 and 3.1. Including a temporal dimension in the process

of data acquisition provides dynamic hyperspectral information in a four-way array. Such

sequence of hyperspectral cubes collected at short time intervals is effectively a hyperspectral

movie capturing potentially interesting spectral changes in a scene such as the release of

a chemical plume. An important application of dynamic hyperspectral imaging is in the

surveillance of the atmosphere for chemical or biological agents [60].

Z,bands

X,columns of pixels

rows 

Y,

of 

pixels

Figure 5.1: Hyperspectral data cube.
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Persistent homology (PH) is a relatively new tool in topological data analysis (TDA) that

provides a multiscale method for analyzing the topological structure of data sets [9, 10]. The

direct application of PH to large data sets, such as sequences of hyperspectral data cubes,

can be prohibitive due to computational intractability. We overcome this issue by encoding

the frames of a hyperspectral movie as points on a Grassmann manifold [8]. Recall that the

real Grassmannian provides a parameterization of k-dimensional linear subspaces of Rn and

a geometric framework for the representation of a set of raw hyperspectral data points by

a single manifold point (Section 4.2). This approach affords a form of compression while

retaining pertinent topological structure. In this setting, it becomes feasible to utilize PH to

analyze larger volumes of hyperspectral data as the high computational cost of PH applied

to the original data space is greatly reduced.

We apply this approach to the detection of chemical signals in the collection of data cubes

of the Long-Wavelength Infrared (LWIR) data set [40]. Under the proposed framework, raw

data cubes are mapped into a Grassmann manifold, and, for a particular choice of a distance

metric, it is possible to generate topological signals that capture changes in the scene after

a chemical release.

This chapter is organized in the following order: Section 5.2 describes PH, while the

Grassmannian framework is explained in Section 5.3. Computational experiments are dis-

cussed in Section 5.4, followed by summary in Section 5.5.

5.2. Persistent Homology

Persistent homology (PH) is a computational approach to topology that allows one to

answer basic questions about the structure of point clouds in data sets [9, 10]. This procedure

involves interpreting a point cloud as a noisy sampling of a topological space. Aspects of
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Figure 5.2: Examples of a simplicial complex (left) and a non-simplicial complex (right).

this topological space are uncovered by associating, to the data cloud, a nested sequence of

simplicial complexes indexed by a scale parameter ε. A simplicial complex is a finite set of

k-simplices (simple pieces). A k-simplex is defined as the convex hull of k + 1 points in Rn.

For instance, a 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and

so on. A face of a k-simplex is a lower dimensional simplex belonging to the k-simplex.

Definition 5.2.1. A simplicial complex S in Rn is a collection of simplices such that:

• every face of a simplex in also belongs to S;

• the intersection of any two simplices in S is a face of each of them.

It follows that for a simplicial complex, two k-simplices either intersect in a face or are

disjoint. See examples of a simplicial and non-simplicial complexes in Figure 5.2.

The Vietoris-Rips complex (or the Rips complex) is one of the methods used in PH

procedure [61]. To build such a complex, one starts from a matrix of pairwise distances

between points in the cloud. Given a scale parameter ε > 0, a simplicial complex S(ε)

is constructed in such a way that every set of k + 1 points forms a k-simplex if the the

pairwise distances between the points is less than ε. Figure 5.3 illustrates the construction

of ε-dependent Rips complexes from a finite set of points. The connectivity of a simplicial

60



Figure 5.3: Three Rips complexes build from a finite set of points using different ε values.

complex may be viewed as arising from the overlapping of ε-balls that cover the data in the

point cloud.

Of particular interest are ε-dependent, kth order holes in a simplicial complex, for these

provide insight into the topological structure at different scales. For instance, zeroth order

holes give the number of connected components (clusters) of the point cloud, while first

order holes indicate the existence of topological circles, or periodic phenomenon. A tool

from algebraic topology, homology, uncovers kth order holes in a simplicial complex, by

encoding the topological information into an algebraic form [62]. In particular, to compute

homology for a given simplicial complex S(ε) and k > 0, an abstract vector space Ck is

generated, with basis consisting of the set of k-simplices in S(ε). The dimension of Ck is

equal to the number of k-simplices. The elements of Ck are called k-chains.

The boundary of a k-simplex is the union of the (k − 1)-faces belonging to the simplex.

By defining boundary operators ∂k : Ck → Ck−1, one can connect the vector spaces Ck into

a chain complex :

· · · → Ck+1
∂k+1→ Ck

∂k→ Ck−1 → · · · → C2
∂2→ C1

∂1→ C0
∂0→ 0.

Each Ck has two important subspaces, namely:
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• k-cycles: Zk
.
= ker(∂k : Ck → Ck−1),

• k-boundaries: Bk
.
= im(∂k+1 : Ck+1 → Ck).

Note that ∂k◦∂k+1 = 0, i.e., a boundary has no boundary. It can be shown that this equation

is equivalent to the following inclusion: Bk ⊆ Zk ⊆ Ck [62].

The kth simplicial homology group of the chain complex is defined to be the quotient

group Hk = Zk/Bk. This group is made up of classes of k-cycles, where two k-cycles are in

the same class (i.e., homologous) if their difference is a boundary. The kth Betti number,

βk = dim(Hk) = dim(Zk)− dim(Bk), the rank of the associated kth homology group of the

simplicial complex, equals the number of k-dimensional holes [62].

To convert a point cloud data set into a simplicial complex, a choice of ε is required.

In persistent homology, one seeks structures that persist over a range of scales, rather than

looking for an optimal choice for ε [61]. PH tracks homology classes of the point cloud along

the scale parameter, building an inclusion of simplicial complexes S(ε1) ⊆ S(ε2) ⊆ . . . ⊆

S(εN) and indicating at which ε a hole appears and for which range of ε values it persists.

The Betti numbers, as functions of the scale ε, are visualized in a distinct barcode for each

dimension k [61].

Figure 5.4 schematically illustrates the Rips complexes of 4 points generated for differ-

ent ε values and the corresponding Betti0, Betti1, and Betti2 barcodes. In the barcode

(Figure 5.4b), the horizontal axis corresponds to ε values, while the vertical axis depicts

arbitrarily ordered homology classes of dimension k. Each horizontal bar represents the

birth-death of a topological feature. The kth Betti number at any ε value is the number

of bars that intersect the vertical line through ε. For instance, at ε = 0 we have 4 isolated

points or clusters (A,B,C,D), i.e., Betti0 = 4, and at ε = 2 we have two clusters (point C

and triangle ABD), i.e., Betti0 = 2, and a topological circle (ABD) with Betti1 = 1.
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Figure 5.4: Example of PH barcode generation: (a) the Rips complexes of 4 points for
different scale ε values; (b) the corresponding Betti0, Betti1, and Betti2 barcodes displayed
with the blue, red, and black bars, respectively.

Figure 5.5 shows an example of the k = 0 and k = 1 barcodes generated for a point cloud

sampled from the unit circle. We conclude that Betti0 = Betti1 = 1 which corresponds

to the number of connected components and number of loops, respectively, shown by the

longest (persistent) horizontal bars in each plot.
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Figure 5.5: Betti0 and Betti1 barcodes (right) corresponding to point cloud data sampled
from the unit circle (left).

A two thousand point cloud sampled from a three-dimensional torus has k = 0, k = 1,

and k = 2 barcodes shown in Figure 5.6. From these, we conclude that Betti0 = Betti2 = 1

and Betti1 = 2 (each corresponding to the number of persistent bars in the barcode) which

agrees with the fact that a torus has one connected component, two circular holes, and a

two-dimensional void.

To generate the barcodes, we use JavaPlex, a library for persistent homology and topo-

logical data analysis [63]. In the next section, we discuss how PH can be used for HSI signal

detection.

5.3. The Grassmannian Framework

Similar to the previous chapter, we propose using the Grassmann manifold (Grassman-

nian) as a framework, but now for detection of signals in hyperspectral imagery via PH.

(Section 4.2 contains the background material on the Grassmann manifold and its geome-

try.) This framework enables the processing of large data sets, such as the hyperspectral
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Figure 5.6: Betti0, Betti1, and Betti2 barcodes (right) corresponding to point cloud data
sampled from a three-dimensional torus (left).

G(k,n)

. . . 

Figure 5.7: A sequence of data cubes mapped to points on G(k, n).

movies explored in this investigation, while retaining valuable discriminative information.

Recall that the real Grassmann manifold G(k, n) is the collection of all k-dimensional sub-

spaces of the vector space Rn [8]. A sequence of hyperspectral data cubes, or subcubes taken

from them, can be mapped to points on G(k, n). Figure 5.7 schematically illustrates the

setting.
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Figure 5.8: An xyz-cube reshaped into an xy × z matrix Y (z < xy).

Given a xyz-cube, one can reshape it into an xy × z matrix Y, whose columns span a

subspace on G(k, n) with k = z and n = xy, provided z < xy, see Figure 5.8.

If we compute the reduced SVD, Y = UΣVT , the columns of the n×k orthogonal matrix

U (UTU = Ik) are a basis for the column space of Y. Thus, U represents the xyz-cube

and can be identified with a point on the Grassmannian G(k, n). Once the hyperspectral

movie is mapped to a sequence of points on G(k, n), the pairwise distances between these

points may be found using an appropriate function of the angles between subspaces. Recall,

for instance, that the chordal distance between k-dimensional subspaces P and Q, is given

by dc(P ,Q) = ‖sin θ‖2, and the geodesic distance is dg(P ,Q) = ‖θ‖2, where θ is the k-

dimensional vector of the principal angles θi, i = 1, . . . , k, 0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θk ≤ π/2,

between P and Q, see also Section 4.2.

In this study, we measure the similarity of two points with the smallest principal angle,

d1 = θmin = θ1, between the points [46, 55]. In fact, we observed in our experiments that

using dp resulted in stronger topological signals than did dc and dg. Once the sequence of

cubes is mapped to G(k, n), the matrix of all pairwise “distances” is computed, and we apply

PH to generate Betti0 barcodes to see the number of connected components (clusters) in the

point cloud on the Grassmannian, corresponding to the raw HSI data.
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5.4. Experimental Results

In this section, we show results obtained by the proposed approach applied to the de-

tection of chemical signals in the collection of data cubes of the Long-Wavelength Infrared

(LWIR) data set [40], see also Section 3.3.3. Recall that the LWIR data set is collected

by an interferometer in the 8-11 µm range of the electromagnetic spectrum. During a sin-

gle scanning, 256 × 256 pixel images are collected across 20 wavelengths within this range,

forming a 256× 256× 20 data cube. Here we consider a data collection event consisting of

releasing a pre-determined quantity of Triethyl Phosphate (TEP) into the air to create an

aerosol plume for detection against natural background. A series of 561 data cubes records

the entire event from “pre-burst” to “post-burst”, as a hyperspectral movie.

To strengthen topological signals, the experimental setting includes:

• dimension reduction of the band space using SSVM-based feature selection;

• finding the patch in the images that contains the chemical cloud;

• mapping selected (sub)cubes to the Grassmannian;

• computing the pairwise distances on the manifold using d1;

• generating PH Betti0 (or 0-dimensional) barcodes for clustering.

Here we use 3 (out of 20) wavelength bands 3,11, and 15 (Table 3.6) selected by Band

Selection SSVM Algorithm 2 via classifying the TEP data pixels against the background

pixels. A single wavelength of the data set in question is shown in Figure 5.9 for a given

time in the movie, the image contains a plume that is not visible.

To validate our results, we determine the location of the chemical plume in the cubes

using the adaptive-cosine-estimator (ACE) [64]. The ACE detector is one of the benchmark

hyperspectral detection algorithms, that (geometrically) computes the squared cosine of the

angle between the whitened test pixel and the whitened target’s spectral signature. Based
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Figure 5.9: A single wavelength of an hyperspectral image containing a plume that is not
visible. This is part of a cube drawn from the time dependent LWIR sequence of HSI cubes.

on a chosen threshold, this ACE score indicates if the chemical is present in the test pixel.

Figure 5.10 shows two images corresponding to cube 111 without a plume, Figure 5.10a, and

cube 113 with a chemical plume detected by the ACE, Figure 5.10b.
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Figure 5.10: The ACE detector application results on the LWIR data cubes: (a) the image
of cube 111 with no plume detected; (b) the image of cube 113 with plume detected by the
ACE and zoomed for better visualization.

68



5.4.1. Experiment on Subsets of Cubes. We first consider several small subsets of

the set of total 561 TEP cubes and generate 0-dimensional barcodes under the Grassmannian

framework. We analyze PH results on the following subsets:

(1) “pre-burst” cubes 104-111;

(2) “pre-burst” cubes 104-111 and TEP release cube 112, in which a chemical plume

occurs for the first time in the HSI movie;

(3) “pre-burst” cubes 104-111 and cubes 112 and 114, both containing a TEP plume;

(4) “pre-burst” cubes 104-111 and cubes 112-116, containing an evolving TEP plume.

To generate Betti0 barcodes on these subsets, a “plume location” patch of size 4× 8× 3

from each cube is mapped to a point on G(3, 4 × 8) = G(3, 32), with “3” corresponding to

the number of bands preselected. We use pixel rows 124 to 127 and pixel columns 34 to 41,

as this patch size is close to the size of the plume detected by the ACE in the first “burst”

cubes, such as 112 or 113.

Let us consider PH 0-dimensional barcodes generated for the first three subsets. Recall

that the longest horizontal bars in a barcode (i.e., persistent over many scales) correspond to

the strongest topological signal and tell us about structure in a point cloud. In Figure 5.11,

PH result on the “pre-burst” cubes 104-111 indicates that we basically have one cluster

of points. Once we add at least one point containing a plume, the situation changes, see

Figures 5.12 and 5.13. Here we observe formation of two (Figure 5.12) and three (Figure 5.13)

connected components in corresponding subsets of points on G(3, 32). In particular, at scale

ε = 4×10−3, all the three barcodes have different number of clusters, reflecting the situation

before and after the release of TEP.

Let us now consider subset (4) of subsequent points 104-116 and PH clustering results over

many scales, shown in Figure 5.14. The 0-dimensional barcode in Figure 5.14a has different
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Figure 5.11: (a) Betti0 barcode generated on points on G(3, 32), corresponding to 4× 8× 3
subcubes 104 to 111 (just before TEP release); (b) the cluster of points 104-111 on G(3, 32)
at ε = 4× 10−3.
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Figure 5.12: (a) Betti0 barcode generated on points on G(3, 32), corresponding to 4× 8× 3
subcubes 104 to 111 (just before TEP release) and 112 (TEP release); (b) the cluster of
points 104-111 (red) and isolated point 112 (gray) on G(3, 32) at ε = 4× 10−3.

numbers of connected components as the scale parameter ε increases. For instance, at the

small scale of ε = 5 × 10−4, all the points are disconnected (13 bars are present), which is

shown schematically in Figure 5.14b by distinct coloring for each point. Figure 5.14c depicts

the clustering that occurs at ε = 4× 10−3. At this scale, we have 6 clusters, with one cluster

containing all the “pre-burst” points 104-111 (shown in red) (compare to Figure 5.11), and

5 clusters each containing isolated plume points 112 to 116, indicated by distinct colors.
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Figure 5.13: (a) Betti0 barcode generated on points on G(3, 32), corresponding to 4× 8× 3
subcubes 104 to 111 (just before TEP release) and 112, 114 (TEP release); (b) the cluster
of points 104-111 (red) and isolated points 112 (gray) and 114 (green) on G(3, 32) at ε =
4× 10−3.

Later, at ε = 6 × 10−3, PH detects 3 clusters of points: plume points 112 and 113 join the

cluster of points 104-111, and points 115 and 116 merge into a separate cluster, with point

114 staying isolated, see Figure 5.14d. This can be interpreted as follows: points 112 and

113, where the plume first develops, are closer to the “pre-plume” cluster on G(3, 32) than

the points 114, 115, 116, as the shape of the plume changes. In particular, PH tells us that

the points within a cluster are more similar to each other on the manifold than to the points

from a different cluster or to an isolated point. Note that when ε is large enough, all points

in a barcode merge into a single connected component.

5.4.2. Experiment on All Cubes. This experiment includes generating Betti0 bar-

codes using all 561 TEP cubes. Similar to the experiment in Section 5.4.1, we consider

4 × 8 × 3 subcubes “cut out” from different areas in each image such as the top (sky), the

middle (horizon, where the plume develops), and the bottom (ground) for left, right, and

center regions, respectively. See Figure 5.15 for an illustration of left subcubes from the sky

mapped to G(3, 32).
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Figure 5.14: (a) Betti0 barcode generated on points on G(3, 32), corresponding to 4× 8× 3
subcubes 104 to 116 selected from 561 TEP data cubes; (b) 13 isolated points 104-116 on
G(3, 32) at ε = 5 × 10−4, shown by distinct colors; (c) 6 clusters at ε = 4 × 10−3: the red
colored cluster of points 104-111 and 5 isolated points 112-116, shown by distinct colors; (d)
3 clusters at ε = 6× 10−3: the cluster of points 104-113 (red), the isolated point 114 (green),
and the cluster of points 115 and 116 (purple).

We generate nine 0-dimensional barcodes for the different regions described above, see

Figure 5.16. Notice the similarity of the barcodes along the first (sky) and third (ground)

rows, indicating uniformity in these regions throughout the hyperspectral movie. In contrast,

the plume occurs and develops along the horizon. This dynamic movement within the scene

is reflected in the fluctuation of the barcodes, see the second row in Figure 5.16.
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. . . 

G(3,32)

Figure 5.15: Grassmannian setting for the 561 top (sky) left 4× 8× 3 subcubes.

Let us further consider the clusters forming in the 0-dimensional barcode in Figure 5.16d.

This barcode is generated from the 561 points corresponding to the left horizon 4 × 8 × 3

region in each data cube limited by pixel rows 124 to 127 and pixel columns 34 to 41. This

region belongs to the plume formation area, as detected by the ACE for cube 112. Figure 5.17

shows a detailed (zoomed) version of the barcode in Figure 5.16d.

At scale ε = 1.5× 10−3, there are 31 bars corresponding to 31 connected components on

G(3, 32), with 28 isolated points from frames 111 to 142, one cluster containing frames 134,

135, and 137, one cluster containing frame 519, and another containing all other frames. At

scale ε = 2× 10−3, we have 19 bars corresponding to 19 connected components on G(3, 32),

with 18 isolated frames from 112 to 129, and one cluster containing all the rest. Note that

these bars persist for a large range of parameter value (to just beyond 3×10−3), indicating a

large degree of separation. At ε = 4× 10−3, we have 13 clusters with 11 isolated frames 112,

114-118, 120-123, and 125, one cluster of frames 119 and 124, and the other one containing

everything else.

Note that cubes following frame 111 are where the plume first occurs with the highest

concentration of chemical and changes very fast. PH detects separation of these points from

pre-plume cubes at multiple scales. The Grassmannian framework together with PH treats
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Figure 5.16: Betti0 barcodes generated on selected 4 × 8 × 3 regions through all 561 TEP
cubes, mapped to G(3, 32): (a) top left; (b) top middle; (c) top right; (d) middle left; (e)
center; (f) middle right; (g) bottom left; (h) bottom middle; (i) bottom right.

these points as far away from each other and from the rest of the points, therefore capturing

the dynamics in the sequence of HSI images containing the chemical.

For the last experiment in this chapter, we consider clusters generated by PH on 561

points on G(3, 32) corresponding to a horizon region located to the right from the plume

area (as detected by the ACE in cube 112). We use pixel rows 124 to 127 and pixel columns

75 to 82 to create a patch of size 4× 8× 3. Figure 5.18 contains the 0-dimensional barcode
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Figure 5.17: Betti0 barcode generated on 4 × 8 × 3 left horizon (plume formation) region
limited by pixel rows 124-127 and columns 34-41, through all 561 TEP cubes, mapped to
G(3, 32).
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Figure 5.18: Betti0 barcode generated on 4 × 8 × 3 horizon region limited by pixel rows
124-127 and columns 75-82, through all 561 TEP cubes, mapped to G(3, 32).

and its zoomed part. Analyzing connected components as ε varies, we observe that they

differ from those found in the previous all-cubes experiment, see Figure 5.17. At scale

ε = 1.5 × 10−3, we have 52 connected components on G(3, 32) corresponding to 47 isolated

points from 119 to 141, 145 to 165, and 170 to 172. The other points are connected into

4 smaller clusters (142,143,144), (166,167), (168,169), and (173,174), and one big cluster

75



containing all the other points. At scale ε = 2 × 10−3, there are 30 connected components

on the Grassmannian, including 25 isolated points from 119 to 127, 129 to 140, 151 to 156,

and 149. The clusters are (128,136-138), (141-150), (157,158), (162-164), and one cluster

containing all the rest. Further, at scale ε = 3 × 10−3, the barcode plot has 5 bars that

persist over a large range of values, namely, up to a little beyond 4× 10−3: 4 isolated points

from frame 121 to 124 and one cluster containing all the rest.

We observe that for this region, PH separates points from frame 119 and later, in contrast

to the frames separated from frame 112 in the left horizon region experiment (Figure 5.17).

Note that points 112 to 118 are “plume-free” as the plume does not reach this region until

frame 119. It is also interesting to note that points corresponding to frames 121 to 124 are

kept isolated for a large range of scales, i.e., they are far away from each other and the rest

of the points. PH (under the Grassmannian framework) treats these frames as experiencing

the most significant changes in this region.

5.5. Summary

In summary, we presented a geometric framework for characterizing information in hyper-

spectral data cubes evolving in time. Persistent homology was employed to aid in detecting

changes in topological structure on point clouds generated from raw HSI data under the

Grassmannian framework. We observed that, depending on the PH parameter value ε, both

all-cubes and subset-of-cubes experiments resulted in clustering that reflected the dynamical

changes in the HSI sequences of cubes of the LWIR data set.

In the first experiment, with small subsets of Triethyl Phosphate cubes mapped to the

Grassmannian, PHBetti0 barcodes captured the evolution of the plume when it first occurred

and started evolving. In the second, all-cubes experiment, different regions of the cubes were
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mapped to a manifold to generate barcodes. We observed changes in the barcode profiles

obtained along the horizon (“plume”) line, while the other regions in the cubes resulted

in similar plots. Based on clustering results for the left horizon subcubes, several frames

with a plume were treated by PH as isolated points on the manifold, in contrast to “pre-

burst” points and points long after the release time, all clustered together. By comparing

two horizon regions in the hyperspectral movie, we observed that for the same parameter ε

values, persistence homology detected different subsets of frames, treated as isolated points

on the manifold, therefore indicating the changes in the shape and location of the plume.

Having found these results promising, further research can be done to strengthen the

topological signal. We are working to employ other mappings, other (pseudo)metrics on

the Grassmannian, and Betti1 barcodes. We are further making a comparative analysis of

no-plume and plume data cubes, based on mapping subsets of pixels to G(1, n) where n is

the total number of spectral bands.
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CHAPTER 6

Conclusion

In this dissertation, we developed novel algorithmic frameworks for embedded feature

selection and pattern recognition on Grassmannians. Tools from geometry, topology, opti-

mization, and machine learning can be effectively used for exploring geometric structure and

for constructing relationships in data. For the illustration of our approaches, we presented

experimental results obtained for some real-world applications. We particularly made the

following contributions.

In Chapter 3, we proposed solving the hyperspectral band selection problem by using

sparse linear SVMs. The supervised embedded approach exploits the sparsity promoting

property of SSVMs to suppress features that do not contribute into classification process and,

as a result, to reduce the band space dimension, keeping the most discriminatory features

only. Our method includes bootstrap aggregating (bagging) for robustness, a new ratio-

based elimination step for feature selection, the use of primal dual interior point solver for

the SSVM (described in Chapter 2), and multiclass case extension. The proposed technique

is effective and can be used in combination with other feature selection approaches.

In Chapter 4, we performed set-to-set pattern recognition via classification of data on em-

bedded Grassmannians. Multiple observations from a data class, organized as subspaces on

an abstract manifold, capture the signal variability of the class and lead to better prediction

rates. Multidimensional scaling provides a low-dimensional embedding of the manifold into

Euclidean space, preserving or approximating the geometry of the Grassmannian, depend-

ing on the choice of a distance metric on the manifold. In particular, the chordal distance

framework resulted in isometric embeddings. This approach allows for application of any
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classification technique in the embedding Euclidean space. We apply SSVMs for classifica-

tion and identification of optimal dimensions of embedded subspaces. We observed that,

under the smallest principal angle pseudometric framework, classification accuracy grew up

to 100% even in high difficulty binary classification cases, and only one dimension of the

embedding space was needed to separate the classes. To expand the use of the method,

future work will include comparison of Grassmannians G(k, n) and G(l, n), k 6= l, and in

particular, the case when k > l = 1.

Finally, in Chapter 5, we applied persistent homology (PH) to the analysis of hyperspec-

tral movies. The Grassmannian framework, used to organize large volumes of hyperspectral

data, afforded a form of data compression while retaining pertinent structure. Particularly,

sequences of subcubes from different time frames in the LWIR hyperspectral movie were

mapped to a Grassmann manifold, forming point clouds for analysis. Persistent homology

was used to determine and analyze connected components (clusters) in the point clouds,

based on the pairwise distances between the points and 0-dimensional holes that persisted

over the large range of scales. The use of the smallest principal angle as a distance measure

on the manifold provided strong topological signals. PH clustering results were different

for the regions in the movie that contained the evolving chemical plume. In particular, PH

captured the dynamics of the plume along the horizon line by treating the plume containing

points as isolated components that were far away from each other and from the non-plume

points. Future work will include exploration of different settings in combination with higher-

dimensional persistent barcodes which may provide interesting opportunities for expansion

and new applications of this approach.
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[56] Å. Björck and G. H. Golub, “Numerical methods for computing angles between linear

subspaces,” Mathematics of Computation, vol. 27, no. 123, pp. 579–594, 1973.

[57] T. F. Cox and M. Cox, Multidimensional Scaling. Chapman and Hall, 2 ed., 2000.

85



[58] “Reflective Optics Spectrographic Imaging System ROSIS Pavia University data

set.” Retrieved July 2, 2014, from http://www.ehu.eus/ccwintco/index.php?title=

Hyperspectral_Remote_Sensing_Scenes.

[59] S. Chepushtanova, M. Kirby, C. Peterson, and L. Ziegelmeier, “An application of per-

sistent homology on Grassmann manifolds for the detection of signals in hyperspectral

imagery,” in IEEE International Geoscience and Remote Sensing Symposium (IGARSS)

2015, July 2015.

[60] V. Farley, A. Vallières, A. Villemaire, M. Chamberland, P. Lagueux, and J. Giroux,

“Chemical agent detection and identification with a hyperspectral imaging infrared sen-

sor,” in SPIE Defense, Security, and Sensing, vol. 6739, pp. 673918–673918–12, 2007.

[61] R. Ghrist, “Barcodes: The persistent topology of data,” Bulletin of the American Math-

ematical Society, vol. 45, pp. 61–75, 2008.

[62] A. Hatcher, Algebraic topology. Cambridge, New York: Cambridge University Press,

2002.

[63] A. Tausz, M. Vejdemo-Johansson, and H. Adams, “JavaPlex: A research software pack-

age for persistent cohomology,” in Proceedings of ICMS 2014 (H. Hong and C. Yap,

eds.), Lecture Notes in Computer Science 8592, pp. 129–136, 2014.

[64] D. Manolakis, “Signal processing algorithms for hyperspectral remote sensing of chem-

ical plumes,” in IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing, 2008 (ICASSP 2008), pp. 1857–1860, March 2008.

86

http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes

	Abstract
	Acknowledgements
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. Overview
	1.2. Definitions and Notation

	Chapter 2. Linear SVM Classifiers
	2.1. Introduction
	2.2. Standard SVMs
	2.3. Sparse SVMs
	2.4. Primal Dual Interior Point Method
	2.5. Summary

	Chapter 3. Hyperspectral Band Selection Using Sparse Support Vector Machines
	3.1. Introduction
	3.2. Band Selection via SSVMs
	3.3. Experimental Results
	3.4. Summary

	Chapter 4. Classification of Data on Embedded Grassmannians
	4.1. Introduction
	4.2. The Grassmannian Framework
	4.3. Embedding via MDS
	4.4. Classification and Dimension Selection
	4.5. Experimental Results
	4.6. Summary

	Chapter 5. An Application of Persistent Homology on Grassmann Manifolds for the Detection of Signals in Hyperspectral Imagery
	5.1. Introduction
	5.2. Persistent Homology
	5.3. The Grassmannian Framework
	5.4. Experimental Results
	5.5. Summary

	Chapter 6. Conclusion
	Bibliography

