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Machine learning (ML) systems are affected by a pervasive lack of transparency. The eXplainable Arti-
ficial Intelligence (XAI) research area addresses this problem and the related issue of explaining the
behavior of ML systems in terms that are understandable to human beings. In many explanation of
XAI approaches, the output of ML systems are explained in terms of low-level features of their inputs.
However, these approaches leave a substantive explanatory burden with human users, insofar as the
latter are required to map low-level properties into more salient and readily understandable parts of the
input. To alleviate this cognitive burden, an alternative model-agnostic framework is proposed here. This
framework is instantiated to address explanation problems in the context of ML image classification sys-
tems, without relying on pixel relevance maps and other low-level features of the input. More specifically,
one obtains sets of middle-level properties of classification inputs that are perceptually salient by apply-
ing sparse dictionary learning techniques. These middle-level properties are used as building blocks for
explanations of image classifications. The achieved explanations are parsimonious, for their reliance on a
limited set of middle-level image properties. And they can be contrastive, because the set of middle-level
image properties can be used to explain why the system advanced the proposed classification over other
antagonist classifications. In view of its model-agnostic character, the proposed framework is adaptable
to a variety of other ML systems and explanation problems.

Keywords: XAI and explainable artificial intelligence; machine learning; sparse coding.

1. Introduction

Machine Learning (ML) approaches have been effec-
tively used to address image1–3 and text classifica-
tion4 problems, multi-target regression,5 robot nav-
igation,6 times series forecasting,7 signal analysis as
EEG8–10 and other major challenges in Artificial
Intelligence (AI). Critical aspects of many systems
developed on the basis of powerful ML techniques —
such as Support Vector Machines (SVM), Proba-
bilistic Neural networks (PNN)11,12 and Deep Neu-
ral Networks (DNN)13— are their pervasive lack of
transparency and the related difficulty of explaining

their behavior in terms that are understandable to
human beings. Indeed, it seems that the better ML
systems perform in terms of their results and pre-
dictions, the harder it is to understand the underly-
ing mechanisms and explain their behaviors.14 The
black-box character14 of many ML systems is a
major predicament in various application domains.
To illustrate, consider recent ML work in the health-
care domain which is aimed at developing medical
diagnostic tools which identify diseases from bio-
physical features or medical imaging inputs15–18 or
in the civil engineering domain to identify structural
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problems or to infer information from infrastruc-
tures data.19–25 There, explanations of system out-
comes would be useful to identify undesirable arti-
facts and biases in training sets, to build trust in their
responses and, for example, to prescribe confidently
related clinical treatments in the healthcare domain.
Thus, generating explanations for ML system behav-
iors that are understandable to human beings is a
central scientific and technological issue addressed in
the rapidly growing AI research area of eXplainable
Artificial Intelligence (XAI). Several notions of inter-
pretability and explainability for ML systems have
been proposed in XAI.26 And various approaches
have been pursued to make ML systems increasingly
interpretable and explainable.27–29 XAI approaches
to the explanation problem are usefully grouped into
global or local approaches. In the former case, the
goal is to produce a single explanation for the whole
behavior of the ML system, in the latter case, for
each given input, one has to find a specific explana-
tion. In both cases, explanations are based on collec-
tions of features from images (arrays of pixels), texts
(sequences of words) or other humanly interpretable
domains.29

We focus here on local explanation problems
using a model agnostic approach.30 This approach is
independent from any internal feature of ML engines,
for the latter is treated as a black-box. Hence, model-
agnostic solutions to explanation problems that one
finds for some given ML system are more easily trans-
ferred to other ML systems. Furthermore, the model-
agnostic solutions to explanation problems that we
explore here are meant to mitigate complementary
defects of other model-agnostic explanations, that
are based on high-level and low-level image features,
respectively. In high-level explanations, a system out-
put is explained by providing a class prototype of
input data.27–29,31 For example, if an image x is clas-
sified as “fox”, and the corresponding explanation
request is “why is x a fox?”, one answers this request
by exhibiting a fox-prototype, and by asserting that
the input image resembles the prototype. This is
“because it looks like this” response is often insuf-
ficiently informative to be counted as a good expla-
nation, for it leaves with human users, the burden of
identifying middle-level features (parts) of the pro-
totype and matching them with middle-level (parts)
of the input image x. In low-level explanations, a
system output is explained by appeal to low-level

features of the input image. To illustrate, consider
the explanation-generating method called layer-wise
relevance propagation.32,33 The key idea is to back-
propagate the classifier output, by associating a rel-
evance value to each input element (to each pixel in
the case of images). This value indicates how much
that input element (pixel) contributed to obtain the
classification result for the overall input (image). In
this case too, human users are left with a significant
interpretive burden: starting from the relevance val-
ues of each input element (pixel), one has to identify
properties of the overall input that are perceptually
salient for the human visual system.

To alleviate these complementary defects of low-
level and high-level approaches to explanation, we
focus here on explanations of image classifications
that are built starting from perceptually salient parts
of the input.30 In the case of an image x classified
as “fox”, and a corresponding explanation request
“why is x a fox?”, salient image parts are those
associated with a fox tail, nose, ears parts, and
so on. We refer to salient image parts as middle-
level properties of input images, to distinguish them
from both high-level image prototypes and low-level
image features as, for instance, single pixels. As we
shall see, the present approach enables one to isolate
humanly understandable explanations that are parsi-
monious, insofar as they are based on a restricted list
of middle-level properties, excluding elements that
hardly help humans to understand why that classi-
fication result was achieved.34 To this end, we make
use of sparse dictionary learning techniques. These
techniques provide data representations in terms
of sparse linear combinations of elements (atoms)
from a dictionary which is learned from data. These
atoms often are found to be directly interpretable
by humans.35 As we discuss extensively in Sec. 3.3,
according to the present approach explanations are
based on structured collections of dictionary atoms
which better reconstruct the input and maximize the
probability to obtain the class associated with the
input.

It has been emphasized that good explanations
often take the form of contrastive explanations,34,36

that is, of explanations including reasons why that
solution was offered by the system and why some
alternative solution was not offered. To illustrate,
when an input image is classified as fox, a con-
trastive explanation should provide reasons for this
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classification outcome and reasons for excluding com-
petitive classifications, so as to answer such ques-
tions as “Why was this input image not classified
as a cat?”. The present model-agnostic framework
can be used to provide explanations answering both
basic explanation requests (“why this outcome?”)
and contrastive explanation requests (“why this out-
come rather than this other one?”).

This paper builds upon and extends previ-
ous work.37–39 However, some major novelties are
introduced here. First, we now distinguish sharply
between a general functional architecture which cap-
tures many of the XAI approaches proposed in the
literature and our specific approach, which instan-
tiates this architecture by imposing specific con-
straints on each one of its functional components
(see Sec. 3.1). Consequently, our approach is more
organically presented, and more thoroughly com-
pared with other approaches. Equally important, two
main advances are made here with respect to both
dictionary building procedures (see Secs. 3.2 and 5).
learning procedures used to find conventional and
contrastive explanations (see Sec. 3.3). Finally, a
more unified approach is introduced in the exper-
imental framework, insofar as the same datasets
are used to build both conventional and contrastive
explanations, in order to obtain qualitatively more
comparable results.

The paper is organised as follows: Section 2
briefly reviews related approaches; Sec. 3 describes
the proposed model-agnostic architecture; experi-
ments and results are discussed in Sec. 4; the con-
cluding Sec. 5 summarizes the main high-level fea-
tures of the proposed explanation framework and
outlines some future developments.

2. Related Work

The widespread need for transparency and explain-
ability in AI is discussed in many papers,34,40–42

and many different methods have been proposed
over the years.31,43–46 Depending on the task to
be performed, explainability may become a fun-
damental requirement for any adequate AI solu-
tion. Thus, the lack of transparency and explain-
ability in ML models may become a major predica-
ment in various AI application domains. In some
approaches to transparency and explainability issues,
one tries to extract rules from some trained system

to infer the learned behaviors.13,47–49 In other
approaches, one builds more interpretable surrogate
models which approximate the original ones.50–54

In other approaches yet, one analyzes the relation-
ship of the model’s output to the originating input.
These latter methods are informatively divided55

into two main categories: perturbation-based and
backpropagation-based32,33,56–58 methods, depending
on whether the obtained maps describe how the sys-
tem’s output changes on input perturbations or how
much each input variable contributes to the out-
put. In backpropagation-based methods, one usually
relies on the idea that a classifier response is back-
propagated to the input layer of the classifier, so that
one assigns to each input element (each pixel in the
case of images) a relevance value (pixel-wise decom-
position paradigm), which estimates how much the
input element has contributed to obtain the corre-
sponding classification response. Thus, the output of
this analysis process is a relevance map (or contri-
bution map or attribution map55) which belongs to
the input domain. Major techniques for analysing
the relationship of the model’s output to the orig-
inating input are Layer-Wise Relevance propagation
and Deep Taylor Decomposition,32,33,58 where the
back-propagation process has to satisfy some con-
servation rules.32 These methods can be applied to a
wide range of nonlinear classification architectures,
which notably include DNN and SVM. However,
these methods are not model-agnostic. Moreover, a
low-level analysis of the input relevance to the sys-
tem responses is made, thus providing as an explana-
tion relevance maps which represent an evaluation of
low-level input properties. Accordingly, most of the
interpretive process is left to the human capacity to
identify salient input middle-level properties starting
from low-level relevance maps. Similar approaches
have been pursued in Zintgraf et al.,59 and Robnik-
S̆ikonja and Kononenko,60 where an estimate is pro-
posed of the importance of individual features for the
classifier’s response. Alternative explanations have
been given in terms of humanly interpretable sen-
tences associated with the input data61 or approxi-
mate input reconstructions (also named class proto-
types) which the input data can be associated with.29

Many of these approaches are based on the Activa-
tion Maximization (AM) method.27 In a nutshell,
this method enables one to find the input that maxi-
mizes the output of a neural unit. Several approaches

2050040-3

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

20
.3

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

7.
22

0.
19

4.
48

 o
n 

09
/1

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 13, 2020 16:35 2050040

A. Apicella et al.

based on AM attempted to enhance the produced
results in terms of explainability, e.g. by bounding
the solution search space in a human interpretable
domain, using image priors28,31,62,63 to avoid useless
solutions. In Nguyen et al.,64 a useful survey of AM
methods is given. In this case too, as already pointed
out in Sec. 1, much of the interpretive work must
be performed by human users, who must isolate the
input middle-level properties which determined the
answer of the classifier.

Similar approaches to interpretability were pro-
posed in the context of Convolutional Neural Net-
works (CNN), as Deconvolutional Network (already
presented in Zeiler et al.,65 as a way to do unsuper-
vised learning) and Up-convolutional network66,67

unlike our proposed model, which can apply in
principle to any classifier (model agnostic), these
proposed approaches seem to be model-specific for
CNN. A major model-agnostic model is the explainer
LIME.30 LIME takes into account the model behav-
ior in the proximity of the instance being predicted,
partitioning it in a collection of components (super-
pixel in the image case). Thus, LIME builds a more
straightforward model from which it is possible to
infer an explanation of the original model behavior.
LIME’s outputs have some similarities with the out-
puts of the system proposed here, insofar as it pro-
vides explanations in terms of middle-level proper-
ties of the input. However, in the LIME framework,
it is not easy to find a kernel of “common com-
ponents” shared between different input elements.
The authors proposed to use super-pixels as essen-
tial components of the input image, but this solution
limits the possibility of comparing produced explana-
tions, due to the fact that different super-pixels sets
produced by different images. Additional methods
based on LIME, as in Ribeiro et al.,68 and Guidotti
et al.,69 return explanations in terms of decision rules
that are used as local conditions for decisions.

Importantly, to the best of our knowledge, con-
trastive explanations have received much less atten-
tion in the literature than conventional explanations,
i.e. explanations conceived as appropriate answers
to questions of the following type: “why this out-
come??”. As pointed out in Sec. 1, by the expres-
sion “contrastive explanation” we mean explanations
that provide answers to questions of the following
type: “why this outcome? And why not these other
outcomes?”. Currently, in this direction, the method

proposed in Guidotti et al.,69 provides explaination
also in counterfactual terms while a model-specific
method was proposed in Zhang et al.,70 which works
on CNN architectures. Instead, our approach to con-
trastive explanations is model-agnostic.

3. Proposed Approach

This section, which provides an overall description
of our approach, starts from a functional descrip-
tion, given in the next section, which is cast in terms
of three interacting functional entities ot modules.
Then, we describe an implementation of the three
functional modules which enables one to obtain both
conventional and contrastive explanations.

3.1. Functional description

The proposed explanation approach is based on a
general functional architecture comprising three pro-
cessing entities or modules (Fig. 1): (a) the Oracle, an
ML system, e.g. a classifier, whose inner mechanism
is not necessarily known; (b) the Interrogator, typi-
cally a human being, requesting explanations about
the Oracle’s responses; (c) the Mediator, helping the
Interrogator to understand the Oracle’s behavior by
providing explanations of Oracle’s responses, possi-
bly taking advantage of the support of some back-
ground knowledge. The Interrogator has access to
both inputs and outputs of the Oracle. Furthermore,
it interacts with the Mediator.

The Mediator, in addition to interacting with
the Interrogator, interacts with the Oracle too. The
Mediator interacts with the Oracle in two distinct
forms. It may consider the Oracle as a black-box
(Fig. 1, continuous line) or else it may have access to
its internal operations (Fig. 1, dotted line). The for-
mer interaction mode corresponds to model-agnostic
approaches, while the latter one corresponds to
model-specific approaches. The Mediator fulfils the
crucial explanatory role, by advancing hypotheses on
what humanly interpretable elements are likely to
have influenced the Oracle output. In other words,
the mediator role is to provide explanations to the
interrogator using, if necessary, background knowl-
edge together with the output given by the Oracle.
The double-headed arrow between Oracle and Medi-
ator in Fig. 1 indicates that the latter can “ask”
new questions and get an answer from the Ora-
cle. More specifically, in our case, given an Oracle’s

2050040-4

In
t. 

J.
 N

eu
r.

 S
ys

t. 
20

20
.3

0.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 7

7.
22

0.
19

4.
48

 o
n 

09
/1

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



July 13, 2020 16:35 2050040

Middle-Level Features for the Explanation of Classification Systems by Sparse Dictionary Methods

Fig. 1. The three-entity proposed framework. See text for details.

input image x ∈ Rd and the Oracle’s response ĉ,
as input the Mediator receives a request of conven-
tional or/and contrastive explanation and the pair
(x, ĉ). Its output is a collection of atoms {Vi ∈ Rd}
which are selected from a pre-learned dictionary V .
This Mediator output is built based on Oracle’s out-
puts when it receives as input atom-composed images
during the iterative explanation-building process.

Thus, explanations are provided by a system (the
Mediator) which does not coincide with the system
(the Oracle) whose behavior the Interrogator needs
to be explained.

Given this three-entity functional architecture
described above, our approach instantiates this
architecture by imposing specific constraints on each
one of its functional entities (see Fig. 1):

• Oracle: any image classifier whose output can be
interpreted as the posterior probability of the class
given the input;
• Interrogator: any user authorized to request expla-

nations; the Interrogator can choose whether to
ask for conventional or contrastive explanations.
• Background Knowledge: an expressive dictionary

composed of elements that are interpretable by
the Interrogator. The elements of the dictionary
(atoms) provide middle-level input features.
• Mediator: It cannot access the internal opera-

tions of the Oracle (model agnostic approach).
The Mediator can provide both standard and con-
trastive explanations in terms of collections of
dictionary elements.

3.2. Dictionary-based background
knowledge

Following Gilpin et al.,71 and Miller,34 we consider
an explanation as humanly understandable when
it uses a few elements extracted from a dictionary
of items that are meaningful to the user. From
now on, we call this type of explanation framework
dictionary-based explanation framework. To achieve
dictionary-based explanations, we take advantage in
our approach of sparse dictionary learning meth-
ods.72–74 As already mentioned in Sec. 1, using these
methods, one may obtain data representations in
terms of sparse linear combinations of sparse essen-
tial elements. The coefficients of the linear combi-
nation are referred to as sparse coding. The essen-
tial elements, usually known as atoms, compose the
dictionary. These atoms often exhibit satisfactory
interpretability levels35,73,75,76 as they enable one to
highlight local aspects of the data corresponding to
middle-level properties.

Formally, a sparse dictionary learning problem is
a minimization problem that one can describe as fol-
lows. Given a set {x(i)}ni=1, where each x(i) ∈ R

d is
a column vector representing an experimental obser-
vation, these elements can be arranged column-wise
in a matrix X ∈ Rd×n. Then, the learning problem
can be solved by finding a matrix V ∈ Rd×k such
that each column of X can be approximated by a
linear combination of the k columns of V , subjects
to some sparsity constraint. V is the dictionary, and
the k columns v(i) of V are the dictionary elements
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or atoms, subject to some sparsity constraint in turn.
Let us call H ∈ Rk×n the matrix of the linear com-
bination coefficients, i.e. the ith column of H , h(i),
corresponds to the k coefficients of the linear combi-
nation of the k columns of V to approximate x(i), the
ith column of X . Consequently, V H is an approxi-
mation of X , where V and H can be both subject to
sparsity constraints. In a general formulation,73 this
learning problem can be expressed formally as

argmin
H,V
||X − V H ||2F + γ1

k∑
i=1

ΩV (vi)

s.t ∀ j, ΩH(hi) < γ2,

(1)

where ΩV and ΩH are some norms or quasi-norms
that constrain or regularize the solutions of the min-
imization problem, and γ1 ≥ 0 and γ2 ≥ 0 are param-
eters that control to what extent the dictionary and
the coefficients are regularized.

In this paper, we obtain dictionaries from a spe-
cific sparse dictionary learning method based on
Nonnegative Matrix Factorization (NMF).77 How-
ever, one may use any other dictionary learn-
ing/sparse coding method producing dictionaries
that are sufficiently understandable to humans.
These dictionaries constitute the background knowl-
edge of the proposed explanation framework. In
our knowledge, the literature does not supply yet
procedures capable to build dictionaries composed
of atoms that are understandable/interpretable to
human users. A major difficulty towards general
solutions to this problem is the imprecise and sub-
jective character of the idea of “understandable”
atom. Indeed, what is understandable for some
person may not necessarily be understandable for
someone else. In this paper, we pursue the more
modest goal of showing experimentally that estab-
lished algorithms, such as NMF with sparsity con-
straints (NMFSC),78 do in fact produce dictionaries
which enjoy the requested property of being under-
standable to human users. Furthermore, NMFSC
builds dictionaries which respect the nonnegativ-
ity constraint, ensuring only additive operations in
data representations. Nonnegativity guarantees an
improved human understanding, since it allows one
to obtain atoms which are composed of only posi-
tive real values, so that they are easily interpreted
as parts of the input images. Moreover, data recon-
struction is a purely additive linear combination of

atoms so that each reconstruction can be viewed as
a positive superposition of parts of the input images.

3.3. Conventional explanation

To obtain a data representation which helps the
Interpreter to explain the decision made by the Ora-
cle, we search for a dictionary-based encoding which
maximizes the Oracle answer by being both “simi-
lar enough” to the given input and sparse enough
to ensure that few dictionary atoms are used. There-
fore, instead of returning only an accurate input rep-
resentation based on dictionary atoms, we propose a
method that returns a subset of dictionary’s atoms
taking into account the Oracle choice.

More formally, we optimize the following objec-
tive function:

hc∗ = argmax
h≥0

log Pr(ĉ|V h) + λ1||V h− x||2

+ λ2S(h), (2)

where Pr(ĉ |x) is the probability given by the Oracle
that input x belongs to the class ĉ, V is the dic-
tionary chosen as background knowledge, and S(·)
is a sparsity measure. The λ1 hyper-parameter is
used to control the proximity of the reconstruction
V h to the original input x leading the optimization
algorithm to prefer atoms which, combined together,
can result in a good input representation, while λ2

influences the encoding sparsity, that is “how many”
atoms the reconstruction effectively uses. To avoid
having to manually search for good values of λ1 and
λ2, we adopted an update rule similar to those used
for adaptive learning rate,79 which can be formalized
as follows:

λt
1 =

{
(1 − α)λt−1

1 if |lt − lt−1| < ε

(1 + α)λt−1
1 otherwise,

(3)

where lt is the value of the objective function at the
tth iteration in the AM-like procedure, α is a small
factor (in our case, we set α = 0.01) and λt

2 = 1−λt
1.

Furthermore, the h ≥ 0 constraint ensures that
one obtains the output in a purely additive form. Let
us call the complete architecture, depicted in Fig. 1,
Explanation Maximization (EM).

In the final output vector hc∗ each component
hi, i = 1, 2, . . . , d can be interpreted as a measure of
the “importance” of the ith atom in the result that
the Oracle associates with the input x.
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Algorithm 1. Explanation Maximization pro-
cedure (EMExplanationBuilder)

Input: data point x ∈ R
d, the output class ĉ

,learned model Γ, a dictionary
V ∈ R

d×k, λ1, λ2, α, ε

Output: the encoding h ∈ R
d

1h ∼ Ud(0, 1);
2while ¬ converge do
3 �r ← V�h;
4 �h← arg max

�h
log Pr

(
ĉ|�r; Γ)

+ λ1||�r − �x||2;
5 �h← proj(�h, λ2) � for proj(·, ·) see Hoyer;78

6 if loss difference < ε then
7 λ1 ← (1− α)λ1;
8 else
9 λ1 ← (1 + α)λ1;

10 end
11 λ2 ← 1− λ1;
12 lprec = l;
13end
14return �h;

Equation (2) can be solved by combining any
standard gradient ascent technique with a projec-
tion operator78 that ensures both sparsity and non-
negativity. The complete procedure is reported in
Algorithm 1.

3.4. Contrastive explanation

The procedure described in Sec. 3.3 builds conven-
tional explanations, that is, explanations providing
an answer to questions of type “why does the Oracle
output c∗ on input “x”?”. In this section, we present
a method using this procedure to produce explana-
tions in contrastive terms, that is, explanations pro-
viding an answer to questions of type “why does the
Oracle returns the class c∗ and why not the alterna-
tive class c on input “x”?”. The procedure described
in Sec. 3.3 can be easily adapted to this purpose,
by maximizing the Oracle probability of some given
contrastive class, rather than the probability of the
predicted class. In other terms, one searches for a
proper subset of atoms and relative encoding val-
ues whose combination is again both similar to the
input and sparse enough, but that leads the Oracle
to provide a different outcome if fed to it. On this
basis, one can develop a contrastive explanation by

inspecting the difference between the atoms in the
explanations generated for the same input but push-
ing the Oracle’s answer toward different classes. Let
us consider, for example, that we have as Oracle,
a classifier trained to recognize images of different
sorts of clothes. The Oracle correctly classifies an
input image x as a t-shirt, and we want to know why
the Oracle does not classify the input as a jumper.
Let us consider then a second input image y that
is very similar to x, but is classified as a jumper
by the Oracle. We may expect that the result of a
conventional explanation answering ‘why is x a t-
shirt?’ should differ from a conventional explanation
answering ‘why is y a jumper?’ by some atoms rep-
resenting long sleeves in the jumper instead of the
short sleeves which we expect to appear in the t-shirt
explanation.

More formally, we search for two encodings hc∗

and hc such that

hc∗ = argmax
h≥0

log Pr(c∗|V h) + λ1||V h− x||2

+ λ2S(h) (4)

hc = argmax
h≥0

log Pr(c|V h) + λ1||V h

+x||2 + λ2S(h) (5)

where c∗ is the real classifier outcome for the input
x and c �= c∗ is the contrastive class.

4. Experimental Assessment

To test our framework, we chose as Oracle the
LeNet-580 CNN architecture, commonly used for
recognition tasks on simple datasets. We trained the

Algorithm 2. Contrastive Explanation Maxi-
mization procedure

Input: data point �x ∈ R
d, the number of

antagonist classes q, the Oracle Ω, a
dictionary V ∈ R

d×k

Output: the encoding �h ∈ R
d

1�p← getClassProbabilities (�x, Ω);
2(c1, c2, . . . , cq+1)← getBestClasses (�p, q + 1);
3�hexpl ← EMExplanationBuilder (�x, c1,Ω,V );
4for i = 2 to q + 1 do
5 �h

(i)
anta ← EMExplanationBuilder (�x,ci,Ω,V );

6end

7return �hexpl,�h
(2)
anta, . . . ,�h

(q+1)
anta
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network from scratch using two different datasets:
MNIST80 and Fashion-MNIST,81 obtaining an accu-
racy of 98.86% and 91.43% on the test sets, respec-
tively. Each dataset is composed of 28×28 grayscale
images belonging to one of 10 possible classes. These
classes are digits for MNIST and clothes for Fash-
ion MNIST. The training sets and the test sets are
composed, respectively, of 50, 000 images and 10, 000
images for each dataset; the model is learned using
the Adam algorithm.82

An hyper-parameter needed by NMFSC to build
sparse dictionary atoms is the number of atoms
which compose the dictionary. In our cases, we set
it to 200, relying on PCA analysis which revealed
that at least 100 principal components are needed to
explain more than 95% of the data variance. NMFSC
necessitates two further hyperparameters, γ1 and γ2,
which control the sparsity on the dictionary and the
encoding, respectively. A proper sparsity on the dic-
tionary can be useful to obtain atoms which highlight
a local region of the input; however, an exceedingly
large sparsity index may lead to atoms that are hard
to understand by humans (e.g. a cloud of points or
atoms composed by sparse points).

We claim that a good dictionary for our proposed
procedure must satisfy the following properties: (i)
a low reconstruction error, so that it represents the
data reliably; (ii) a high sparsity on the encoding,
so that it uses only a small number of atoms to rep-
resent the data; (iii) sparsity on the atoms, so that
each atom may capture middle-level features of the
input; (iv) atoms must be as distinct as possible from
each other, so that each atom represents a different
(distinct) input feature.

We constructed different dictionaries with differ-
ent sparsity values in the range γ1, γ2 ∈ [0.6, 0.8]78

and then we selected those dictionaries showing
a good trade-off between reconstruction error and
sparsity level. However, this method of selecting the
dictionaries may present a drawback: it allows for
the presence of atoms that are too similar to each
other violating the last property above mentioned.
This condition might lead the explanation system
to spread the influence on multiple similar atoms,
thereby biasing the explanation.

To compensate for this drawback, one may think
of adding a constraint to ensure the atoms dissimi-
larity during the creation of the dictionary. But this
procedure might be too expansive in computational

Table 1. Mean distance between the atoms
composing the explanations.

Atoms’ mean distance

Without post-processing Using k-medoids

2.3 ± 0.1 2.8 ± 0.2

terms. For this reason, we prefer to apply a simple
a posteriori clustering procedure to clean the data,
assuming that visually similar atoms must be close
to each other in terms of Euclidean distance, thereby
increasing the likelihood of their falling in the same
cluster. More in detail, after a dictionary is cre-
ated, we apply a k-medoids clustering,83 using just
the selected k-medoids as dictionary and discarding
the other atoms. In our experiment, we obtain good
results by setting k = 25, which results in a dic-
tionary whose atoms are very dissimilar from each
other. To give a quantitative measure of how different
the explanation elements are, we compute the mean
distance between the atoms composing the explana-
tions of 10 random inputs using both a full dictionary
without any post-processing procedure and a dictio-
nary selected using k-medoids clustering. The results
are reported in the following Table 1, showing then
that using a reduced dictionary produces explana-
tions whose atoms are more different from each other
on average.

4.1. Results

In this paragraph, we show a set of explanations
generated by the proposed Conventional Explana-
tion Maximization procedure and Contrastive Expla-
nation Maximization procedure, using images taken
from the MNIST and Fashion MNIST test sets and
the corresponding Oracle’s answers.

4.1.1. Conventional EM explanations

We build our explanation from a selection of atoms
with larger encoding values (i.e., those that are more
important in the representation, since we enforce
nonnegativity in the solution of Eq. (2)).

In Fig. 2, we show the atoms producing the
explanation on some input images taken from the
MNIST dataset for which the Oracle gave the correct
answer. The selected atoms arguably describe the
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Input image classified as ’2’ by the Oracle.
A diagonal straight line and a curvature on the bottom are highlighted by the selected atoms.

Input image classified as ’4’ by the Oracle.
A central horizontal line and a vertical one are highlighted by the selected atoms

Input image classified as ’5’ by the Oracle.
The atoms highlight the right curvature (first and fourth atoms) and the straight line on the top (second atom).

Input image classified as ’6’ by the Oracle,
the atoms highlight a central circle.

Input image classified as ’9’ by the Oracle,
the atoms highlight a top circle and a straight diagonal line (third atom).

Fig. 2. (Color online) Explanations on images taken from the MNIST dataset. The five atoms with the largest encoding
values (red columns) and their linear combination weighted (green column) on the encoding values (displayed on top of
each atom) provide an explanation for the answer given by the Oracle on the input image (first column). The weighted sum
shows that the chosen atoms are sufficient to allow for a human interpretation of the given answer. The parts highlighted
by the selected atoms suggest that these parts are essential to the Oracle’s decision.

visual impact of the input digits in a thorough fash-
ion, by providing elements that appear to be discrim-
inative, such as the intersection between a horizontal
line with a vertical one for the number 4, or the cir-
cle on the bottom for number 6, and the straight top
part together with the curved bottom one for 5. To
probe the impact of sparsity on this representation

empirically, we performed the same experiment using
a dictionary with a very low sparsity (0.1), obtain-
ing encodings without any prevailing value, thereby
making it challenging to select appropriate atoms for
an explanation.

In Fig. 3, we show the more important atoms
obtained on some input images taken from the
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Input image classified as ’boot’ by the Oracle.
The heaviest atoms highlight a shoe shape while the others linger on the heel and the neck.

Input image classified as ’jumper’ by the Oracle.
The heaviest atoms highlight a pair of long sleeves and the body of the shirt.

Input image classified as ’sneaker’ by the Oracle.
The heaviest atoms highlight a shoe shape.

Input image classified as ’trousers’ by the Oracle.
The heaviest atoms highlight a pair of legs and the top of the trouser

Input image classified as ’t-shirt’ by the Oracle.
The heaviest atoms highlight the body of a shirt and a pair of short sleeves

Fig. 3. (Color online) Explanations on images taken from the Fashion MNIST dataset. The five atoms with largest
encoding values (red columns) and their linear combination weighted (green column) on the encoding values (displayed
on top of each atom) provide an explanation for the answer given by the Oracle on the input image (first column). The
weighted sum shows that the chosen atoms are sufficient to allow for a human interpretation of the given answer. The
parts highlighted by the selected atoms suggest that these parts are essential to the Oracle’s decision.

Fashion MNIST dataset, all of them correctly clas-
sified by the Oracle. Selecting the atoms with more
significant encoding values seems to enhance repre-
sentative parts of the input image that can be easily
interpreted by a human interrogator, (e.g. the neck
and the sole for a boot, the long sleeves for a pullover
and the short ones for a t-shirt).

As for MNIST, we performed the same experi-
ment using a dictionary with low sparsity, ending up
with results that are difficult to interpret.

4.1.2. Contrastive EM explanations

Figures 4 and 5 show a set of explanations pro-
duced by the Contrastive EM framework using
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Input correctly classified as 2 by the Oracle. Why is the input not classified as 9 by the Oracle?
The selected atoms highlight the lack of a closed circle

in the upper part of the input image.

Input correctly classified as 4 by the Oracle Why is the input not classified as 9 by the Oracle?
The selected atoms highlight the lack of a closed circle

in the upper part of the input image.

Input correctly classified as 5 by the Oracle. Why is the input not classified as 7 by the Oracle?
The selected atoms highlight the absence of

a vertical line and a horizontal line.

Input correctly classified as 6 by the Oracle. Why is the input not classified as 8 by the Oracle?
The selected atoms highlight the absence of

a top circle and a central intersection line in the input.

Input correctly classified as 9 by the Oracle. Why is the input not classified as 8 by the Oracle?
The selected atoms highlight the absence of

a central intersection line in the input.

Fig. 4. (Color online) Examples of EM contrastive explanations obtained on images taken from the MNIST dataset.
The explanation for the answer given by the Oracle on each input is expressed with two different sets of atoms: the first
one (in red) highlights why the input is classified as the given Oracle outcome, the second one (in blue) highlights what
features should the input exhibit to be classified as the antagonist class.

different input images taken from MNIST and Fash-
ion MNIST dataset. Each explanation is expressed
in terms of two different subsets of atoms which
were selected by computing hc∗ and hc, respectively,
as described in Sec. 3.4. The first selected subset
is formed by the atoms which most contribute to
the Oracle outcome(as the standard EM procedure
described in Sec. 3.3). The second one is formed by
the atoms which most contribute to some given con-
trastive outcome. Only the first five atoms are shown.

As already discussed in Sec. 3.3, the atoms
selected by hc∗ (in red in the figures) provide ele-
ments which can be considered discriminative for the
selected outcome. For example, in Fig. 4 for an input
correctly classified as a 4, EM selects several com-
ponents which represent an intersection between a

horizontal and a vertical line, showing that this is
likely to be one of the main features used by the
classifier to make its choice. The second set (blue) is
computed by choosing as contrast class a 9, and ask-
ing the algorithm to provide an explanation. One can
see that the selected components are mostly differ-
ent and varied, showing that the input image (rep-
resenting a 4), to be classified as a 9, should also
have other characteristics, including a further hori-
zontal line on the top, which helps to generate the
typical circular shape that one finds in the top of a
9 digit. Similar considerations can be made for an
input representing a 5 compared to the desired out-
come of a 7. In this case, the classifier’s choice of a
5 might be motivated by the presence of the com-
ponents shown in red, whereas the the total absence
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Input correctly classified as boot by the Oracle. Why is the input not classified as jumper?
The two groups of atoms have no elements in common,

showing that the two objects are very dfferent.

Input correctly classified as jumper? Why is the input is not classified as t-shirt.
It is easy to see the lack of the long sleeves in favor of short ones.

Input correctly classified as sneaker? Why is the input not classified as sandal?
The first atoms are the same of the EM explanation (red)

but in a different order, giving importance to the sole
as well as the absence of a neck (fourth red atom).

Input correctly classified as trousers Why is the input not classified as jumper?
Because of the presence of long sleeves (fourth blue)

and the absence of a pair of legs (first red)

Input correctly classified as t-shit Why is the input not classified as jumper?
The atoms selected highlight the presence of long sleeves

(fourth blue atom) instead of the short ones (third red atom)

Fig. 5. (Color online) Examples of EM contrastive explanations obtained on images taken from the Fashion MNIST
dataset. The explanation for the answer given by the Oracle on each input is expressed with two different sets of atoms:
the first one (in red) highlights why the input is classified as the given Oracle outcome, the second one (in blue) highlights
what features should the input exhibit to be classified as the antagonist class.

of components highlighted by the blue atoms, such
as the central horizontal line on the left side, sug-
gest that the absence of this feature from the input
image can be a good explanation of why it was not
been classified as a 7 by the given Oracle.

Similar considerations can be made about the
Fashion MNIST dataset in Fig. 5. For example, an
input correctly classified as jumper (second row)
is explained by the presence of long sleeves (red
atoms), while the chosen contrastive class t-shirt
highlights the absence of short sleeves (blue atoms).
The same difference, albeit with inverted roles, can
be used to explain an input correctly classified as t-
shirt, when compared to the contrastive class jumper
(fifth row).

5. Conclusions

A model-agnostic framework was introduced here
to build humanly interpretable explanations for the
output provided by a black-box image classifier
which is fed with some given input. The returned
explanations are both conventional and contrastive.
Moreover, they are obtained in terms of what we have
called middle-level input properties, expressing per-
ceptually salient features for the human visual sys-
tem, rather than in terms of input low-level proper-
ties, such as pixel relevance maps. And the returned
explanations are parsimonious, respecting the con-
straint that a good explanation should use few ele-
ments extracted from dictionaries that are meaning-
ful to human users.
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Our framework relies on a three-entities or three-
modules functional model, which is composed of
an Oracle (providing answers to be explained), an
Interrogator (posing explanation requests), and a
Mediator (helping the Interrogator to interpret the
Oracle’s outcomes using elements given by Back-
ground Knowledge). The Background Knowledge is,
in our case, a dictionary built using well-established
techniques of sparse dictionary learning, such as
NMF. Note that the more common dictionary learn-
ing methods do not pay attention to factors as
the “redundancy” on the obtained atoms. For this
reason, a clustering procedure was applied to the
obtained dictionary to clean it from redundant
atoms. However, any other dictionary learning tech-
nique that meets the requirements sketched in Sec. 3
may be successfully used. Regarding the computa-
tional complexity of our approach, we note that it
consists of two distinct phases: (1) the dictionary
learning phase, and (2) the explanation construc-
tion phase. The computational complexity of the for-
mer depends on both the selected dictionary learning
method and the dataset size; however, this run only
once and has no impact on the actual construction
of the explanation. The computational complexity
of the explanation construction is an iterative pro-
cess, and its cost is independent of the dataset size:
it depends linearly on the number of dictionary ele-
ments only, for each iteration.

The Mediator instantiated here can explain both
in conventional and contrastive terms, giving answers
to “why this class?” and “why this class and not this
other one?”types of question. Conventional and con-
trastive explanations address complementary expla-
nation needs, ranging from plain difficulty to under-
stand why an outcome was advanced by the Oracle,
to user claims of misclassifications and corresponding
requests for an alternative classification.

The results obtained so far appear to be encour-
aging, although more experiments are needed and
several open issues remain to be tackled. In general,
it is not easy to determine objectively whether an
explanation method is satisfactory. Some strategies
to quantitatively assess the quality of explanations
are being proposed in the literature,29,84–86 but no
general solution has been found yet. Similarly, it is a
difficult task to objectively assess whether dictionary
elements are understandable to humans. However,
by sparse dictionary learning methods, one obtains

dictionary atoms which may selectively play the role
of humanly interpretable elements insofar as they
afford a local representation of the data. Indeed,
these techniques provide data representations that
can be considered to be accessible to human inter-
pretation.35 Consequently, our approach is limited
by the absence of a standard criterion to determine
whether an atom is humanly understandable as much
as any other explanation methods proposed so far.

Furthermore, a critical aspect is the dataset to be
used to construct the required dictionaries. For some
special domains and contexts, one may reasonably
expect that it is possible to find suitable dictionar-
ies regardless of which dataset was used to train the
classifier (the Oracle). But in general, this is not the
case. More realistically, one should consider a dataset
with a certain degree of overlap with the the dataset
used to train the model. Finally, it would be inter-
esting to test our approach on more complex and
massive datasets such as Imagenet.87 As a next step
in our inquiry on conventional and contrastive expla-
nations, we are now planning to get and apply the
computing power needed to perform experiments on
more complex and more significant state-of-art neu-
ral networks and datasets.
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