6,519 research outputs found

    Classification via Incoherent Subspaces

    Full text link
    This article presents a new classification framework that can extract individual features per class. The scheme is based on a model of incoherent subspaces, each one associated to one class, and a model on how the elements in a class are represented in this subspace. After the theoretical analysis an alternate projection algorithm to find such a collection is developed. The classification performance and speed of the proposed method is tested on the AR and YaleB databases and compared to that of Fisher's LDA and a recent approach based on on â„“1\ell_1 minimisation. Finally connections of the presented scheme to already existing work are discussed and possible ways of extensions are pointed out.Comment: 22 pages, 2 figures, 4 table

    Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation

    Full text link
    This paper introduces a new Bayesian approach to the inverse problem of passive microwave rainfall retrieval. The proposed methodology relies on a regularization technique and makes use of two joint dictionaries of coincidental rainfall profiles and their corresponding upwelling spectral radiative fluxes. A sequential detection-estimation strategy is adopted, which basically assumes that similar rainfall intensity values and their spectral radiances live close to some sufficiently smooth manifolds with analogous local geometry. The detection step employs a nearest neighborhood classification rule, while the estimation scheme is equipped with a constrained shrinkage estimator to ensure stability of retrieval and some physical consistency. The algorithm is examined using coincidental observations of the active precipitation radar (PR) and passive microwave imager (TMI) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. We present promising results of instantaneous rainfall retrieval for some tropical storms and mesoscale convective systems over ocean, land, and coastal zones. We provide evidence that the algorithm is capable of properly capturing different storm morphologies including high intensity rain-cells and trailing light rainfall, especially over land and coastal areas. The algorithm is also validated at an annual scale for calendar year 2013 versus the standard (version 7) radar (2A25) and radiometer (2A12) rainfall products of the TRMM satellite

    Middle-Level Features for the Explanation of Classification Systems by Sparse Dictionary Methods.

    Get PDF
    Machine learning (ML) systems are affected by a pervasive lack of transparency. The eXplainable Artificial Intelligence (XAI) research area addresses this problem and the related issue of explaining the behavior of ML systems in terms that are understandable to human beings. In many explanation of XAI approaches, the output of ML systems are explained in terms of low-level features of their inputs. However, these approaches leave a substantive explanatory burden with human users, insofar as the latter are required to map low-level properties into more salient and readily understandable parts of the input. To alleviate this cognitive burden, an alternative model-agnostic framework is proposed here. This framework is instantiated to address explanation problems in the context of ML image classification systems, without relying on pixel relevance maps and other low-level features of the input. More specifically, one obtains sets of middle-level properties of classification inputs that are perceptually salient by applying sparse dictionary learning techniques. These middle-level properties are used as building blocks for explanations of image classifications. The achieved explanations are parsimonious, for their reliance on a limited set of middle-level image properties. And they can be contrastive, because the set of middle-level image properties can be used to explain why the system advanced the proposed classification over other antagonist classifications. In view of its model-agnostic character, the proposed framework is adaptable to a variety of other ML systems and explanation problems
    • …
    corecore