242 research outputs found

    Extremal problems for ordered (hyper)graphs: applications of Davenport-Schinzel sequences

    Get PDF
    We introduce a containment relation of hypergraphs which respects linear orderings of vertices and investigate associated extremal functions. We extend, by means of a more generally applicable theorem, the n.log n upper bound on the ordered graph extremal function of F=({1,3}, {1,5}, {2,3}, {2,4}) due to Z. Furedi to the n.(log n)^2.(loglog n)^3 upper bound in the hypergraph case. We use Davenport-Schinzel sequences to derive almost linear upper bounds in terms of the inverse Ackermann function. We obtain such upper bounds for the extremal functions of forests consisting of stars whose all centers precede all leaves.Comment: 22 pages, submitted to the European Journal of Combinatoric

    Uniform hypergraphs containing no grids

    Get PDF
    A hypergraph is called an r×r grid if it is isomorphic to a pattern of r horizontal and r vertical lines, i.e.,a family of sets {A1, ..., Ar, B1, ..., Br} such that Ai∩Aj=Bi∩Bj=φ for 1≤i<j≤r and {pipe}Ai∩Bj{pipe}=1 for 1≤i, j≤r. Three sets C1, C2, C3 form a triangle if they pairwise intersect in three distinct singletons, {pipe}C1∩C2{pipe}={pipe}C2∩C3{pipe}={pipe}C3∩C1{pipe}=1, C1∩C2≠C1∩C3. A hypergraph is linear, if {pipe}E∩F{pipe}≤1 holds for every pair of edges E≠F.In this paper we construct large linear r-hypergraphs which contain no grids. Moreover, a similar construction gives large linear r-hypergraphs which contain neither grids nor triangles. For r≥. 4 our constructions are almost optimal. These investigations are motivated by coding theory: we get new bounds for optimal superimposed codes and designs. © 2013 Elsevier Ltd

    2-cancellative hypergraphs and codes

    Full text link
    A family of sets F (and the corresponding family of 0-1 vectors) is called t-cancellative if for all distict t+2 members A_1,... A_t and B,C from F the union of A_1,..., A_t and B differs from the union of A_1, ..., A_t and C. Let c(n,t) be the size of the largest t-cancellative family on n elements, and let c_k(n,t) denote the largest k-uniform family. We significantly improve the previous upper bounds, e.g., we show c(n,2) n_0). Using an algebraic construction we show that the order of magnitude of c_{2k}(n,2) is n^k for each k (when n goes to infinity).Comment: 20 page

    Combinatorial theorems relative to a random set

    Get PDF
    We describe recent advances in the study of random analogues of combinatorial theorems.Comment: 26 pages. Submitted to Proceedings of the ICM 201
    • …
    corecore