5 research outputs found

    l

    Get PDF
    We propose a l0 sparsity based approach to remove additive white Gaussian noise from a given image. To achieve this goal, we combine the local prior and global prior together to recover the noise-free values of pixels. The local prior depends on the neighborhood relationships of a search window to help maintain edges and smoothness. The global prior is generated from a hierarchical l0 sparse representation to help eliminate the redundant information and preserve the global consistency. In addition, to make the correlations between pixels more meaningful, we adopt Principle Component Analysis to measure the similarities, which can be both propitious to reduce the computational complexity and improve the accuracies. Experiments on the benchmark image set show that the proposed approach can achieve superior performance to the state-of-the-art approaches both in accuracy and perception in removing the zero-mean additive white Gaussian noise

    Robust Subspace Estimation via Low-Rank and Sparse Decomposition and Applications in Computer Vision

    Get PDF
    PhDRecent advances in robust subspace estimation have made dimensionality reduction and noise and outlier suppression an area of interest for research, along with continuous improvements in computer vision applications. Due to the nature of image and video signals that need a high dimensional representation, often storage, processing, transmission, and analysis of such signals is a difficult task. It is therefore desirable to obtain a low-dimensional representation for such signals, and at the same time correct for corruptions, errors, and outliers, so that the signals could be readily used for later processing. Major recent advances in low-rank modelling in this context were initiated by the work of Cand`es et al. [17] where the authors provided a solution for the long-standing problem of decomposing a matrix into low-rank and sparse components in a Robust Principal Component Analysis (RPCA) framework. However, for computer vision applications RPCA is often too complex, and/or may not yield desirable results. The low-rank component obtained by the RPCA has usually an unnecessarily high rank, while in certain tasks lower dimensional representations are required. The RPCA has the ability to robustly estimate noise and outliers and separate them from the low-rank component, by a sparse part. But, it has no mechanism of providing an insight into the structure of the sparse solution, nor a way to further decompose the sparse part into a random noise and a structured sparse component that would be advantageous in many computer vision tasks. As videos signals are usually captured by a camera that is moving, obtaining a low-rank component by RPCA becomes impossible. In this thesis, novel Approximated RPCA algorithms are presented, targeting different shortcomings of the RPCA. The Approximated RPCA was analysed to identify the most time consuming RPCA solutions, and replace them with simpler yet tractable alternative solutions. The proposed method is able to obtain the exact desired rank for the low-rank component while estimating a global transformation to describe camera-induced motion. Furthermore, it is able to decompose the sparse part into a foreground sparse component, and a random noise part that contains no useful information for computer vision processing. The foreground sparse component is obtained by several novel structured sparsity-inducing norms, that better encapsulate the needed pixel structure in visual signals. Moreover, algorithms for reducing complexity of low-rank estimation have been proposed that achieve significant complexity reduction without sacrificing the visual representation of video and image information. The proposed algorithms are applied to several fundamental computer vision tasks, namely, high efficiency video coding, batch image alignment, inpainting, and recovery, video stabilisation, background modelling and foreground segmentation, robust subspace clustering and motion estimation, face recognition, and ultra high definition image and video super-resolution. The algorithms proposed in this thesis including batch image alignment and recovery, background modelling and foreground segmentation, robust subspace clustering and motion segmentation, and ultra high definition image and video super-resolution achieve either state-of-the-art or comparable results to existing methods

    Knowledge Elicitation using Psychometric Learning

    Get PDF

    Sparse Coding and Mid-Level Superpixel-Feature for â„“0-Graph Based Unsupervised Image Segmentation

    No full text
    We propose in this paper a graph-based unsupervised segmentation approach that combines superpixels, sparse representation, and a new midlevel feature to describe superpixels. Given an input image, we first extract a set of interest points either by sampling or using a local feature detector, and we compute a set of low-level features associated with the patches centered at the interest points. We define a low-level dictionary as the collection of all these low-level features. We call superpixel a region of an oversegmented image obtained from the input image, and we compute the low-level features associated with it. Then we compute for each superpixel a mid-level feature defined as the sparse coding of its low-level features in the aforementioned dictionary. These mid-level features not only carry the same information as the initial low-level features, but also carry additional contextual cue. We use the superpixels at several segmentation scales, their associated mid-level features, and the sparse representation coefficients to build graphs at several scales. Merging these graphs leads to a bipartite graph that can be partitioned using the Transfer Cut algorithm. We validate the proposed mid-level feature framework on the MSRC dataset, and the segmented results show improvements from both qualitative and quantitative viewpoints compared with other state-of-the-art methods

    Multiple-Criteria Decision Making

    Get PDF
    Decision-making on real-world problems, including individual process decisions, requires an appropriate and reliable decision support system. Fuzzy set theory, rough set theory, and neutrosophic set theory, which are MCDM techniques, are useful for modeling complex decision-making problems with imprecise, ambiguous, or vague data.This Special Issue, “Multiple Criteria Decision Making”, aims to incorporate recent developments in the area of the multi-criteria decision-making field. Topics include, but are not limited to:- MCDM optimization in engineering;- Environmental sustainability in engineering processes;- Multi-criteria production and logistics process planning;- New trends in multi-criteria evaluation of sustainable processes;- Multi-criteria decision making in strategic management based on sustainable criteria
    corecore