
THESIS

AN ADAPTATION OF K-MEANS-TYPE ALGORITHMS TO THE GRASSMANN

MANIFOLD

Submitted by

Shannon J. Stiverson

Department of Mathematics

In partial fulfillment of the requirements

For the Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Spring 2019

Master’s Committee:

Advisor: Michael Kirby

Henry Adams

Asa Ben-Hur

Copyright by Shannon J. Stiverson 2019

All Rights Reserved

ABSTRACT

AN ADAPTATION OF K-MEANS-TYPE ALGORITHMS TO THE GRASSMANN

MANIFOLD

The Grassmann manifold provides a robust framework for analysis of high-dimensional data

through the use of subspaces. Treating data as subspaces allows for separability between data

classes that is not otherwise achieved in Euclidean space, particularly with the use of the smallest

principal angle pseudometric.

Clustering algorithms focus on identifying similarities within data and highlighting the under-

lying structure. To exploit the properties of the Grassmannian for unsupervised data analysis, two

variations of the popular K-means algorithm are adapted to perform clustering directly on the man-

ifold. We provide the theoretical foundations needed for computations on the Grassmann manifold

and detailed derivations of the key equations. Both algorithms are then thoroughly tested on toy

data and two benchmark data sets from machine learning: the MNIST handwritten digit database

and the AVIRIS Indian Pines hyperspectral data. Performance of algorithms is tested on manifolds

of varying dimension. Unsupervised classification results on the benchmark data are compared to

those currently found in the literature.

ii

ACKNOWLEDGEMENTS

I would like to thank my advisor Michael Kirby for his insight, guidance, and support through-

out this process. I would also like to thank Chris Peterson, Henry Adams, and Asa Ben-Hur for

their time and feedback.

I am very grateful for all my colleagues who have been both friends and collaboraters during

my time at CSU.

I thank my family, and particularly my parents, Ken and Brenda Anderson, for the unwavering

support and encouragement they have provided for as long as I can remember.

I am deeply grateful to my many, many friends who have cheered me on and been a constant

source of encouragement and generally contributed to keeping me sane the past few years. Your

support has meant more to me than you likely realize.

I am thankful for my cats, Clover and Winston, for being constant companions and great

sources of joy and humor.

Last but certainly not least, I would like to thank my husband, Dan, who has accompanied me

through every step of this journey and worked tirelessly to make this possible. Thank you for your

love and your patience, I could not have done this without you.

This work is based on research partially supported by the National Science Foundation under

Grants No. DMS-1513633, and DMS-1322508 as well as DARPA awards N66001-17-2-4020

and D17AP00004. Any opinions, findings, and conclusions or recommendations expressed in this

material are those of the authors and do not necessarily reflect the views of the National Science

Foundation or DARPA.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

Chapter 1 Introduction . 1

1.1 Motivation . 1

1.2 Overview . 3

Chapter 2 Review of Literature . 5

2.1 Overview and Applications of Clustering 5

2.2 Partitional Clustering . 7

2.3 K-means-type Algorithms . 9

2.4 Clustering on the Grassmannian . 11

2.5 Clustering on Featured Data Sets . 12

Chapter 3 The Grassmann Manifold . 15

3.1 Matrix Manifolds and the Grassmannian 15

3.2 Tools for Analysis on the Grassmannian 17

3.2.1 Metrics . 17

3.2.2 Geodesics and Parameterization . 19

3.2.3 Averaging Subspaces . 23

Chapter 4 Euclidean Algorithms . 26

4.1 K-means . 26

4.2 LBG . 28

4.3 Properties and Complexity . 30

Chapter 5 Grassmannian Algorithms . 32

5.1 Grassmannian K-means . 32

5.2 Grassmannian LBG . 33

5.3 Properties and Complexity . 33

Chapter 6 Experimental Results . 38

6.1 Testing on Toy Data . 39

6.1.1 Epsilon Balls on Gr(1, 3) . 39

6.1.2 Epsilon Balls on Grassmannians of Higher Dimension 42

6.2 MNIST Trials . 46

6.2.1 Three Class Trial . 46

6.2.2 Ten Class Trial . 48

6.3 Indian Pines Trials . 49

6.3.1 Pasture vs. Trees . 51

iv

6.3.2 Corn vs. Alfalfa . 52

6.3.3 Soybeans . 53

Chapter 7 Conclusion . 59

Bibliography . 61

v

LIST OF TABLES

6.1 Results from the three-class MNIST experiment. 46

6.2 Results from MNIST 10 class comparison of algorithm performance using different

distance metrics on Gr(5, 200). 49

6.3 Results from AVIRIS Indian Pines pasture vs. trees experiments. 52

6.4 Results from AVIRIS Indian Pines corn vs. alfalfa experiments. 53

6.5 Comparison of three approaches to clustering. 55

6.6 Comparison of algorithm performance on different manifolds using the smallest prin-

cipal angle pseudometric. 56

6.7 Comparison of algorithm performance on different manifolds using the geodesic metric. 57

6.8 Comparison of algorithm performance on different manifolds using the chordal metric. 57

vi

LIST OF FIGURES

1.1 Embedding of MNIST handwritten digit data in R
2 using Euclidean distance (left),

chordal distance on Gr(1, 784), and chordal distance on Gr(2, 784). 1

1.2 Two classes of points along lines in R
2 with labels using both Euclidean and Grass-

mannian clustering. 2

3.1 MDS embedding of handwritten digit “2” from Gr(5, 784) and corresponding flag

mean center. 25

3.2 The five ordered component vectors from the flag mean, reshaped and visualized. . . . 25

4.1 Illustration of center updates in the K-means algorithm. 27

4.2 An illustration of cluster updates in LBG. 29

5.1 Comparison of components of centers from LBG and K-means. 34

6.1 Clusters in Gr(1, 3) and their two-dimensional MDS embeddings with centers selected

using Grassmannian LBG. 40

6.2 Clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings

with centers selected using Grassmannian K-means. 40

6.3 Larger clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embed-

dings with centers selected using Grassmannian LBG. 41

6.4 Larger clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embed-

dings with centers selected using Grassmannian K-means. 41

6.5 Two large ǫ-balls in Gr(1, 3) and their two-dimensional chordal distance MDS embed-

dings with centers selected using Grassmannian LBG. 42

6.6 Two large ǫ-balls in Gr(1, 3) and their two-dimensional chordal distance MDS embed-

dings with centers selected using Grassmannian K-means. 42

6.7 Chordal distnace MDS embedding of single ǫ-ball in Gr(2, 10) with its center plotted. . 43

6.8 Chordal distance MDS embedding of single ǫ-ball in Gr(20, 200) with its center plotted. 44

6.9 Chordal distance MDS embedding of four ǫ-balls in Gr(20, 200) with ǫ ≤ 0.1. 44

6.10 Chordal distance MDS embedding of four ǫ-balls in Gr(20, 200) with ǫ ≤ 1. 45

6.11 Chordal distance MDS embedding of four ǫ-balls in Gr(2, 10) with ǫ ≤ 1. 45

6.12 The first flag vector from each of the 3 LBG centers selected in the best 3 center

experiment. 47

6.13 The first flag vector from each of the 6 LBG centers selected in the best 6 center

experiment. 47

6.14 An MDS embedding with true labels for the three class problem, the embedding of

centers and labels from a low accuracy LBG run, and the first flag vector from the red

center. 48

6.15 Grassmannian K-means center assignments from the five 10 class MNIST trials using

the first principal angle psuedometric. 50

6.16 Grassmannian K-means center assignments from the five 10 class MNIST trials using

the first principal angle psuedometric. 50

vii

6.17 MDS embedding of the pasture (class 5) and trees (class 6) classes. 51

6.18 MDS embeddings of alfalfa (class 1) and corn (class 4) using the chordal metric. . . . 52

6.19 MDS embedding of the three soybean classes using Euclidean distance and smallest

angle pseudometric on Gr(5, 200), Gr(10, 200), and Gr(15, 200). 54

viii

Chapter 1

Introduction

1.1 Motivation

The Grassmann manifold provides a robust geometric framework for analyzing data sets of

high dimension. Evidence suggests that subspace representations of data are more robust to within-

class variations and random noise than data points in Euclidean space [1, 2]. For example, object

recognition is confounded by variations in illumination due to the sensitivity of the image repre-

sentation to the illumination angle. The use of the Grassmannian greatly mitigates this issue, as

shown in [1, 2]. Additionally, there are cases where classes of data that are inseparable in R
n be-

come separable when represented as points on the Grassmann manifold. A simple example of this

is shown in Figure 1.1 using embeddings of images of handwritten zeros and ones. In particular,

experimental results suggest that the smallest angle pseudometric defined on the Grassmannian

performs especially well in regards to data separation [3].

In addition to the robustness of subspace representations, another geometric property makes

analysis on the Grassmannian particularly attractive. A basic example of this property is shown in

the simple two-class classification problem in Figure 1.2. Here, the two classes can quite easily

be visually identified as lying along two lines through the origin, but standard machine learning

algorithms as well as Euclidean clustering algorithms will fail to separate the two classes. However,

Figure 1.1: Embedding of MNIST handwritten digit data in R
2 using Euclidean distance (left), chordal

distance on Gr(1, 784), and chordal distance on Gr(2, 784).

1

Figure 1.2: Two classes of points along lines in R
2 with labels using both Euclidean and Grassmannian

clustering.

when clustering is performed on the Grassmann manifold by treating each data point as a one-

dimensional subspace in R
2 (which can be more generally done for d dimensions in R

n), the

labelling becomes far more accurate. Overall, the benefits of analysis on the Grassmannian make

it highly desirable to develop Grassmannian implementations of commonly used algorithms.

Vector quantization and data clustering have been widely used in pattern recognition and data

classification for many decades [4]. Applications for these methods are found across a wide variety

of fields, including speech recognition, image segmenting, sorting applications, and even biological

applications [4], see Section 2.1 for additional citations. Clustering algorithms such as K-means

and LBG are particularly useful for analyzing data without the use of labels and for inferring the

underlying geometry of a data set. This makes clustering a powerful tool in analysis of novel

2

data when little other information is available. In order perform this type of clustering on the

Grassmannian, we provide adaptations for two of the most common variations of the popular K-

means algorithm for use directly on the Grassmann manifold.

This type of analysis is particularly useful for unsupervised classification in cases where where

multiple data samples are received in a group and are known from context to be associated with

one another, but the true label for the data points in unknown. The object recognition problem

mentioned previously is one case where this can occur. For example, video footage captures multi-

ple images of an individual in sequence. These video frames can be identified as a group of related

images know to contain the same person, but do not inherently come with a label identifying that

person. Such collections of images can be represented as a single subspace, as could similar video

footage for multiple individuals. Subspace clustering would then allow for unsupervised identifi-

cation of different groups of images that feature the same person. Another example of this type

of problem is a biological context where multiple measurements or samples are taken from a sin-

gle individual over an extended period of time. All such samples can be associated together as a

subspace, with such subspaces representing presence or absence of a disease state for potentially

infected subjects. The same idea can be extended to any context where multiple samples are taken

from a single source and then used for classification purposes.

1.2 Overview

Here we summarize the content of this thesis. The primary contribution of this work is the

adaptations of the K-means and LBG algorithms to the setting of the Grassmann manifold.

Chapter 2 reviews the background for clustering and quantization. It summarizes the various

approaches to clustering and includes applications and algorithms. In particular, we provide a

detailed background of the K-means family of algorithms, as well as an overview of the more

widely used modifications and extensions developed for it. We then discuss previous work on

clustering directly on the Grassmann manifold, as well as previous unsupervised clustering results

on the benchmark data sets featured in this work.

3

Chapter 3 provides an in-depth exploration of the geometry of the Grassmann manifold, striving

as much as possible to be self-contained. It then describes tools for analysis on the Grassmannian

that are pivotal to the adaptation of Euclidean clustering algorithms to the Grassmann manifold.

Chapter 4 describes in detail the two algorithms of interest, including an analysis of computa-

tional complexity and a discussion of their relative properties.

Chapter 5 describes the adaptation of the algorithms in Chapter 4 to the Grassmann manifold

using the theory developed in Chapter 3. Again, basic properties of the algorithms are compared

and discussed, as is computational complexity.

Chapter 6 contains the experimental results generated over the course of this work. This in-

cludes testing algorithm functionality, comparisons between Euclidean and Grassmannian algo-

rithms, and comparisons between the two algorithms on the Grassmann manifold.

Finally, Chapter 7 reviews the results of this thesis and discusses future avenues of exploration.

4

Chapter 2

Review of Literature

2.1 Overview and Applications of Clustering

Data clustering refers to the division of points in a data set into non-overlapping groups of

points with intrinsic similarities. It is used to identify common characteristics in data and obtain

information about the underlying data structure. Applications of clustering algorithms are found

in image quantization, speech coding, document sorting, microarray and genome analysis, signal

processing, and even social networking [4–10]. The prominence of clustering in data analysis has

motivated the development of many approaches and algorithms [4]. Depending on the field and

application, clustering data in R
n is also referred to as vector quantization [11].

The majority of clustering algorithms fall into one of two categories: hierarchical or parti-

tional. Hierarchical clustering algorithms build a tree of clusters based on a proximity measure

which spans the entire data set [12]. This is done either top-down by starting with a single large

cluster and dividing into smaller clusters, or bottom-up by starting with each data point in its own

cluster and building subsequent nested clusters based on similarities [4, 12]. Some examples of

hierarchical clustering are found in [5, 13]. Partitional clustering methods seek to divide the data

space into a set number of regions, with each region containing similar data points [4, 13]. The

most common examples are the K-means-type algorithms derived from an algorithm initially de-

veloped by MacQueen [14]. MacQueen’s K-means is discussed in more detail in Section 4.1. As

the algorithms in this work both fall into the partitional category, more detailed background and

theory is included in Sections 2.2 and 2.3.

Within the two primary categories of clustering algorithms, there are wide variety of differ-

ent approaches to defining clusters. Density-based methods view a clusters as a regions of high

density surrounded by low density regions [4]. These regions are located using information on

common neighbors [15], or by applying statistical methods to identify high density regions with

5

some probability [16–18]. The primary drawback of this approach is its poor performance in high

dimensions, where data is often very sparse. Subspace clustering is one answer to difficulties of

clustering high-dimensional data. This clustering approach involves projecting points in a high-

dimensional space onto one or more low dimensional subspaces for the purpose of clustering [4].

Vidal describes multiple variations of subspace clustering in [19], and Vidal and Elhamifer de-

veloped a sparse subspace clustering method in [20]. Another example of subspace clustering by

Aggarwall can be found in [21]. Employing an information theoretic approach to cluster selection

leads to constructing clusters in a way that minimizes entropy. Further information can be found

in [22–25]. Spectral clustering is based on the graph theoretic approach. Similarity graphs are

constructed based on pairwise distances given by some metric, and then the minimum cut problem

is solved to divide points into clusters [4]. Laplacian eigenmaps [26] fall into this category. In

some cases, multiple clustering approaches are combined to form hybrid clustering algorithms.

For example, Kao and Karami employ K-means clustering in conjunction with Particle Swarm

Optimization (PSO), another widely used clustering algorithm [27, 28].

For the purposes of data analysis and prediction, all clustering approaches can be further di-

vided into three categories: supervised, unsupervised, and semi-supervised. Supervised clustering

uses labeled data to build clusters, generally for use in making predictions on unlabeled data [4].

Unsupervised clustering operates on unlabeled data. Many commonly used clustering algorithms

fall into this category, including K-means [4, 14]. Realistically, however, we often possess some

background knowledge about the data that can be used to inform the clustering process. Semi-

supervised clustering takes unlabeled data and adds constraints to how the data can be clustered [4].

Pairs of data points are given “must-link” or “cannot-link” restrictions based on this background

information. Wagstaff’s constrained K-means algorithm employs such a method [29].

The data clustering problem comes with many inherent difficulties. Depending on the algo-

rithm chosen, different assumptions are made about the underlying structure of the data. Because

clustering is often performed by optimizing over a cost function, the choice of distance metric used

6

to calculate cost adds a bias to the shape of the final clusters. Because of this, different algorithms

can yield extremely different results when applied to the same data set [4].

A second difficulty is that clustering algorithms are sensitive to starting conditions and the

order of data presentation. If initial conditions are poorly selected, algorithms will terminate in

local minima rather than finding the true optimal partitioning. A common way of addressing this

is to run repeated clustering trials on a data set to determine the true minimum, but this becomes

prohibitively expensive when data sets are very large. Alternative methods for addressing large

data set clustering are described in [12, 30–32].

Even quantitative comparison of two algorithms is difficult, given that the “optimal” partition-

ing of a data set depends both on the data itself and how clusters are defined. A variety of criteria

have been used to compare and contrast clustering algorithms. Common evaluation metrics in-

clude within-cluster similarity, cluster distortion, cluster entropy, algorithm precision and recall,

total run time, computational complexity, number of iterations needed for convergence, stability,

and performance across different data sets [4, 33–35]. Ultimately, there is no one clustering algo-

rithm that can be considered the “best,” as the relative performance of algorithms differs based on

the information desired as well as the data itself.

2.2 Partitional Clustering

Vector quantization refers specifically to the partitional clustering case where a vector space is

divided into smaller discrete units, though other types of clustering are also referred to as quanti-

zation in some literature. The following definitions come from quantization theory, but the termi-

nology is interchangeable for that of partitional clustering.

Let X be a metric space, x be elements of X, and Si be a partition unit for all i in some index

set I. A quantizer maps all x ∈ X by q(x) = ci for all x ∈ Si, where ci is the representative

for partition unit Si [11]. Gersho and Grey describe necessary conditions for local optimality of a

partition [36]. For a partition to optimally minimize

7

k
∑

i=1

∑

x∈Si

d(x, ci)

for some distance metric d, the units Si must satisfy the nearest neighbor condition defined by

Si ⊆ {x ∈ X : d(x, ci) ≤ d(x, cj), i 6= j)} (2.1)

and the representative vectors ci must satisfy the centroid condition given by

ci = argmin
y

{d(x, y)|x ∈ Si}. (2.2)

In addition, the partition must satisfy

Si ∩ Sj = ∅ for all i, j ∈ I

and
⋃

i∈I

Si = X.

This can be accomplished by defining the ci to be the average of all points in Si, where Si is the

Voronoi cell about ci defined by

Si = {x ∈ X : d(x, ci) ≤ d(x, cj), i 6= j)} (2.3)

with points falling on the edge between two cells assigned to one or the other arbitrarily (usually

based on index order) [36]. The element ci acts as a representative for all x ∈ Si. The set {ci : i ∈

I} is referred to as a codebook for X [11, 36].

A partition is evaluated by defining a distortion measure that quantifies the cost of representing

a data point x ∈ Si by ci [11]. Many applications employ quantization to great effect, includ-

ing speech recognition and image processing [9, 10, 37]. As stated previously, data clustering and

vector quantization are functionally equivalent, with the cluster centroids acting as the codebook

8

for the data set. The same metric of distortion error can be applied to partitional clustering algo-

rithms. As the remainder of this work will deal exclusively with partitional clustering, the terms

“clustering” and “quantization” are both taken to mean the partitioning process described above.

Broadly speaking, partitional clustering algorithms handle data either as an online stream or

an offline batch. Online or data streaming algorithms acquire a novel data point at each iteration

and use it to update centers. MacQueen’s original K-means algorithm falls into this category [14].

Other examples of such algorithms can be found in [38–40]. Offline algorithms consider the data

set as a whole, and update centers using all of the data at each iteration. Examples of offline

algorithms include those developed by Linde et al. and Lloyd [7, 41]. Some clustering algorithms

combine the two methods by interspersing a “batch” step periodically throughout the streaming

updates. In this work, we consider one batch update algorithm and one online update algorithm.

2.3 K-means-type Algorithms

A “K-means-type” algorithm refers to any of a number of algorithms that take a given set of

data and partition it into k distinct clusters, each of which can be optimally represented by its

associated center. In particular, the goal of these algorithms is to cluster the data in such a way

that minimizes an error function defined in terms of within-cluster distortion. Given n data points

x ∈ X, where X is a metric space, and k centers ci for 1 ≤ i ≤ k, we construct clusters Ci by

assigning each data point to a single center. Total cluster distortion is given by

D =
k

∑

i=1

∑

x∈Si

d(x, ci) (2.4)

for some distance metric d(x, y) defined on X. Initial centers are chosen and updated at each

iteration of the algorithm, with the precise update method varying amongst algorithms.

Variations of K-means-type algorithms are found throughout the literature. A particularly com-

mon version is the fuzzy C-means algorithm developed by Dunn [42]. This algorithm allows for

points to be assigned to multiple clusters. It was further developed by Bezdek [43, 44]. Krishna

9

and Murty developed the genetic K-means algorithm based on principles from evolutionary biol-

ogy [45]. The kernel K-means algorithm by Schölkopf et al. performs nonlinear quantization by

first embedding data into a higher-dimensional kernel space [46]. A version of kernel K-means

incorporating spectral clustering was developed by Dhillon et al. [47], and a hierarchical version

of the K-means algorithm is described by Steinbach et al. in [33]. The K-mediod algorithm is a

K-means variation that uses cluster medians to represent data rather than means [48]. ISODATA,

developed by Ball and Hall, performs batch cluster updates while dynamically discarding small

clusters [49]. It is widely used for pattern recognition [4].

The majority of these algorithms function as unsupervised methods of dividing or classifying

data, with the only user-selected parameter being the chosen number of clusters k. Some variations

on K-means propose methods for automatic selection of the parameter k. These include global K-

means by Likas et al. [50], a variation by Hamerly and Elkan referred to as G-means [51], and a

gap statistic method by Tibshirani et al. [52].

A known weakness of K-means-type algorithms is their sensitivity to the initial choice of cen-

ters and subsequent tendency to terminate in local minima. This problem is exacerbated in smaller

data sets. Multiple methods have been developed for dealing with this issue. Pena et al. [53] pro-

vide an overview and comparisons of some commonly used methods for choosing initial centers.

Pelleg and Moore developed the X-means algorithm for estimation of the number of clusters [54].

Additional methods are explored in [55–59]. The two simplest common methods of initialization

are choosing centers randomly from the data itself and choosing centers randomly throughout the

data space. The optimal method for choosing initial conditions that avoid local minima is highly

dependant on the data set and ultimately beyond the scope of this work. To avoid the complication

of empty clusters, initialization will be done by selecting centers from the data.

Variations on the K-means algorithms fall into both batch update and online update categories.

Here we will deal with adapting one of each type of algorithm to the Grassmannian. Some K-

means-type implementations use a combination of both batch and online updates, and though we

10

do not deal with these explicitly in this work, combining the given algorithms to function together

on the Grassmannian should be fairly straightforward.

The reader may note that thus far we have referred to “K-means” as a general class of algo-

rithms rather than a single specific method. This is largely due to conflicting naming conventions

for K-means-type algorithms in the existing literature. A variety of different algorithms are re-

ferred to as simply “K-means,” though further inspection of the methodology reveals significant

differences in implementation. In particular, the name “K-means” is used in literature for both

online and batch versions of the algorithm. As we consider both a batch algorithm and an online

algorithm, we must establish a consistent naming convention to differentiate the two.

The online algorithm studied in this thesis is the original version of K-means published by

James MacQueen in 1967 [14], discussed in more detail in Section 4.1. For the sake of clarity, “K-

means” will refer only to this online algorithm for the remainder of this work. The batch algorithm

explored in this work is the version developed by Linde, Buzo, and Gray [7] as a generalization

of Lloyd’s one-dimensional quantization algorithm [41] to function in n dimensions. The batch

algorithm will hence be referred to as “LBG.” Details for this version of the algorithm are found in

Section 4.2.

2.4 Clustering on the Grassmannian

Though some work has been done clustering directly on the Grassmannian, most clustering

algorithms require that points on the manifold first be embedded into another space. This section

contains an overview of the most recent work on the Grassmann manifold.

Dong et al. provide an algorithm for constructing a subspace representation of data to act as

points on the Grassmannian. Pairwise distances are then used for spectral embedding and cluster-

ing [60]. Shiraz et al. explore a kernel clustering method for points on the Grassmannian, which

requires a mapping from the points on the manifold to points in a kernel space [61].

11

Some density based clustering methods are applied directly to the Grassmann manifold. Turaga

et al. use a statistical approach based on the Karcher mean [62], and Cetingul et al. developed a

mean shift algorithm that uses density estimates to iteratively update cluster modes [63].

A K-means-type clustering approach on the Grassmannian is described by Gruber and Theis

in [64]. This method uses a subspace averaging approach based on theory developed by Bradley

and Mangasarian in [65]. In this approach, the average subspace is calculated by minimizing the

projection Frobenius norm between all subspaces and the average subspace. This reduces to an

eigenvector computation on the covariance of matrix of points in the cluster [64, 66]. Though

the end result appears similar to that of the flag mean method from [67] and described in Section

3.2.3, Santamaria et al. demonstrate that the solution based on the projection Frobenious norm is

equivalent to the flag mean for the particular case where a d-dimensional flag is calculated using

only d-dimensional subspaces, i.e., on the Grassmannian [66]. Although Gruber and Theis propose

the use of the subspace mean for clustering on the Grassmannian, they only include demonstrations

on toy data in low dimensions, primarily focusing on projective clustering [64]. However, they

discuss the extension of partitional clustering to function on affine subspaces, which would be an

intriguing avenue of future work.

2.5 Clustering on Featured Data Sets

Two benchmark data sets are used to test and compare the algorithms developed in this paper.

The MNIST handwritten digit database contains approximately 70,000 samples of handwritten

digits 0 through 9 [68]. All samples are reduced to 28 × 28 pixel resolution black and white

images. These are converted into 28 × 28 matrices, with each coordinate containing a binary

indicator of whether or not the corresponding pixel is colored. These matrices are vectorized for

data analysis. The AVIRIS Indian Pines data set contains hyperspectral imaging data from a test

site in Indiana [69]. The ground truth data consists of class labels based on a 145×145 pixel image

of the site. Of this, 10,776 points fall into the empty class and have no associated spectral data.

The remaining 10,249 points are divided into 16 classes according to the samples’ features. The

12

hyperspectral data contains values for 220 bands of varying wavelength for each classified data

point. A reduced version of the data set removes the bands corresponding to the wavelengths of

water absorption, bringing the total number down to 200. The reduced version of the data set is

used for all trials in this work.

To provide some metric of comparison for performance of the algorithms developed in this

paper, previous unsupervised clustering results on both data sets are reviewed here.

The MNIST experiments described next assign to each cluster the label of the class with the

highest probability of membership, i.e. the class corresponding to the highest fraction of points.

The accuracy scores reported are the total percentage of correct labels across all clusters [70].

Springenberg applied categorical generative adversarial networks (GANs) to the MNIST data set

and the best accuracy achieved was 90.30% using k = 20 centers [71]. The adversarial autoencoder

developed by Makhazani et al. had an average accuracy of 95.90%±1.13 using k = 30 centers [72].

A Gaussian mixture variational autoencoder developed by Dilokthanaku et al. achieved an average

classification rate of 92.77% ± 1.60 by clustering using k = 30 centers [70]. For purposes of

comparison, we will utilize the same accuracy metric as the above trials to evaluate our algorithms.

Xie et al. report classification accuracy using a slightly different metric. Their methods are

evaluated by taking all data points xi and evaluating

max
m

1

n

n
∑

i=1

1lxi=m(ci) (2.5)

where n is the number of data points, li is the true label for the ith point, ci is the center the ith

point is assigned to, and m ranges through all possible one-to-one mappings between class labels

and centers [73]. Here, the quantity {lxi
= m(ci)} is set to one if the true label of xi matches

the label of its assigned center under mapping m, and is zero otherwise. Using this metric, the

authors evaluated multiple clustering methods on the MNIST data set. Their Deep Embedded

Clustering algorithm achieved the highest accuracy of all methods reported at 84.30% using k = 10

centers [73]. Notably, they also report results using MacQueen’s K-means algorithm [14], and

achieve an accuracy of only 53.49%.

13

The clustering literature for the Indian Pines data set is primarily focused on identifying rele-

vant spectral bands for classification rather than classifying the data directly. Wu and Tsuei apply

clustering to the cross-correlation matrices of the hyperspectral bands to perform dimensional-

ity reduction on the data [74]. Tuia and Camps-Valls embed the data into a kernel space before

clustering [75]. Su et al. propose a semi-supervised clustering method for band selection and

dimensionality reduction [76]. Chepushtanova et al. perform supervised classify the data on the

Grassmannian, using sparse support vector machines to select relevant hyperspectral bands [77].

As far as the author is aware, however, there is no literature describing unsupervised clustering of

this data set directly on the Grassmannian.

14

Chapter 3

The Grassmann Manifold

3.1 Matrix Manifolds and the Grassmannian

A manifold of dimension d is a space M for which all points x ∈ M are contained in some

neighborhood which can be bijectively mapped to an open subspace of Rd [78]. Clearly, all d-

dimensional vector spaces are manifolds. Consider the set of all n × p real matrices R
n×p with

the standard addition and scalar multiplication. The matrix vectorization operation, which entails

vertically stacking all p columns into a single vector, is then a bijective mapping f : Rn×p → R
np.

Therefore Rn×p is a manifold of dimension pn. This becomes a Euclidean manifold when equipped

with the inner product defined by

〈X1, X2〉 = vec(X1)
Tvec(X2) = tr(XT

1 X2) (3.1)

where X1, X2 ∈ R
n×p [78]. The topology of this manifold is equivalent to that of the canonical

Euclidean topology on R
np.

A matrix X is orthonormal if XTX = I . The set of all orthonormal n× p matrices, called the

Stiefel manifold and denoted St(p, n), is an embedded submanifold of Rn×p and is thus equipped

with corresponding induced subset topology [78]. To calculate the dimension of this manifold,

consider the mapping F : Rn×p → Sp, where Sp is the set of all p × p symmetric matrices, given

by

F (X) = XTX − Ip. (3.2)

This mapping is surjective, and since all matrices in St(p, n) are orthonormal, St(p, n) ⊆ F−1(0).

Conversely, F (X) = 0 only if XTX = Ip, so F−1(X) ⊆ St(p, n) since all orthonormal n ×

p matrices must exist in the Stiefel manifold. Since p × p symmetric matrices are completely

determined by the entries on and above the diagonal, the dimension of Sp is 1
2
p(p+1). Additionally,

15

since the mapping F is surjective, we have

dim(Rn×p) = dim(Sp) + dim(F−1(0)) = dim(Sp) + dim(St(p, n)) (3.3)

and therefore the dimension of St(p, n) is pn− 1
2
p(p+ 1) [78].

The Grassmann manifold is defined as the parameterization of the set of all p-dimensional

subspaces in R
n, with p ≤ n. Denoted Gr(p, n), this manifold allows for parameterization of

subspaces in R
n. Each point on a Grassmannian is an p-dimensional subspace, which can be

represented as the span of the columns of some n × p matrix. The column space of a matrix X is

henceforth denoted by [X]. The Grassmannian is a quotient manifold of the Stiefel manifold, with

Gr(p, n) = St(p, n)/ ∼, with the equivalence relation ∼ is defined by

X ∼ Y ⇐⇒ [X] = [Y] (3.4)

where X and Y are n× p matrices. The Grassmannian is then the set of all equivalence classes of

∼ in St(p, n) and is therefore a quotient manifold of the Stiefel manifold. A function defined on

St(p, n) is then invariant under ∼ if

f(X) = f(Y) ⇐⇒ [X] = [Y] (3.5)

for all X, Y ∈ St(p, n) [78]. The column space of an orthonormal n × p matrix is invariant

under right multiplication by a p × p orthonormal matrix. This means that the column space of

an n × p matrix is uniquely determined by p(n − p) entries, therefore the dimension of Gr(p, n)

is p(n − p) [78]. This relationship to the Stiefel manifold provides an intuitive framework for

computational analysis on the Grassmannian. Points on the Grassmann manifold are represented

by orthonormal matrices for the purposes of numerical computations.

16

3.2 Tools for Analysis on the Grassmannian

The first step in analyzing data on a Grassmannian is converting data from Euclidean points

to points on the Grassmann manifold. In most cases, data is represented as a feature vector in

R
n. To construct points on the Grassmannian from euclidean data in R

n, take p data vectors and

concatenate them into an n × p matrix X̂ = [x1, x2, ..., xp]. Performing QR factorization on X̂

yields X̂ = QR, where Q is an orthonormal matrix with column space equal to that of X̂ . Thus

X = Q defines a matrix representation for a point in Gr(p, n) defined by the p data points. Each

subspace is assigned the same label as the points used to construct it. Given m total data points for

a class, we obtain ⌊m/p⌋ total subspaces, discarding m modulo p points.

3.2.1 Metrics

In order to perform computations, we must establish a notion of distance on the Grassmann

manifold. Distances between two points on the Grassmannian can be defined using the principal

angles between the two subspaces. Denote the principal angles between two subspaces [X] and

[Y] generated by X, Y ∈ R
n×p by θi for 1 ≤ i ≤ p. These angles are defined recursively by

θ1 = min{arccos(xTy)| x ∈ [X], y ∈ [Y]} (3.6)

subject to ‖x‖ = ‖y‖ = 1, and more generally by

θi = min{arccos(xTy)| x ∈ [X], y ∈ [Y]} (3.7)

subject to ‖x‖ = ‖y‖ = 1, xTxj = 0, and yTyj = 0 ∀ j ≤ i. So θ1 is the smallest possible angle

between the two subspaces, and θi ≥ θj for all i > j. The corresponding unit vectors xi ∈ [X] and

yi ∈ [Y] are called the principal vectors [79].

For two orthonormal matrices X and Y , the cosines of the principal angels between [X] and

[Y] are easily obtained from the singular value decomposition (SVD) of XTY . Given the SVD of

XTY = UΣV T , the singular values σi are by definition given by

17

σi = max
||u||,||v||

uT (XTY)v = uT
i (X

TY)vi (3.8)

subject to uTuj and vTvj for all j < i. Now define xi = Xui and yi = Y vi. Then xi ∈ [X] and

yi ∈ [Y], and σi = uT
i (X

TY)vi = xT
i yi, which is the cosine of the angle between xi and yi. Using

this with equations (3.7) and (3.8), we obtain σi = cos(θi) and therefore θi = arccos(σi) [79].

Thus, the SVD provides a relatively low cost computational method for quickly obtaining principal

angles from orthonormal bases for subspaces. Note that all principal angles θ must exist in the

interval [0, π
2
].

The Grassmannian can be endowed with many distinct orthogonally invariant geometric struc-

tures written in terms of principal angles; see [80] for details. The projection Frobenius norm

provides a distance metric, called chordal distance, on Gr(p, n) that can be expressed in terms of

the sines of principal angles. If [X], [Y] ∈ Gr(p, n) then

dc([X], [Y]) = (
∑p

i=1(sin θi)
2)

1/2
= ‖ sin θ‖c. (3.9)

Using chordal distances, any set of points on the Grassmannian can be isometrically embedded

into Euclidean space using multi-dimensional scaling (MDS) [80]. A second norm, referred to as

geodesic distance, is given by

dg([X], [Y]) = (
∑p

i=1 θ
2
i)

1/2
= ‖θ‖g. (3.10)

It is important to note that because sin(θ) is monotonically increasing for θ ∈ [0, π
2
], geodesic

distances can be related to chordal distances via a retraction mapping. However, geodesic dis-

tances cannot be used to obtain an isometric embedding of points using MDS. Finally, the smallest

principal angle defines a pseudo-metric on the Grassmannian, with

dp([X], [Y]) = min
i

θi (3.11)

18

This also cannot be isometrically embedded into Euclidean space and does not define a true norm

on the Grassmannian, since dp([X], [Y]) = 0 does not guarantee [X] = [Y]. Nevertheless, use of

this pseudo-metric has been shown to result in better classification than the standard metrics, in

addition to being much simpler computationally [3].

3.2.2 Geodesics and Parameterization

The shortest path distance between two points on a manifold is known as a geodesic curve.

In order to update centers in the K-means algorithm, we require a way to move one subspace

a specified distance towards another subspace. We acheive this by parameterizing the geodesic

curve between two points [X] and [Y] on the Grassmannian. This is accomplished by using the

quotient geometry of the Grassmannian to derive a formula for a geodesic curve [80].

Consider the set of all n × n orthonormal matrices, denoted by O(n). O(n) is a manifold in

Euclidean space. Now suppose some Q̃ ∈ O(n) lies on a smooth curve X(t) with X(0) = Q̃.

Since X(t) ∈ O(n), we must have X(t)TX(t) = I for all t. Differentiating with respect to t

yields

Ẋ(t)TX(t) +X(t)T Ẋ(t) = 0 (3.12)

and plugging in the initial condition yields

Ẋ(t)T Q̃ = −
(

Ẋ(t)T Q̃
)T

. (3.13)

This means that for any smooth curve through Q̃, we must have Ẋ(t) = Q̃A, where A is an n× n

skew symmetric matrix [81]. Therefore the tangent space to O(n) at Q̃ is given by

TQ̃O(n) = {Q̃A|A = −AT}. (3.14)

Now define Q̃(t) to be a geodesic curve through Q̃. Using the above equations, we find Q̃(t) =

Q̃eAt as the formula for a geodesic curve through Q̃ on O(n) [80].

19

To find the geodesic formula on Gr(p, n), we define the Grassmannian as a quotient of O(n)

based on the equivalence relation

[Q̃] =

{

Q̃

Qp 0

0 Q(n−p)

, Qp ∈ O(p), Q(n−p) ∈ O(n− p)

}

. (3.15)

Note that there exists a bijective mapping f between the equivalence class in equation (3.15) and

the point [Q] ∈ Gr(p, n) with f([Q̃]) = [Q] and f−1([Q]) = [Q̃], where

Q =

Qp

Q(n− p)

,

so (O(n)/ ∼) ∼= Gr(p, n). Thus Gr(p, n) has the quotient geometry from O(n), and therefore

T[Q̃]O(n) can be decomposed into orthogonal horizontal and vertical tangent spaces HQ and VQ,

respectively, with HQ = T[Q]Gr(p, n) [80]. The formula for the Grassmannian geodesic will

therefore be developed on O(n)/ ∼ and subsequently mapped to Gr(p, n).

We derive a formula for the geodesic on HQ by first defining VQ. Let

V (t) = Q̃

Qpt 0

0 Q(n−p)t

(3.16)

be a curve in O(n) along [Q̃] with V (0) = Q̃. As before, we must have V (t)TV (t) = I for all

t [81]. Taking the derivative with respect to t and plugging in the initial conditions yields

Q̇T
pQp +QT

k Q̇p = 0

and

Q̇T
(n−p)Q(n−p) +QT

(n−p)Q̇(n−p) = 0.

The same reasoning as before yields

20

VQ =

{

Q̃

C 0

0 D

}

where C is p × p skew symmetric and D is (n − p) × (n − p) skew symmetric [81]. Since HQ

must be orthogonal to VQ with all elements of HQ skew symmetric, it follows that

HQ =

{

Q̃Ã

}

where

Ã =

0 −B

B 0

The geodesic on HQ is then

Q̃(t) = Q̃eÃt,

and therefore the matrix representation for a geodesic on Gr(p, n) through [Q] is

Q(t) = Q̃eÃt

Ip

I(n−p)

.

Because only the first p columns of Q̃ are important for numerical computation, we can rewrite the

geodesic curve as

Φ(t) = Q̃eÃt

Ip

0

.

From Theorem 1 in [81], given Φ(0) = X and Φ̇(0) = H , we can write the geodesic curve using

the compact SVD of the velocity matrix H = UΣV T as

Φ(t) = XV cos(Σt)V T + U sin(Σt)V T . (3.17)

21

This provides a formula for a geodesic through [X] ∈ Gr(p, n) given a known velocity matrix

H , but the algorithms developed in this paper require a method to find H given two points [X] and

[Y] in Gr(p, n) such that Φ(0) = X and Φ(1) = Y D ∈ [Y] (D being any p×p orthogonal matrix).

This computation is found in [81], and it is reiterated here for the purpose of thoroughness.

At t = 1, the above requires that

Y D = XV cos(Σt)V T + U sin(Σt)V T . (3.18)

Left multiplication by XT yields

XTY D = V cos(Σ)V T (3.19)

since XTU = 0. Substituting XTY D back into equation (3.18) yields

Y D = XXTY D + U sin(Σ)V T , (3.20)

and combining equations (3.19) and (3.20) yields

U sin(Σ)V T (V cos(Σ)V T)−1 = U tan(Σ)V T = (I −XXT)Y (XTY)−1. (3.21)

Hence UΘV T is the SVD of H , with Θ = arctan(Σ) and

H = (I −XXT)Y (XTY)−1. (3.22)

Using this formula for H and the SVD, equation (3.17) yields

Φ(t) = XV cos(Θt) + U sin(Θt). (3.23)

22

Together, equations (3.22) and (3.23) paramaterize a curve between any two points [X] and [Y] in

Gr(p, n).

3.2.3 Averaging Subspaces

The flag mean is an algorithm for computing averages of points on Grassmannians [67, 82,

83]. One can use such an algorithm to determine common attributes of a set of points on the

Grassmannian as a set of nested subspaces, called a flag [82]. The algorithm, summarized below,

is at the heart of the Grassmannian LBG procedure.

A flag is a nested sequence of subspaces. Given a finite collection of subspaces, the flag mean

algorithm computes the best flag representation of the collection. The flag mean can be calculated

for any dimension r ≤ p [67], and thus it is possible to consider a lower dimensional representation

for subspaces of mixed dimensions, but that will not be the focus of this work.

Denote the flag by {[u1], [u2], ..., [ur]}, where the ui are orthogonal unit vectors with r ≤ p. Let

{[Xi]}
m
i=1 be a set of points in Gr(p, n) and {Xi} be their corresponding matrix representations.

To construct the flag mean, iteratively solve the following optimization problem:

[uj] = argmin
[u]∈Gr(1,n)

m
∑

i=1

dc([u], [Xi])
2, subject to [u] ⊥ [ul] for all l < j (3.24)

for [u1], ..., [ur] [67]. From equation (3.9),

argmin
[u]

m
∑

i=1

dc([u], [Xi])
2 = argmin

[u]

m
∑

i=1

(sin(θi))
2, (3.25)

and the optimization problem is then equivalent to

[uj] = argmax
[u]∈Gr(1,n)

m
∑

i=1

(cos(θi))
2 (3.26)

with the same constraints on the [ui] [67]. Consider the thin SVD of uTXi. Using the SVD,

23

uTXiX
T
i u = UΣV TV ΣTUT = cos2(θi). (3.27)

Combining equations (3.26) and (3.27) yields

[uj] = argmax
[u]∈Gr(1,n)

uT

(m
∑

i=1

XiX
T
i

)

u, subject to [u] ⊥ [ul] for all l < j. (3.28)

For simplicity, let A =
∑m

i=1 XiX
T
i . To find an optimal uj , take the Lagrangian

L(u, λ, λ1, ..., λj−1) = uTAu− λ(uTu− 1)−

j−1
∑

l=1

λl(u
Tul) (3.29)

and its partial derivatives. Setting the partials equal to zero yields the optimality conditions

Au = λu, uTu = 1, uTul = 0, (3.30)

and the problem is reduced to an eigenvector computation [67]. Given that in most cases we have

p << n, it is desirable to find more efficient method than standard eigenvector computations that

have complexity O(n3). Define the concatenation of the matrix representations of the {[Xi]} by

X = [X1, ..., Xm]. Then X is an n× (mp) matrix, and XX
T =

∑m
i=1 XiX

T
i = A. The thin SVD

of X = UΣV T then yields XX
T = UΣΣTUT , and the columns of U are therefore the eigenvalues

of XX
T with corresponding eigenvectors σ2

i [67]. Using the SVD for this calculation reduces the

order to O(nm2p2) and is therefore more efficient whenever mp < n, which is quite often the case.

The flag mean acts as a representative for the subspaces [Xi]. Figure 3.1 depicts an MDS

embedding of subspaces generated data from using the MNIST handwritten digit database [68].

Here, points in Gr(5, 784) were constructed from images of handwritten “2”s using the method

described in Section 3.1. The center is the 5-dimensional flag mean calculated according to Equa-

tion 3.24. An interesting property of the flag mean is its ability to concisely capture information

about not only the average, but the most common variations within data. Figure 3.2 shows, in or-

der, the five component vectors of the flag mean reshaped and colored as images. Clearly, the first

24

Figure 3.1: MDS embedding of handwritten digit “2” from Gr(5, 784) and corresponding flag mean center.

Figure 3.2: The five ordered component vectors from the flag mean, reshaped and visualized.

component depicts the average (i.e. most common) variant of the handwritten digit. The remaining

components depict, in order from most to least frequent, common variations from the average. In

this way, the flag mean captures visual information about within-cluster variations that can provide

additional insight into data.

25

Chapter 4

Euclidean Algorithms

Here we provide an overview of the two partitional clustering algorithms central to this thesis.

Both are derived from the optimization strategies discussed in Sections 2.2 and 2.3 and define

clusters according to Voronoi cells about each center as defined in equation (2.3).

4.1 K-means

MacQueen’s K-means algorithm operates on an incoming stream of data, assigning each data

point to its nearest center [14]. The chosen center is then updated in the direction of the new data

point.

Let xt+1 be the (t + 1)st data point assigned to a center c. The center at time t, denoted ct, is

then updated by

ct+1 = ct +
1

t
(x− ct) =

tct + xt+1

t+ 1
. (4.1)

An illustration of the update process is depicted in Figure 4.1, and Algorithm 1 describes the steps

for performing K-means on a data set.

Note that if the initial center c0 is updated using the first point x1, then

c1 =
0c0 + x1

1

so each center is automatically set to the first point it sees. A second update yields

c2 =
c1 + x2

2
=

x1 + x2

2
=

1

2

∑

i

= 12xi.

More generally, if ct =
1
t

∑t
i=1 xi, then

26

Figure 4.1: Illustration of center updates in the K-means algorithm.

ct1 =
t1
t

∑t
i=1 xi + xt+1

t+ 1
=

1

t+ 1

t+1
∑

i=1

xi

Each center is thus the average of all points previously assigned to it. Because K-means updates

centers without seeing all the data, the final centers are not necessarily the average of the data

points contained in their Voronoi set, depending on how far the center moved from its original

location. Algorithm 1 describes the steps for iterating through data points and updating centers.

Algorithm 1 Euclidean K-means

1: Initialize k centers in the data space.

2: Set the count for each center to zero.

3: for each data point do

4: Select the center nearest to the data point.

5: Add 1 to the count for that center.

6: Update the center according to equation (4.1) with t = current count.

27

Because data is received as a stream, K-means is especially sensitive to starting conditions and

the order the data is presented. This can be mitigated somewhat by iterating through all data points

repeatedly until the cluster distortion stabilizes. Though this is certainly impractical for online

analysis of incoming data, we will implement this method in order to provide more meaningful

comparisons with the LBG algorithm. A single pass of K-means through all data points is referred

to as an epoch. Algorithm 2 describes the steps for the full epoch version of K-means.

Algorithm 2 Euclidean K-means with Epochs

1: Initialize cluster distortion to infinity.

2: Set termination threshold.

3: Initialize k centers in the data space.

4: Set the count for each center to zero.

5: for each data point do

6: Select the center nearest to the data point.

7: Add 1 to the count for that center.

8: Update the center according to equation (4.1) with t = current count.

9: end for

10: Calculate new cluster distortion.

11: Calculate change in cluster distortion.

12: Compare distortion change to specified threshold.

13: if distortion change is greater than threshold then repeat steps 5-13.

4.2 LBG

LBG is a K-means-type algorithm initially developed for performing vector quantization by

Linde, Buzo, and Gray [7]. LBG differs from the MacQueen K-means algorithm in that it considers

the entire data set as a whole and performs batch updates rather than updating based on one point

at a time. This algorithm uses Euclidean squared distances to calculate and update the Voronoi

cells. Figure 4.2 illustrates a single update step for a pair of clusters associated with two centers.

Algorithm 3 describes the process.

As with K-means, LBG suffers a sensitivity to starting conditions. The original LBG paper

presents a method for optimally initializing centers [7], and additional methods are explored in

28

Figure 4.2: An illustration of cluster updates in LBG.

Algorithm 3 Euclidean LBG

1: Initialize cluster distortion to infinity.

2: Select termination threshold.

3: Initialize k centers in the data space.

4: Assign each data point to a center by constructing Voronoi cells Si about each center.

5: Update each center ci by averaging the data in Si.

6: Reassign all data points to Voronoi cells defined by updated centers.

7: Calculate new cluster distortion.

8: Calculate change in cluster distortion.

9: Compare distortion to specified threshold.

10: if distortion change is greater than threshold then repeat steps 5-10.

29

[84, 85]. As with K-means, these additions to the algorithm are beyond the scope of this work.

To account for the possibility of poor starting conditions, each experiment for both methods is run

multiple times, with ending distortion error used to choose the best possible results. Using the

Euclidean metric to quantize implicitly assumes that the cells will be isotropic; however, this may

not be the case, especially in high dimensional spaces with noise [86].

4.3 Properties and Complexity

Clearly, for a single cluster of m data points, the end result of one epoch of K-means is equiva-

lent to one iteration of LBG since both algorithms will return the average of all points in the cluster.

The primary difference between the two algorithms is only apparent in the presence of more than

one cluster. After the final iteration of LBG, all centers will be exactly the means of their assigned

data points, and the optimality conditions described in Section 2.2 are satisfied. After one epoch

of K-means, however, the centers are not guaranteed to be the average of the data points currently

assigned to them. Consider the case where a point xi is initially assigned to center c1, but as the

algorithm updates, c1 moves away from xi and c2 moves nearer to xi. If, at the end of the epoch,

c2 is closer to xi than c1, xi will be assigned to c2 even though it did not contribute to the updates

of that center. Since each center is the average of all points that it sees during an epoch, c1 will be

the average of some subset of data points including xi, and c2 will be the average of a distinct set

of data points that does not include xi. As a result, the optimality conditions given by Gersho and

Gray are not necessarily satisfied. This can be remedied by setting each center to the centroid of its

corresponding cell after the K-means algorithm terminates, but this is not practical in cases where

data is received in real time. Thus the centers selected by LBG and K-means for multiple clusters

on the same data set may differ depending on the starting conditions for the K-means algorithm.

It is also worth noting that the optimality conditions given by Gersho and Gray only guarantee

local optimality of a partition, not global [36]. Therefore, depending on starting conditions, it is

possible for both algorithms to terminate in a local minimum that is not the global minimum, so

repeated trials are necessary to accurately divide a data set.

30

Given k total centers and m total data points, a single iteration of LBG requires km pairwise

distance calculations to assign data points to centers, and then another m calculations to compute

the new centers. A single epoch of K-means requires k pairwise distance calculations for every data

point, totalling km. Center updates require 3 operations per data point, for a total of 3m. Given that

a single pairwise Euclidean squared distance calculation in R
n requires n2(n − 1) floating point

operations (FLOPS), this step has the highest computational cost and thus both the LBG iteration

and the K-means epoch have complexity O(kmn2(n− 1)). Therefore the cost of a single iteration

of LBG is equivalent to that of a single epoch of K-means.

31

Chapter 5

Grassmannian Algorithms

The algorithms in this section are developed by translating each step of the Euclidean algo-

rithms to the Grassmann manifold.

5.1 Grassmannian K-means

To adapt the K-means algorithm to function on Grassmann manifolds, we use the parameteri-

zation of the geodesic in equation (3.23) to update each center in the direction of novel data points.

Given data as a collection of points in R
n, we construct matrix representations of p-dimensional

subspaces as discussed in Section 3.2. We then use the adapted K-means algorithm to partition

the data into k clusters in Gr(p, n). Cluster distortion is calculated according to equation (2.4)

using the chordal distance metric, though it is also possible to substitute geodesic distances or the

smallest principal angle pseudometric. To update a center in the direction of a new point, we use

equation (3.23) and set t equal to the inverse of the total number of points assigned to that center,

including the newest one. Steps are detailed in Algorithm 4.

Algorithm 4 Grassmannian K-means

1: Construct matrix representations for data in Gr(p, n).
2: Initialize cluster distortion to infinity.

3: Select termination threshold.

4: Initialize k centers on the manifold.

5: Set the count for each center to zero.

6: for each data point do

7: Select the center nearest to the data point according to a Grassmannian metric.

8: Add 1 to the count for that center.

9: Update the center according to equation (3.23) with t = 1 / (current count).

10: end for

11: Calculate new cluster distortion using chosen Grassmannian metric.

12: Calculate change in cluster distortion.

13: Compare change in distortion to specified threshold.

14: if distortion change is greater than threshold then repeat steps 6-14.

32

5.2 Grassmannian LBG

To adapt the LBG algorithm for use on the Grassmannian, we replace the traditional Euclidean

average with the flag mean from equation (3.24) to average all subspaces contained in each Voronoi

set. As with Grassmann K-means, data in R
n is used to construct matrix representations for sub-

spaces in Gr(p, n) as previously discussed in Section 3.1. Algorithm 5 outlines the procedure.

Algorithm 5 Grassmannian LBG

1: Construct matrix representations for data in Gr(p, n).
2: Initialize cluster distortion to infinity.

3: Select termination threshold.

4: Initialize k centers on the manifold.

5: Assign each data point a center by constructing Voronoi cells Si about each center using a

Grassmannian distance metric.

6: Update each center ci by calculating the flag mean of Si as in equation (3.24).

7: Reassign all data points to Voronoi cells defined by updated centers.

8: Calculate cluster distortion using chosen metric.

9: Calculate change in cluster distortion.

10: Compare change in distortion to specified threshold.

11: if distortion change is greater than threshold then repeat steps 6-11.

5.3 Properties and Complexity

Figure 3.2 in Section 3.2.3 demonstrated the ability of the flag mean to capture information

in an ordered fashion. Because all centers in Grassmann LBG are calculated as flag means of

Voronoi cells, this property is also present in centers selected by this algorithm. To test whether

this is also the case in the Grassmann K-means algorithm, the algorithm was run on the same set of

handwritten digits in Gr(5, 784) pictured in Figure 3.1. The five components were then visualized

in order and compared to the LBG components. Figure 5.1 shows the results. Although K-means

captures much of the same information, it does so much less cleanly than LBG, and there is no

apparent order to the components.

33

Note that component 5 of the K-means center has an inverted color scheme from that of the

other pictured centers. This is because the matrix representation for the center is scaled by a factor

of −1 relative to the matrix representations for the others. However, because we are considering

subspaces as points, this representation is equivalent to the one resulting in “standard” coloration.

To compare the computational complexity of each algorithm, one K-means epoch is compared

to a single LBG iteration. A K-means epoch includes iteration through m data points in Gr(p, n),

with each iteration requiring a pairwise distance calculation between a single data point and the k

centers, label and count updates, a center update using geodesic parameterization from equation

(3.23), and a QR-factorization of the updated center to restore orthonormality. For LBG, one

iteration consists of a pairwise distance calculation between the k centers and all m data points,

label updates for each point, and k flag mean calculations that each include varying numbers of

data points. For both algorithms, the cluster distortion check is eliminated from the calculation

since it is identical regardless of the selected algorithm and not considered part of the update step.

Let m be the number of data points in Gr(p, n) with k the number of centers used in the

algorithm. The complexity of pairwise distance is required for both algorithms, and will thus be

Figure 5.1: Comparison of components of centers from LBG and K-means.

34

calculated prior to analysis of the algorithms for all three distance measures used in this work:

squared chordal distance, squared geodesic distance, and smallest principal angle distance.

Pairwise chordal distance calculations take as an input a set of k subspaces {[Xi]} and a set of

m subspaces {[Yj]}. The distance for a single pair [Xi], [Yj] is given by

dij = ‖ sin θ‖2c

p
∑

q=1

(

1− cos2(θq)

)

= ‖

where the cos(θq) are the p singular values obtained from the SVD of XT
i Yj . For the purposes of

these calculations, this SVD is assumed to be a full SVD. The highest cost step of this pairwise

distance calculation is the matrix multiplication and subsequent SVD. Since both Xi and Yj are

p× n matrices, the multiplication step totals p2(2n− 1) FLOPS. A full SVD on an n×m matrix

has O(n2m+nm2+m3) FLOPS. Because XT
i Yj results in a p×p matrix, this simplifies to O(p3).

The remaining calculation of dij has complexity of 2p, and is therefore disregarded. Repeating the

calculation km times results in a complexity of O(knmp2 + kmp3), plus lower order terms.

The geodesic pairwise distance calculation takes the same sets of k and m subspaces. The

distance for a single pair is given by

dij =

p
∑

q=1

θ2q

where the θq = arccos(cos(θq)) are again obtained from the SVD of XT
i Yj . The same multiplication

and SVD steps found in the chordal distance again total p2(2n− 1) and O(p3), respectively. Both

the arccos and remaining additions have lower relative costs, so the computational complexity is

again O(knmp2 + kmp3).

The smallest principal angle pseudometric only requires the first angle of the SVD of XT
i Yj .

Again, multiplication and the SVD yield the same number of steps. The only remaining operation

is taking the arccos of the smallest angle, so overall order again reduces to O(knmp2 + kmp3).

Because the highest cost computational steps for each distance measure are the same, the over-

all cost for both Grassmannian LBG and Grassmannian K-means is not affected by the choice of

metric.

35

The two high cost steps in a Grassmannian K-means epoch are calculating chordal distances

and updating the center via geodesic parameterization. The calculation of the velocity matrix H

requires inversion of a p×p matrix, n2 subtractions, a multiplication of a p×n matrix and an n×p

matrix, another multiplication of a n×p and a p×n matrix, and multiplications of n×n, n×p, and

p × p matrices. Assuming the inversion step is done by Gaussian elimination, the complexity of

this step is O(p3). The four matrix multiplication steps require 2np2−p2+2n2p−n2+2np2−np+

2n2p−np total FLOPS, which can be reduced to O(np2+n2p−n2−p2) by eliminating lower order

terms. Combining this with the inversion and subraction operation counts and eliminating terms

yields O(p3+pn2+np2) required FLOPs for this step. Next, a truncated SVD is performed on the

n× p matrix H , which requires O(np2 + p3) operations. The final step requires multiplication of

n× p and p× n matrices and an n× p subtraction operation. After eliminating lower order terms,

the complexity of this step is O(np2 + p3). The final QR decomposition of an n × p matrix adds

an additional 2np2 FLOPs. Combining all the above steps and eliminating low order terms yields

a total complexity of O(p3 + np2) for the center update. Since chordal distance is only calculated

using a single data point, the complexity of that step becomes O(kp2n + kp3). Repeating these

steps for m data points gives a total computational complexity of O(mp3+mnp2+mkp3+nmkp2)

for a single epoch of Grassmann K-means with m data points and k centers in Gr(p, n).

For Grassmann LBG, the high cost steps are calculation of pairwise distances between the k

centers and m data points and the k required flag mean calculations. The flag mean step introduces

the added complication of generalizing a computational cost for averaging a varying number of

data points, but this can be addressed. First, suppose we are averaging m subspaces in Gr(p, n).

The only required calculation is a truncated SVD of the horizontally concatenated n×pm matrices.

The cost for a thin SVD of an n × pm matrix is O(nm2p2 + m3p3). Now suppose we have two

centers with l and q points respectively. Then the computational cost for both centers is

O(nl2p2 + l3p3 + nq2p2 + q3p3) = O(m(l2 + q2)p2 + (l3 + q3)p3) ≤ O(m(l+ q)2p2 + (l+ q)3p3)

36

so for m data points, the k flag mean calculations can have a complexity of at most O(nm2p2 +

m3p3). Adding this to the pairwise chordal distance cost yields a cost of O(nm2p2 + m3p3 +

nmkp2 +mkp3) for a single iteration of Grassmann LBG with m data points and k centers.

In general, we can assume that p << n for most problems. Since K-means is linear in n, m, and

k while LBG contains an m3 term, K-means will be far less computationally expensive than LBG,

especially for large data sets. However, K-means does not provide the same data characteristics

that LBG does. Complexity of steps in both algorithms could be further optimized in future work.

Because the optimality conditions are defined for any metric space, conditions for optimality

in Euclidean algorithms also apply to algorithms on the Grassmann manifold.

37

Chapter 6

Experimental Results

Here, we provide both a qualitative demonstration and a more formal evaluation of Grassman-

nian K-means and Grassmannian LBG.

We use two measures to evaluate unsupervised classification accuracy. The first is evaluation

of the average purity of all clusters upon termination of the algorithm. Let y(x) = v be the true

label for a point xi. The average purity for k clusters Ci, 1 ≤ i ≤ k, given class labels L is

P =
1

k

k
∑

i=1

(

1

|Ci|
max

x∈Ci,v∈L
|y(x) = v|

)

. (6.1)

This measure describes how cleanly centers partition distinct groups of data by quantifying the

fraction of each cluster occupied by points from a single class. However, the average across all

clusters can be heavily skewed by clusters with a very small number of points. To account for

this, we use the classification accuracy described in Section 2.5 that assigns each cluster the label

corresponding to the largest fraction of points in the cluster as our second measure. Accuracy is

then determined according to the

A =
1

m

k
∑

i=1

∑

x∈Ci

1y(x)=y(Ci) (6.2)

where m is the total number of data points, 1 is the indicator function, and y(Ci) is the label

assigned to cluster Ci. This gives the total fraction of the data that was assigned the correct label,

and large discrepancies this and cluster purity allow for quick identification of skewed clustering.

This accuracy is used to compare results from Grassmannian K-means and Grassmannian LBG on

the MNIST 10-class clustering problem to results found in the literature.

In addition to the previous measures, total cluster distortion at algorithm termination is also re-

ported. Although this is useful for comparing results from several trials within a single experiment

38

or results from two algorithms applied to the same data, it is not suitable for direct comparison

of trials that are performed on different manifolds or that use different metrics. Distortion is pri-

marily reported here for direct comparison of Grassmannian LBG and Grassmannian K-means

when applied to the same experiment with identical k values. In this situation, it provides useful

information about which algorithm terminates nearest the true minimum and how they compare in

stability across multiple trials.

Cluster purity and classification accuracy are reported as a percentage. Distortion errors are

reported as raw numbers calculated from the distance metric.

6.1 Testing on Toy Data

Prior to more rigorous comparison on the benchmark data sets, both Grassmannian LBG and

Grassmannian K-means were tested on simple, highly separable clusters on various data manifolds.

These tests serve to demonstrate the functionality of both algorithms and provide some qualitative

insight into cluster structure on the Grassmannian.

6.1.1 Epsilon Balls on Gr(1, 3)

The Grassmannian Gr(1, 3) is the parameterization of the set of all lines in R
3 passing through

the origin. It is also referred to as the real projective space RP
2. It is one of three Grassmannians

that can be explicitly visualized in three dimensions. This is accomplished by projecting each line

onto the upper hemisphere of the unit circle and plotting them as points. Because of this useful

visualization method, Gr(1, 3) is used to test the Grassmannian LBG and K-means algorithms and

provide insight into the manifold structure.

To test the functionality and effectiveness of the algorithms, clusters were generated in Gr(1, 3)

by randomly selecting a single point on the manifold, then constructing an ǫ-ball about this point

using a Gaussian normal distribution. The value of ǫ was varied, along with size and number of

clusters, to thoroughly test the robustness of these algorithms. Although both K-means and LBG

are known to be sensitive to initial starting conditions, that issue did not appear in any of these

39

tests. Here, three variations of the ǫ-ball trial are reviewed. All clusters are visualized on the upper

unit hemisphere in R
3, and then both data and centers are isometrically embedded into R

2 using

chordal distances.

The first trial used three clusters containing ten points each in Gr(1, 3) with ǫ = 0.1. Both

algorithms were applied to the data using k = 3, and both successfully identified the centers.

The clusters for each algorithm are seen in Figures 6.1 and 6.2 along with MDS embeddings

of the clusters and selected centers. A second trial tested the two Grassmannian algorithms on

four distinct clusters with 100 points each, generated using ǫ = 0.1. All clusters were separated

with 100% accuracy by both algorithms using k = 4. Clusters on the unit hemisphere and MDS

embeddings into R
2 are found in Figures 6.3 and 6.4. The final trial tested two large clusters

Figure 6.1: Clusters in Gr(1, 3) and their two-dimensional MDS embeddings with centers selected using

Grassmannian LBG.

Figure 6.2: Clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings with centers

selected using Grassmannian K-means.

40

Figure 6.3: Larger clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings with

centers selected using Grassmannian LBG.

Figure 6.4: Larger clusters in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings with

centers selected using Grassmannian K-means.

using 100 points generated with ǫ = 0.5 so that each cluster covered a large portion of the unit

hemisphere while still being completely separable. Figures 6.5 and 6.6 show the representations of

clusters in Gr(1, 3) along with the two-dimensional embedding of the clusters and centers selected

by each Grassmannian algorithm. Again, both algorithms separated the clusters perfectly using

k = 2.

It is, however, interesting to observe that as the clusters spread to cover more of the unit hemi-

sphere, their centers appear to move closer to the outside edges of the MDS embedding plot. This

phenomenon is further explored in the next section.

As an aside, the left-most images in Figures 6.1, 6.3, and 6.6 show an interesting geometric

property of the Grassmannian. Because all points along a line are identified with each other by

41

Figure 6.5: Two large ǫ-balls in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings

with centers selected using Grassmannian LBG.

the equivalence relation, points on opposite sides of the base of the unit hemisphere are consid-

ered identical. In these figures, a single cluster appears to be split across the hemisphere, but the

identification of points on the circumference of the base means that the two “pieces” are still very

close together. This is evident in the corresponding MDS embeddings of these clusters, since the

pairwise distances are based on angles between the lines in R
3.

6.1.2 Epsilon Balls on Grassmannians of Higher Dimension

The manifold Gr(1, 3) has dimension d = 2, so embedding into R
2 for visualization is fairly

trivial. Higher dimensional Grassmannians are more difficult to accurately visualize. Additionally,

experimentation suggests that as the dimension of the Grassmannian grows, cluster centers move

Figure 6.6: Two large ǫ-balls in Gr(1, 3) and their two-dimensional chordal distance MDS embeddings

with centers selected using Grassmannian K-means.

42

Figure 6.7: Chordal distnace MDS embedding of single ǫ-ball in Gr(2, 10) with its center plotted.

progressively further from the center of the embedding. This appears to be less of an issue in

localized clusters (i.e. generated by smaller ǫ values), but Figure 6.5 shows a clear example of

centers sitting at the outer edges of the embedding when the clusters spread further across the

manifold. In this section, we explore this using clusters in higher dimensional Grassmannians and

test both algorithms for robustness in high dimensions. All embeddings are based on the chordal

distance metric to preserve the data structure.

Figure 6.7 depicts the isometric MDS embedding of a single ǫ-ball in Gr(2, 10). This Grass-

mannian has dimension d = 16. The ball was generated by varying ǫ from 0.01 to 1 in order to

cover the majority of the manifold while maintaining a denser cluster of points around the center.

The ball contains a total of 76 points. The eigenvalues of the MDS embedding indicate that most

of the variation in the cluster is captured by the first MDS component, therefore the embedding

is a good representation of the relative shape of the cluster. Here, the true center is plotted, and

appears near the edge of the dense cluster of points on the right hand side of the embedding. The

same strategy was used to generate an ǫ-ball in Gr(20, 200), which has d = 3600. This embedding

and the eigenvalues from MDS are depicted in Figure 6.8. Again, points are more tightly clustered

near the center, and the center itself appears to be at the extreme edge of the cluster.

Figure 6.9 contains four separate ǫ-balls in Gr(20, 200). These were generated by varying ǫ

between 0.01 and 0.1, which still allows for distinct separate clusters. Again, the centers of each

algorithm reside at the “end” of the embedding for each cluster. In Figure 6.10, points were added

43

Figure 6.8: Chordal distance MDS embedding of single ǫ-ball in Gr(20, 200) with its center plotted.

to the balls in Figure 6.9 using ǫ values up to 1, which resulted in all four clusters extending far

enough to overlap one another on the manifold. However, the linear appearance of each ball re-

mains everywhere in the embedding except for the area of overlap. The eigenvalues for this MDS

embedding now indicate that most of the variance information is captured in the first three compo-

nents. Adjusting the viewing angle in three dimensions shows that the centers of the four clusters

sit in a tetrahedral shape when embedded in R
3. Figure 6.10 includes tests of both Grassmannian

K-means and Grassmannian LBG on the four clusters. Here, both algorithms closely approxi-

mate the true centers, and it is easily seen that these centers lie at the extreme outer edges of their

corresponding clusters.

Figure 6.11 contains four clusters in Gr(2, 10) generated in the same manner as those in Figure

6.10. The eigenvalues of MDS suggest once again that most of the variation is captured in the first

Figure 6.9: Chordal distance MDS embedding of four ǫ-balls in Gr(20, 200) with ǫ ≤ 0.1.

44

Figure 6.10: Chordal distance MDS embedding of four ǫ-balls in Gr(20, 200) with ǫ ≤ 1.

Figure 6.11: Chordal distance MDS embedding of four ǫ-balls in Gr(2, 10) with ǫ ≤ 1.

45

few dimensions, though the distinction is not as extreme as in the Gr(20, 200) plot. This is seen

in the way each cluster is more spread throughout the embedding space. Again, Grassmannian K-

means and Grassmannian LBG were evaluated on the data and successfully approximated each true

center. However, repeated trials of this and the previous test on the higher dimensional manifold

suggest that the Grassmannian K-means algorithm is much more susceptible to terminating in local

minima than the Grassmannian LBG is, especially in higher dimensions.

6.2 MNIST Trials

The MNIST handwritten digit data set [68] is used to evaluate Grassmannian K-means and

Grassmannian LBG and provide a basis for comparison with the Euclidean clustering methods

described in Section 2.5. For every trial described, five test runs were performed, and all metrics

are reported as average ± variance.

6.2.1 Three Class Trial

The first classification task performed was differentiating between three handwritten digits in

Gr(5, 784). The digits chosen were 5, 3, and 6, with 500 data points randomly selected for each

digit. Subspaces of dimension five were constructed for each digit, representing a classification

task where samples are received in groups of five and can be associated with each other. After the

five dimensional subspace representations were constructed, each class contained 100 data points.

Table 6.1 contains the results from this experiment. Trials were run with both Grassmannian

K-means and Grassmannian LBG using k = 3 and k = 6. Both algorithms perfectly classified the

Table 6.1: Results from the three-class MNIST experiment.

MNIST 3 Class Trials

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 784) 3 Chordal K-means 99.68± 0.00 99.67± 0.00 874.23± 90.13
Gr(5, 784) 3 Chordal LBG 87.11± 1.73 79.93± 3.36 882.81± 471.55
Gr(5, 784) 6 Chordal K-means 100.00± 0.00 100.00± 0.00 856.58± 81.75
Gr(5, 784) 6 Chordal LBG 100.00± 0.00 100.00± 0.00 834.84± 3.23

46

Figure 6.12: The first flag vector from each of the 3 LBG centers selected in the best 3 center experiment.

Figure 6.13: The first flag vector from each of the 6 LBG centers selected in the best 6 center experiment.

data using six centers. The first flag vector from each LBG center for a single three center run is

visualized in Figure 6.12, and the flag vectors for a single six vector run are in Figure 6.13.

Interestingly, Grassmannian LBG performed much more poorly using k = 3 than Grassman-

nian K-means did. This is primarily because Grassmannian LBG frequently grouped digits 3 and

6 together, resulting in low accuracy. As suggested by the flag vectors in Figure 6.12, the best

Grassmannian LBG trial did separate the three digits properly, but in other trials the algorithm

terminated in a local minimum instead. This minimum occurs when a single center is positioned

between the clusters for digits 3 and 6, with the remaining two centers assigned to digit 5. Figure

6.14 shows the first flag vector from one of these mixed centers, which, upon close inspection,

47

Figure 6.14: An MDS embedding with true labels for the three class problem, the embedding of centers

and labels from a low accuracy LBG run, and the first flag vector from the red center.

appears to be a 6 overlayed with a noisy 3. The MDS embedding of the data and all centers from

the same trial is also pictured in Figure 6.14.

Even though both algorithms perfectly separate the three classes with k = 6, the Grassmannian

LBG algorithm has a lower average cluster distortion with less variance than that of Grassmannian

K-means. This is likely because a local minimum is guaranteed when a center is the average of all

points in its Voronoi cell, but this is not always the case with K-means (see Section 4.3 for more

discussion). This could be addressed after the final epoch of K-means by averaging each cluster

and setting each center equal to its cluster mean, but in this added complexity is not necessary for

correct classifications since cluster membership would not be changed.

6.2.2 Ten Class Trial

The primary classification test used for comparing Grassmannian LBG and Grassmannian K-

means with other clustering algorithms was the 10 class MNIST experiment. This experiment tests

the ability of algorithms to distinguish between all digits from 0 to 9. All clustering is performed

on Gr(5, 784), and 500 data points were chosen from each class and used to make 100 subspaces of

dimension 5 per digit for a total of 1000 points. This again represents a scenario where handwriting

samples for a digit are received in groups of five, but the digit featured is unknown.

Table 6.2 shows results comparing performance of Grassmannian LBG and Grassmannian K-

means using different distance metrics on Gr(5, 784). Each algorithm and metric pair were tested

48

Table 6.2: Results from MNIST 10 class comparison of algorithm performance using different distance

metrics on Gr(5, 200).

MNIST 10 Class Trials

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 784) 10 Chordal K-means 89.57± 0.07 80.60± 0.43 2923.33± 342.68
Gr(5, 784) 10 Chordal LBG 91.64± 0.08 85.38± 0.28 2865.84± 1432.53
Gr(5, 784) 20 Chordal K-means 96.89± 0.06 95.58± 0.19 2799.84± 342.46
Gr(5, 784) 20 Chordal LBG 98.60± 0.03 99.60± 0.00 2721.22± 170.98
Gr(5, 784) 10 Geo. K-means 84.14± 0.11 75.78± 0.30 4863.10± 1541.13
Gr(5, 784) 10 Geo. LBG 90.94± 0.06 83.14± 0.26 4766.52± 2447.49
Gr(5, 784) 20 Geo. K-means 95.45± 0.02 94.58± 0.08 4527.74± 2484.65
Gr(5, 784) 20 Geo. LBG 95.92± 0.02 96.86± 0.00 4466.68± 920.20
Gr(5, 784) 10 Pseudo. K-means 93.53± 0.31 86.86± 1.21 282.79± 32.41
Gr(5, 784) 10 Pseudo. LBG 91.61± 0.08 83.94± 0.30 282.79± 32.41
Gr(5, 784) 20 Pseudo. K-means 99.92± 0.00 99.92± 0.00 265.97± 1.07
Gr(5, 784) 20 Pseudo. LBG 99.54± 0.00 99.84± 0.00 257.35± 2.68

for both k = 10 and k = 20. All methods had average cluster purity greater than 84%, and only

geodesic Grassmannian K-means had accuracy fall under 80%.

The most accurate distance measure for clustering all ten digits was the first principal angle

pseudometric, with both accuracy and purity averaging over 99% with very little variance. Figure

6.15 contains cluster assignment results from all five Grassmannian K-means trials, and Figure 6.16

contains results from the five Grassmannian LBG trials. In particular, the results for the second

Grassmannian K-means trial show that only two points out of 1000 were incorrectly classified.

The unsupervised classification accuracy achieved by both algorithms is higher than the other

previously discussed unsupervised results on this data set, clearly demonstrating the benefit of

using subspaces for sample groupings.

6.3 Indian Pines Trials

The AVIRIS Indian Pines data set [69] was used to further test both algorithms on problems

with far less data available. Recall that this data set consists of 16 classes varying in size from

20 points to 2455 points. The bands corresponding to the wavelengths of water absorption were

removed for all trials performed on this data.

49

Figure 6.15: Grassmannian K-means center assignments from the five 10 class MNIST trials using the first

principal angle psuedometric.

Figure 6.16: Grassmannian K-means center assignments from the five 10 class MNIST trials using the first

principal angle psuedometric.

50

Figure 6.17: MDS embedding of the pasture (class 5) and trees (class 6) classes.

6.3.1 Pasture vs. Trees

Both Grassmannian LBG and Grasmannian K-means were tested on the classes grass-pasture

(class 5) and grass-trees (class 6). For simplicity, these two classes are referred to as pasture and

trees, respectively. These classes were chosen due to their similarity and relatively even sample

sizes.

Algorithms were tested using points on both Gr(5, 200) and Gr(10, 200). Since the class

pasture contains 483 total data points, moving the data to Gr(5, 200) according to the method

described in Section 3.1 reduced the class size to 96, and moving data to Gr(10, 200) reduced

the number of points to 48. The class trees contains 730 data points, which reduces to 146 on

Gr(5, 200) and 73 on Gr(10, 200). For MDS embeddings of the two classes from both manifolds,

see Figure 6.17. The chordal distance metric was used for all algorithms and embeddings. Trials

on Gr(5, 200) were run using k = 2, k = 4, and k = 6. Trials on Gr(10, 200) were run using

k = 2 and k = 4. All experiments were repeated five times, and all results are reported as averages

of the five runs.

Table 6.3 contains the results for all trials. Both algorithms performed very well in all exper-

iments, which is unsurprising given that the MDS embedding of the data shows separability for

both manifolds. In particular, both algorithms performed perfectly in all trials on Gr(10, 200).

51

Table 6.3: Results from AVIRIS Indian Pines pasture vs. trees experiments.

Indian Pines Pasture vs. Trees

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 200) 2 Chordal K-means 98.87± 0.00 98.76± 0.00 491.91± 6.05
Gr(5, 200) 2 Chordal LBG 98.61± 0.00 98.53± 0.00 478.57± 0.00
Gr(5, 200) 4 Chordal K-means 98.92± 0.01 99.01± 0.00 464.59± 8.39
Gr(5, 200) 4 Chordal LBG 97.88± 0.06 98.35± 0.01 452.00± 19.00
Gr(5, 200) 6 Chordal K-means 99.15± 0.00 99.17± 0.00 451.90± 36.94
Gr(5, 200) 6 Chordal LBG 98.02± 0.00 98.48± 0.00 434.01± 25.54
Gr(10, 200) 2 Chordal K-means 100.00± 0.00 100.00± 0.00 448.95± 1.21
Gr(10, 200) 2 Chordal LBG 100.00± 0.00 100.00± 0.00 435.98± 0.00
Gr(10, 200) 4 Chordal K-means 100.00± 0.00 100.00± 0.00 439.01± 0.84
Gr(10, 200) 4 Chordal LBG 100.00± 0.00 100.00± 0.00 420.37± 4.87

6.3.2 Corn vs. Alfalfa

The second experiment on the Indian Pines data set utilized the classes alfalfa (class 1) and

corn (class 4). These classes were selected for their unbalanced sizes and overall fewer data points

in order to test the robustness of Grassmannian K-means and Grassmannian LBG on a small data

set.

Both algorithms were tested on Gr(5, 200), Gr(10, 200), and Gr(15, 200). The alfalfa class

contains only 46 points, which subspace construction reduces to 9 on Gr(5, 200), 4 on Gr(10, 200),

and 3 on Gr(15, 200). This class specifically was chosen to evaluate algorithm performance on

extremely small classes. The corn class contains 237 data points, reducing to 47 on Gr(5, 200), 22

on Gr(10, 200), and 15 on Gr(5, 200), making it approximately five times the size of alfalfa on all

manifolds. Figure 6.18 contains MDS embeddings of the two classes from each manifold.

Figure 6.18: MDS embeddings of alfalfa (class 1) and corn (class 4) using the chordal metric.

52

Table 6.4: Results from AVIRIS Indian Pines corn vs. alfalfa experiments.

Indian Pines Corn vs. Alfalfa

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 200) 2 Chordal K-means 100.00± 0.00 100.00± 0.00 114.54± 0.00
Gr(5, 200) 2 Chordal LBG 93.78± 0.73 93.57± 0.77 108.60± 2.30
Gr(5, 200) 4 Chordal K-means 100.00± 0.00 100.00± 0.00 102.66± 2.14
Gr(5, 200) 4 Chordal LBG 94.59± 0.55 93.57± 0.77 101.16± 6.82
Gr(5, 200) 6 Chordal K-means 100.00± 0.00 100.00± 0.00 96.38± 1.07
Gr(5, 200) 6 Chordal LBG 100.00± 0.00 100.00± 0.00 92.08± 2.36
Gr(10, 200) 2 Chordal K-means 100.00± 0.00 100.00± 0.00 98.69± 0.00
Gr(10, 200) 2 Chordal LBG 90.00± 1.18 92.59± 0.55 97.01± 11.86
Gr(10, 200) 4 Chordal K-means 100.00± 0.00 100.00± 0.00 88.69± 0.52
Gr(10, 200) 4 Chordal LBG 91.15± 0.56 90.39± 0.99 87.03± 1.62
Gr(10, 200) 6 Chordal K-means 100.00± 0.00 100.00± 0.00 80.36± 0.57
Gr(10, 200) 6 Chordal LBG 94.22± 0.34 92.43± 0.66 77.01± 1.41
Gr(15, 200) 2 Chordal K-means 100.00± 0.00 100.00± 0.00 91.75± 0.00
Gr(15, 200) 2 Chordal LBG 87.83± 1.46 87.78± 2.69 89.52± 4.18
Gr(15, 200) 4 Chordal K-means 100.00± 0.00 100.00± 0.00 78.75± 0.11
Gr(15, 200) 4 Chordal LBG 95.50± 1.01 96.67± 0.56 75.61± 3.33

Results for these experiments are in Table 6.4. Surprisingly, Grassmannian K-means perfectly

separated the two clusters in every single trial. Grassmannian LBG, however, was less successful

in classification, even though in most cases the average distortion at termination was lower than for

Grassmannian K-means. Again, this is likely due to the fact that the final Grassmannian K-means

centers are not the true averages of their clusters. It may also be a case where the optimal partition

for classification purposes is not necessarily the global minimum of the cost function. Regardless,

Grassmanian LBG was very sensitive to starting conditions with these small, unbalanced clusters.

6.3.3 Soybeans

The final Indian Pines experiment was performed on the three soybean classes: soybean-notill

(class 10), soybean-mintill (class 11), and soybean-clean (class 12), which will be referred to by

their numbers for simplicity. These three classes are inseparable in Euclidean space, but become

separable when converted to points on the Grassmannian, specifically by using the smallest princi-

53

Figure 6.19: MDS embedding of the three soybean classes using Euclidean distance and smallest angle

pseudometric on Gr(5, 200), Gr(10, 200), and Gr(15, 200).

pal angle pseudometric. Trials performed on the three soybean classes in this data set particularly

illustrate the benefits of Grassmannian clustering methods.

As in the corn vs. alfalfa trials, the classes in this experiment are not balanced. Class 10

contains 972 data points, which reduces to 194 on Gr(5, 200), 96 on Gr(10, 200), and 64 on

Gr(15, 200). Class 11 contains 2455 data points, which then reduces to 491 on Gr(5, 200), 245

on Gr(10, 200), and 163 on Gr(15, 200). Class 12 contains 593 data points and reduces to 118

on Gr(5, 200), 59 on Gr(10, 200), and 39 on Gr(15, 200). Due to the reduction in the number

of points available for clustering, no subspaces of dimension higher than 15 were used. Figure

6.19 depicts several MDS embeddings of these classes. Clearly, the data is not at all separable in

Euclidean space. However, when it is transferred to a Grassmannian and pairwise distances are cal-

culated using the smallest principal angle pseudometric, separability increases with the dimension

of the manifold.

54

Table 6.5: Comparison of three approaches to clustering.

Soybeans Method Comparison

Method Manifold k Metric Algorithm Avg. Purity Avg. Accuracy

Euclidean R
200 3 Euclidean K-means 56.95± 0.00 61.07± 0.00

Euclidean R
200 3 Euclidean LBG 56.73± 0.00 61.07± 0.00

Embedded Gr(5, 200) 3 Pseudometric K-means 84.09± 0.05 73.70± 0.75
Embedded Gr(5, 200) 3 Pseudometric LBG 85.34± 0.67 86.90± 0.57
Grassmannian Gr(5, 200) 3 Pseudometric K-means 85.26± 0.10 85.32± 0.27
Grassmannian Gr(5, 200) 3 Pseudometric LBG 73.49± 0.18 78.74± 0.07

The first set of experiments depicted in Table 6.5 takes a different approach than previous trials.

Here, two possible approaches to utilizing the Grassmannian in clustering are compared. In the

first approach, points are transferred to Gr(5, 200), the pseudometric is used to construct a pairwise

distance matrix, and then MDS is performed on the distance matrix to embed the clusters back into

Euclidean space, where the clustering task is performed. The second method is transferring data

to Gr(5, 200) and applying either Grassmannian LBG or Grassmannian K-means on the manifold

itself, using the pseudometric to compute distances. This provides a basis for comparison of the

developed algorithms with another strategy that utilizes the Grassmannian, but does not require

computations on the manifold itself. Trials using the standard Euclidean K-means and LBG are

also included as a baseline comparison for algorithm performance. All experiments are done using

k = 3 clusters and are repeated 10 times.

Table 6.5 contains the averages for classification accuracy and cluster purity over all trials. Not

surprisingly, the Euclidean algorithms performed poorly on the classification task. Clustering on

embedded data performed similarly to clustering directly on the manifold itself. In particular, the

LBG algorithm seems to benefit slightly from clustering on embedded data, whereas the K-means

algorithm performs slightly better on the Grassmannian. The classification accuracy for both al-

gorithms had higher variance on the embedded data than on the Grassmannian data, suggesting

that clustering directly on the Grassmannian benefits more from subspace robustness. Overall, it

appears that the best method of clustering may be dependant both on the chosen algorithm and the

data itself.

55

Table 6.6: Comparison of algorithm performance on different manifolds using the smallest principal angle

pseudometric.

Indian Pines Soybeans Trials Table 1

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 200) 3 Pseudo K-means 85.26± 0.10 85.32± 0.27 5.38± 0.00
Gr(5, 200) 3 Pseudo LBG 73.49± 0.18 78.74± 0.07 5.21± 0.00
Gr(5, 200) 6 Pseudo K-means 82.34± 0.13 83.09± 0.06 5.03± 0.00
Gr(5, 200) 6 Pseudo LBG 83.31± 0.02 84.11± 0.01 4.77± 0.00
Gr(5, 200) 9 Pseudo K-means 82.53± 0.17 84.63± 0.06 4.90± 0.00
Gr(5, 200) 9 Pseudo LBG 87.89± 0.01 88.04± 0.01 4.58± 0.00
Gr(10, 200) 3 Pseudo K-means 92.67± 0.14 88.48± 0.25 1.23± 0.00
Gr(10, 200) 3 Pseudo LBG 95.92± 0.04 95.46± 0.43 1.11± 0.00
Gr(10, 200) 6 Pseudo K-means 95.82± 0.13 93.12± 0.16 1.17± 0.00
Gr(10, 200) 6 Pseudo LBG 97.62± 0.00 96.82± 0.00 1.08± 0.00
Gr(10, 200) 9 Pseudo K-means 97.89± 0.04 94.16± 0.05 1.15± 0.00
Gr(10, 200) 9 Pseudo LBG 98.13± 0.00 96.66± 0.01 1.07± 0.00
Gr(15, 200) 3 Pseudo K-means 98.88± 0.59 90.00± 0.43 0.51± 0.00
Gr(15, 200) 3 Pseudo LBG 97.36± 0.07 94.21± 0.54 0.46± 0.00
Gr(15, 200) 6 Pseudo K-means 98.68± 0.02 94.66± 0.40 0.50± 0.00
Gr(15, 200) 6 Pseudo LBG 98.41± 0.03 99.10± 0.00 0.45± 0.00

More experiments were run on the soybean data to compare the performance of Grassmannian

LBG and Grassmannian K-means using different values of k, different manifolds, and different

distance measures. For these experiments, ten trials were run and reported results are averaged

across these trials.

Each of the following tests were performed with chordal distance, geodesic distance, and small-

est principal angle distance. Soybean data on Gr(5, 200) was clustered with both algorithms using

k = 3, k = 6, and k = 9. Data on Gr(10, 200) was also clustered using k = 3, k = 6, and k = 9.

Finally, data on Gr(15, 200) was clustered using k = 3 and k = 6. Table 6.6 contains all results

using the pseudometric, Table 6.7 contains results using geodesic distance, and Table 6.8 contains

results obtained using chordal distance.

Examination of the purity and accuracy averages from all tests reveals that the smallest prin-

cipal angle pseudometric was the best choice of distance for classification by a wide margin, with

only Grassmannian LBG on Gr(5, 200) with k = 3 yielding results below 80%. For all met-

56

Table 6.7: Comparison of algorithm performance on different manifolds using the geodesic metric.

Indian Pines Soybeans Trials Table 2

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 200) 3 Geo. K-means 62.74± 0.02 61.80± 0.01 2288.83± 269.03
Gr(5, 200) 3 Geo. LBG 62.19± 0.01 62.22± 0.06 2262.79± 55.98
Gr(5, 200) 6 Geo. K-means 65.91± 0.01 66.23± 0.04 2122.27± 689.13
Gr(5, 200) 6 Geo. LBG 69.32± 0.03 67.20± 0.01 2093.66± 216.15
Gr(5, 200) 9 Geo. K-means 69.44± 0.16 68.44± 0.01 2045.19± 1391.15
Gr(5, 200) 9 Geo. LBG 71.35± 0.04 71.51± 0.04 2002.03± 80.90
Gr(10, 200) 3 Geo. K-means 76.63± 0.08 68.68± 0.26 2363.03± 2381.32
Gr(10, 200) 3 Geo. LBG 68.96± 0.03 70.17± 0.08 2324.61± 82.66
Gr(10, 200) 6 Geo. K-means 80.70± 0.23 70.67± 0.18 2270.32± 376.49
Gr(10, 200) 6 Geo. LBG 76.96± 0.10 77.16± 0.10 2197.80± 50.84
Gr(10, 200) 9 Geo. K-means 80.96± 0.31 72.87± 0.15 2202.25± 593.92
Gr(10, 200) 9 Geo. LBG 78.70± 0.07 78.20± 0.07 2125.10± 83.35
Gr(15, 200) 3 Geo. K-means 81.14± 0.28 69.25± 0.82 2291.72± 2152.87
Gr(15, 200) 3 Geo. LBG 72.45± 0.12 71.96± 0.22 2226.14± 31.57
Gr(15, 200) 6 Geo. K-means 87.35± 0.14 72.18± 0.54 2190.26± 2192.28
Gr(15, 200) 6 Geo. LBG 83.82± 0.19 84.21± 0.04 2109.24± 65.82

Table 6.8: Comparison of algorithm performance on different manifolds using the chordal metric.

Indian Pines Soybeans Trials Table 3

Manifold k Metric Algorithm Avg. Purity Avg. Accuracy Avg. Distortion

Gr(5, 200) 3 Chordal K-means 66.75± 0.09 65.68± 0.05 1450.04± 159.12
Gr(5, 200) 3 Chordal LBG 65.02± 0.07 64.39± 0.07 1429.36± 12.64
Gr(5, 200) 6 Chordal K-means 73.95± 0.35 67.40± 0.05 1412.00± 116.26
Gr(5, 200) 6 Chordal LBG 69.19± 0.03 68.77± 0.02 1358.46± 12.49
Gr(5, 200) 9 Chordal K-means 74.61± 0.16 68.84± 0.01 1382.48± 112.23
Gr(5, 200) 9 Chordal LBG 73.75± 0.06 70.29± 0.06 1326.17± 48.03
Gr(10, 200) 3 Chordal K-means 81.18± 0.56 67.83± 0.23 1496.59± 607.39
Gr(10, 200) 3 Chordal LBG 73.59± 0.15 74.21± 0.14 1413.21± 52.68
Gr(10, 200) 6 Chordal K-means 89.95± 0.42 75.76± 0.30 1433.90± 543.02
Gr(10, 200) 6 Chordal LBG 84.35± 0.04 83.54± 0.04 1360.31± 38.85
Gr(10, 200) 9 Chordal K-means 91.63± 0.29 73.42± 0.16 1425.33± 605.53
Gr(10, 200) 9 Chordal LBG 85.15± 0.22 84.14± 0.06 1334.35± 14.09
Gr(15, 200) 3 Chordal K-means 86.12± 0.05 73.99± 1.03 1417.47± 572.63
Gr(15, 200) 3 Chordal LBG 72.22± 0.78 74.96± 0.83 1344.13± 48.31
Gr(15, 200) 6 Chordal K-means 93.51± 0.02 70.98± 0.86 1387.86± 682.66
Gr(15, 200) 6 Chordal LBG 82.25± 0.16 83.01± 0.20 1297.41± 50.17

57

rics, classification accuracy and purity increased with both the dimension of the manifold and the

number of clusters used.

58

Chapter 7

Conclusion

The primary contribution of this thesis is the adaptation of the LBG and K-means algorithms to

the Grassmann manifold. We test both Grassmannian K-means and Grassmannian LBG rigorously

on well-known data sets, demonstrating robustness and providing a baseline for comparison with

other work on the Grassmannian. The theory behind the adaptations is described in depth to make

the work as self contained as possible and to create a detailed, coherent reference for Grassmannian

clustering in general.

In Chapter 2, we provided an overview of clustering algorithms and their applications. We

described in further depth the partitional clustering algorithms of interest and their variations. We

also summarized previous work on Grassmannian clustering, including the connection between the

flag mean and the projection Frobenius norm eigenvalue problem found in subspace averaging.

Chapter 3 provided an in-depth look at the Grassmann manifold and its geometry. We describe

the relationship between matrix manifolds in real space and the real Grassmann manifold. We

also included full derivations for computing geodesic curves and averaging subspaces, as well as a

discussion of metrics and pseudometrics on the Grassmannian.

Chapter 4 provided details on the Euclidean versions of the K-means and LBG algorithms,

which were then adapted to the Grassmann manifold in Chapter 5. Each chapter contains thorough

discussions of computational complexity for their respective algorithms.

Chapter 6 contained experimental results on a toy data set and two benchmark data sets. The

toy data set was used to visualize and explore the geometry of high-dimensional Grassmannians

along with verifying the functionality of both Grassmannian algorithms. The benchmark data

sets provided an avenue of comparison with previously reported clustering results on both the

Grassmannian and in Euclidean space.

The results in this thesis lend themselves to several avenues of future work. Due to the fact

that the Grassmannian LBG updates are performed using a flag mean calculation, this algorithm

59

could be adapted to function on flag manifolds. This would allow for clustering on subspaces of

different dimensions, and would allow for data to be converted into subspaces without omitting

any points. The Grassmannian algorithms could potentially be adapted to operate on collections

of affine subspaces as well. Additionally, since we now possess both a batch and an online cluster-

ing algorithm on the Grassmannian, these two approaches could be combined to yield potentially

better clustering results. Both algorithms show some sensitivity to the initial choice of centers, so

further investigation into selecting optimal starting conditions on the manifold is needed. Methods

for automatic selection of the parameter k could easily be translated to the Grassmannian as well.

Besides further development of algorithms, more exploration is needed into the geometry of em-

beddings of high-dimensional Grassmannians. In particular, it appears the locality of points on the

manifold drastically affects the appearance of the embedding, even when the embedding itself is

of low dimension. Overall, we look forward to expanding on the results from this thesis.

60

Bibliography

[1] Jen-Mei Chang, Michael Kirby, Holger Kley, Chris Peterson, Bruce Draper, and J. Ross

Beveridge. Recognition of digital images of the human face at ultra low resolution via illu-

mination spaces. In Asian Conference on Computer Vision, pages 733–743. Springer, 2007.

[2] J. Ross Beveridge, Bruce Draper, Jen-Mei Chang, Michael Kirby, Holger Kley, and Chris

Peterson. Principal angles separate subject illumination spaces in YDB and CMU-PIE. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(2):351–363, 2009.

[3] Sofya Chepushtanova and Michael Kirby. Classification of hyperspectral imagery on embed-

ded grassmannians. arXiv preprint arXiv:1502.00946, 2015.

[4] Anil K. Jain. Data clustering: 50 years beyond K-means. Pattern Recognition Letters,

31(8):651–666, 2010.

[5] Ronald L. Breiger, Scott A. Boorman, and Phipps Arabie. An algorithm for clustering re-

lational data with applications to social network analysis and comparison with multidimen-

sional scaling. Journal of Mathematical Psychology, 12(3):328–383, 1975.

[6] Paul Scheunders. A comparison of clustering algorithms applied to color image quantization.

Pattern Recognition Letters, 18(11-13):1379–1384, 1997.

[7] Yoseph Linde, Andres Buzo, and Robert Gray. An algorithm for vector quantizer design.

IEEE Transactions on Communications, 28(1):84–95, 1980.

[8] Alexander Sturn, John Quackenbush, and Zlatko Trajanoski. Genesis: Cluster analysis of

microarray data. Bioinformatics, 18(1):207–208, 2002.

[9] Andrés Buzo, A. Gray, R. Gray, and John Markel. Speech coding based upon vector quan-

tization. IEEE Transactions on Acoustics, Speech, and Signal Processing, 28(5):562–574,

1980.

61

[10] John Makhoul, Salim Roucos, and Herbert Gish. Vector quantization in speech coding. Pro-

ceedings of the IEEE, 73(11):1551–1588, 1985.

[11] Robert M. Gray and David L. Neuhoff. Quantization. IEEE transactions on Information

Theory, 44(6):2325–2383, 1998.

[12] Adil Fahad, Najlaa Alshatri, Zahir Tari, Abdullah Alamri, Ibrahim Khalil, Albert Y. Zomaya,

Sebti Foufou, and Abdelaziz Bouras. A survey of clustering algorithms for big data: Taxon-

omy and empirical analysis. IEEE Transactions on Emerging Topics in Computing, 2(3):267–

279, 2014.

[13] Alan P. Reynolds, Graeme Richards, Beatriz de la Iglesia, and Victor J. Rayward-Smith. Clus-

tering rules: A comparison of partitioning and hierarchical clustering algorithms. Journal of

Mathematical Modelling and Algorithms, 5(4):475–504, 2006.

[14] James MacQueen. Some methods for classification and analysis of multivariate observations.

In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

volume 1, pages 281–297. Statistical Laboratory of the University of California, Berkeley,

1967.

[15] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm

for discovering clusters in large spatial databases with noise. In Proceedings of the Second

International Conference on Knowledge Discovery and Data Mining, volume 96, pages 226–

231. AIII, 1996.

[16] Chibiao Chen, Eric Durand, Florence Forbes, and Olivier François. Bayesian clustering algo-

rithms ascertaining spatial population structure: A new computer program and a comparison

study. Molecular Ecology Notes, 7(5):747–756, 2007.

[17] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum likelihood from incom-

plete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Method-

ological), 39(1):1–22, 1977.

62

[18] Wei Li and Andrew McCallum. Pachinko allocation: DAG-structured mixture models of

topic correlations. In Proceedings of the 23rd international Conference on Machine Learning,

pages 577–584. ACM, 2006.

[19] René Vidal. Subspace clustering. IEEE Signal Processing Magazine, 28(2):52–68, 2011.

[20] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering: Algorithm, theory, and applica-

tions. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(11):2765–2781,

2013.

[21] Charu C. Aggarwal, Joel L. Wolf, Philip S. Yu, Cecilia Procopiuc, and Jong Soo Park. Fast

algorithms for projected clustering. In ACM SIGMOD Record, volume 28, pages 61–72.

ACM, 1999.

[22] Liping Jing, Michael K. Ng, and Joshua Zhexue Huang. An entropy weighting K-means

algorithm for subspace clustering of high-dimensional sparse data. IEEE Transactions on

Knowledge & Data Engineering, (8):1026–1041, 2007.

[23] Philip A. Chou, Tom Lookabaugh, and Robert M. Gray. Entropy-constrained vector quanti-

zation. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(1):31–42, 1989.

[24] Haifeng Li, Keshu Zhang, and Tao Jiang. Minimum entropy clustering and applications to

gene expression analysis. In Proceedings. 2004 IEEE Computational Systems Bioinformatics

Conference, pages 142–151. IEEE, 2004.

[25] Stephen J. Roberts, Richard Everson, and Iead Rezek. Minimum entropy data partitioning. In

1999 Ninth International Conference on Artificial Neural Networks ICANN 99. (Conf. Publ.

No. 470). IET, 1999.

[26] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and

data representation. Neural Computation, 15(6):1373–1396, 2003.

63

[27] Amin Karami and Manel Guerrero-Zapata. A fuzzy anomaly detection system based on

hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing, 149:1253–

1269, 2015.

[28] Yi-Tung Kao, Erwie Zahara, and I-Wei Kao. A hybridized approach to data clustering. Expert

Systems with Applications, 34(3):1754–1762, 2008.

[29] Kiri Wagstaff, Claire Cardie, Seth Rogers, and Stefan Schrödl. Constrained K-means cluster-

ing with background knowledge. In ICML ’01 Proceedings of the Eighteenth International

Conference on Machine Learning, volume 1, pages 577–584. Morgan Kaufmann Publishers

Inc., 2001.

[30] Paul S. Bradley, Usama M. Fayyad, and Cory Reina. Scaling clustering algorithms to large

databases. In Proceedings of the Fourth International Conference on Knowledge Discovery

and Data Mining, pages 9–15. AIII, 1998.

[31] Rong Zhang and Alexander I. Rudnicky. A large scale clustering scheme for kernel K-means.

In Object Recognition Supported by User Interaction for Service Robots, volume 4, pages

289–292. IEEE, 2002.

[32] Zhexue Huang. Extensions to the K-means algorithm for clustering large data sets with

categorical values. Data Mining and Knowledge Discovery, 2(3):283–304, 1998.

[33] Michael Steinbach, George Karypis, and Vipin Kumar. A comparison of document clus-

tering techniques. In Proceedings of the Sixth ACM SIGKDD International Conference on

Knowledge, Discovery, and Data Mining, 2000.

[34] Manish Verma, Mauly Srivastava, Neha Chack, Atul Kumar Diswar, and Nidhi Gupta. A

comparative study of various clustering algorithms in data mining. International Journal of

Engineering Research and Applications, 2(3):1379–1384, 2012.

[35] Osama Abu Abbas. Comparisons between data clustering algorithms. International Arab

Journal of Information Technology (IAJIT), 5(3), 2008.

64

[36] Allen Gersho and Robert M. Gray. Vector Quantization and Signal Compression, volume

159. Springer Science & Business Media, 2012.

[37] Nasser M. Nasrabadi and Robert A. King. Image coding using vector quantization: A review.

IEEE Transactions on Communications, 36(8):957–971, 1988.

[38] Sudipto Guha, Nina Mishra, Rajeev Motwani, and Liadan o’Callaghan. Clustering data

streams. In Proceedings of the 41st Annual Symposium on Foundations of Computer Sci-

ence, pages 359–366. IEEE, 2000.

[39] Liadan O’callaghan, Nina Mishra, Adam Meyerson, Sudipto Guha, and Rajeev Motwani.

Streaming-data algorithms for high-quality clustering. In Proceedings of the 18th Interna-

tional Conference on Data Engineering, pages 685–694. IEEE, 2002.

[40] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu. A framework for cluster-

ing evolving data streams. In Proceedings of the 29th International Conference on Very Large

Data Bases, pages 81–92. VLDB Endowment, Morgan Kaufmann Publishers Inc., 2003.

[41] Stuart Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,

28(2):129–137, 1982.

[42] Joseph C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact

well-separated clusters. Journal of Cybernetics, 3(3):32–57, 1973.

[43] James C. Bezdek. Pattern Recognition With Fuzzy Objective Function Algorithms. Springer

Science & Business Media, 2013.

[44] James C. Bezdek, Robert Ehrlich, and William Full. FCM: The fuzzy C-means clustering

algorithm. Computers & Geosciences, 10(2-3):191–203, 1984.

[45] K. Krishna and Narasimha M. Murty. Genetic K-means algorithm. IEEE Transactions on

Systems, Man, And Cybernetics-Part B: Cybernetics, 29(3):433–439, 1999.

65

[46] Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear component

analysis as a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319, 1998.

[47] Inderjit S. Dhillon, Yuqiang Guan, and Brian Kulis. Kernel K-means: Spectral clustering and

normalized cuts. In Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 551–556. ACM, 2004.

[48] Leonard Kaufman and Peter J. Rousseeuw. Finding Groups in Data: An Introduction to

Cluster Analysis, volume 344. John Wiley & Sons, 2009.

[49] Geoffrey H. Ball and David J. Hall. ISODATA, a novel method of data analysis and pattern

classification. Technical report, Stanford Research Institute, 1965.

[50] Aristidis Likas, Nikos Vlassis, and Jakob J. Verbeek. The global K-means clustering algo-

rithm. Pattern Recognition, 36(2):451–461, 2003.

[51] Greg Hamerly and Charles Elkan. Learning the k in K-means. In Advances in Neural Infor-

mation Processing Systems, volume 17, pages 281–288. NIPS, 2004.

[52] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters

in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 63(2):411–423, 2001.

[53] José M. Pena, Jose Antonio Lozano, and Pedro Larranaga. An empirical comparison of four

initialization methods for the K-means algorithm. Pattern Recognition Letters, 20(10):1027–

1040, 1999.

[54] Dan Pelleg and Andrew W. Moore. X-means: Extending K-means with efficient estimation of

the number of clusters. In Proceedings of the 17th International Conf. on Machine Learning,

volume 1, pages 727–734. Morgan Kaufmann, 2000.

66

[55] John A. Hartigan and Manchek A. Wong. Algorithm AS 136: A K-means clustering algo-

rithm. Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,

1979.

[56] Shehroz S. Khan and Amir Ahmad. Cluster center initialization algorithm for K-means clus-

tering. Pattern Recognition Letters, 25(11):1293–1302, 2004.

[57] G. Phanendra Babu and M. Narasimha Murty. A near-optimal initial seed value selec-

tion in K-means means algorithm using a genetic algorithm. Pattern Recognition Letters,

14(10):763–769, 1993.

[58] Kohei Arai and Ali Ridho Barakbah. Hierarchical K-means: an algorithm for centroids ini-

tialization for K-means. Reports of the Faculty of Science and Engineering, 36(1):25–31,

2007.

[59] Paul S. Bradley and Usama M. Fayyad. Refining initial points for K-means clustering. In

Proceedings of the Fifteenth International Conference on Machine Learning, pages 91–99.

Morgan Kaufmann Publishers Inc., 1998.

[60] Xiaowen Dong, Pascal Frossard, Pierre Vandergheynst, and Nikolai Nefedov. Clustering on

multi-layer graphs via subspace analysis on Grassmann manifolds. IEEE Transactions on

Signal Processing, 62(4):905–918, 2014.

[61] Sareh Shirazi, Mehrtash T. Harandi, Conrad Sanderson, Azadeh Alavi, and Brian C. Lovell.

Clustering on Grassmann manifolds via kernel embedding with application to action analysis.

In 2012 19th IEEE International Conference on Image Processing, pages 781–784. IEEE,

2012.

[62] Pavan Turaga, Ashok Veeraraghavan, Anuj Srivastava, and Rama Chellappa. Statistical com-

putations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 33(11):2273–2286, 2011.

67

[63] Hasan Ertan Cetingul and René Vidal. Intrinsic mean shift for clustering on Stiefel and Grass-

mann manifolds. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,

pages 1896–1902. IEEE, 2009.

[64] Peter Gruber and Fabian J. Theis. Grassmann clustering. In EUSIPCO 2006: 14th European

Signal Processing Conference, pages 1–5. IEEE, 2006.

[65] Paul S. Bradley and Olvi L. Mangasarian. K-plane clustering. Journal of Global Optimiza-

tion, 16(1):23–32, 2000.

[66] Ignacio Santamaria, Javier Vía, Michael Kirby, Tim Marrinan, Chris Peterson, and Louis

Scharf. Constrained subspace estimation via convex optimization. In EUSIPCO 2017: 25th

European Signal Processing Conference, pages 1200–1204. IEEE, 2017.

[67] Bruce Draper, Michael Kirby, Justin Marks, Tim Marrinan, and Chris Peterson. A flag rep-

resentation for finite collections of subspaces of mixed dimensions. Linear Algebra and its

Applications, 451:15–32, 2014.

[68] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber. Deep,

big, simple neural nets for handwritten digit recognition. Neural Computation, 22(12):3207–

3220, 2010.

[69] Marion F. Baumgardner, Larry L. Biehl, and David A. Landgrebe. 220 Band AVIRIS Hyper-

spectral Image Data Set: June 12, 1992 Indian Pine Test Site 3, Sep 2015.

[70] Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C. H. Lee, Hugh Salim-

beni, Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with Gaussian

mixture variational autoencoders. arXiv preprint arXiv:1611.02648, 2016.

[71] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with categorical gen-

erative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

68

[72] Alireza Makhzani, Jonathon Shlens, Navdeep Jaitly, Ian Goodfellow, and Brendan Frey. Ad-

versarial autoencoders. arXiv preprint arXiv:1511.05644, 2015.

[73] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised deep embedding for clustering

analysis. In Proceedings of The 33rd International Conference on Machine Learning, pages

478–487. PMLR, 2016.

[74] Jee Cheng Wu and Gwo Chyang Tsuei. Unsupervised cluster-based band selection for hy-

perspectral image classification. In Proceedings of the 2013 International Conference on

Advanced Computer Science and Electronics Information (ICACSEI 2013). Atlantis Press,

2013.

[75] Devis Tuia and Gustavo Camps-Valls. Semisupervised remote sensing image classification

with cluster kernels. IEEE Geoscience and Remote Sensing Letters, 6(2):224–228, 2009.

[76] Hongjun Su, He Yang, Qian Du, and Yehua Sheng. Semisupervised band clustering for

dimensionality reduction of hyperspectral imagery. IEEE Geoscience and Remote Sensing

Letters, 8(6):1135–1139, 2011.

[77] Sofya Chepushtanova, Christopher Gittins, and Michael Kirby. Band selection in hyper-

spectral imagery using sparse support vector machines. In Algorithms and Technologies for

Multispectral, Hyperspectral, and Ultraspectral Imagery XX, volume 9088, 2014.

[78] P.-A. Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix

Manifolds. Princeton University Press, 2009.

[79] Ake Björck and Gene H. Golub. Numerical methods for computing angles between linear

subspaces. Mathematics of Computation, 27(123):579–594, 1973.

[80] Alan Edelman, Tomás A. Arias, and Steven T. Smith. The geometry of algorithms with

orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–

353, 1998.

69

[81] Xiaofeng Ma, Michael Kirby, Chris Peterson, and Louis Scharf. Self-organizing mappings on

the Grassmannian with applications to data analysis in high-dimensions. Neural Computing

and Applications, submitted 2018.

[82] Tim Marrinan, J. Ross Beveridge, Bruce Draper, Michael Kirby, and Chris Peterson. Flag

manifolds for the characterization of geometric structure in large data sets. In Numerical

Mathematics and Advanced Applications-ENUMATH 2013, pages 457–465. Springer, 2015.

[83] Tim Marrinan, Bruce Draper, J. Ross Beveridge, Michael Kirby, and Chris Peterson. Finding

the subspace mean or median to fit your need. In Computer Vision and Pattern Recognition

(CVPR), 2014 IEEE Conference on, pages 1082–1089. IEEE, 2014.

[84] Arup Kumar Pal and Anup Sar. An efficient codebook initialization approach for LBG algo-

rithm. arXiv preprint arXiv:1109.0090, 2011.

[85] Christophe Rosenberger and Kacem Chehdi. Unsupervised clustering method with optimal

estimation of the number of clusters: Application to image segmentation. In Proceedings

15th International Conference on Pattern Recognition. ICPR-2000, volume 1, pages 656–

659. IEEE, 2000.

[86] Petra Schneider, Michael Biehl, and Barbara Hammer. Distance learning in discriminative

vector quantization. Neural Computation, 21(10):2942–2969, 2009.

70

