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Abstract

We introduce a containment relation of hypergraphs which respects linear orderings of vertices,
and we investigate associated extremal functions. We extend, using a more generally applicable
theorem, thenlog n upper bound on sizes 6f1, 3}, {1, 5}, {2, 3}, {2, 4})-free ordered graphs with
n vertices, due to &fedi, to the n(log n)(log log n)® upper bound in the hypergraph case. We
apply Davenport—Schinzel sequences and obtain almost linear upper bounds in terms of the inverse
Ackermam functiona (n). For example, we obtain such bounds in the case of extremal functions of
forests consisting of stars all of whose centres precede all leaves.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

In this paper we shall investigate extral problems on graphs and hypergraphs of
the following type. LetG = ([n], E) be a simple graph whit has the ertex set

[n] = {1, 2,...,n} and contains no six vertices4 v; < v2 < --- < vg < n suchthat
{v1, v3}, {v1, vs}, {v2, v4}, and{vz, vs} are edges o6, that is,G has noorderedsubgraph
of the form

Go = @ (1)

Determine the maximu possible numbeg(n) = |E| of edges inG.
What makes thisask hard is the linear ordering ¥f = [n] and the fact thaGg must
not appear inG only as an ordered subgraph. If we ignore the ordering for a while, then

* Fax: 420-2-57531014.
E-mail addressklazar@kam.mff.cuni.cz (M. Klazar).

0195-6698/$ - see front matter © 2003 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ejc.2003.05.001


https://core.ac.uk/display/82408277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/ejc

126 M. Klazar / European Journal of Combinatorics 25 (2004) 125-140

the problem dss to determine the maximum number of edges in a simple gGapith n
vertices and no K1 » subgraph, and we can easily solve it. ClearlyGithas two vertices
of degrees-3 and>5, respectively, or if5 has>6 vertices of degrees 4 each, thenk 2
subgraph must appear. Suppdsdas no X1 » subgraph. IfG has a vertex of degree5,
it has a most(2(n— 1) +n—1)/2 = 3n/2— 1.5 edges. If all degrees are4, the number
of edges is at mogB3(n — 5) + 4-5)/2 = 3n/2 + 2.5. On the other hand, the graph on
[n], in which degn) = n — 1 and[n — 1] induces a matching with(n — 1)/2| edges,
hasn + [(n— 1)/2] — 1 edges and no R1 » subgraph. We conclude that in the unordered
version of theproblem the maximum number of edges equal&23+ O(1).

The ordered version is considerably more difficult. Later in this section we prove that
the maxinum number of edgeg(n) satisfies

n-a(n) < g(n) < n . 20+o@em? "

wherea(n) is the inverse Ackermann function. Recall thgh) = min{m : A(m) > n}

where A(n) = Fn(n), the Ackerman function, is defined as flows. We start with

F1(n) = 2n and fori > 1 defineF1(n) = F(F(...F@)...)) with n iterations of

Fi. The functiona(n) grows to infinity butits growth is extremely slow. We obtai2)(

and some generalizations by reductionBavenport—Schinzel sequend&s sequences).

Now we conthue with a brief review of the results on DS sequences used in the rest
of the paper; the summary of our results is given at the end of this section. The reader
interested in more information on DS sequences and their applications in computational
and combinatorial geometry may consult Agarwal and Shéa}ji{lazar [17], Sharir and
Agarwal [19], and/or Valtr p2].

If u=ajax...a andv = biby...bs are two finite sequences (words) over a fixed
infinite alphabet, whereA containdN = {1, 2, ...} and also some symbadsb, c, d, .. .,
we say thaw contains uand writev > u if v has a subsequenbgbi, .. .bj, suchthat
for every p andq we haveap = aq if and only if by, = bj,. In other wordsp has a
subsequence that differs fromonly by an injective renaming of the symbols. For example,
v = ccaacchaa- 22 244= u because has the subsequencecaa On theother hand,
ccaacchaay 12121. A sequence = ajay...a is calledk-sparse wherek € N, if
a =aj,i < j,impliesj —i > k; this means that every interval in of length at most
k consists of distinct terms. The lengttof u is denoted|u|. For two integersa < b we
write [a, b] for the interval{a, a+ 1, ..., b}. For two functionsf, g : N — R the notation
f « gis synonymous to thef = O(g) notation; it means that there exists a constant
¢ > O such that f (n)| < c|g(n)| for all n € N with g(n) # 0.

The classical theory of DS sequences investigates, for ixedN, the functionis(n)
defined as the maximum length of 2-sparse sequenamger n synmbols which do not
contain the(s + 2)-term alternéing sejuenceababa. .. (a # b). The notation.s(n) and
the shift4+-2 aredue to historical reasons. The teD% sejuencesefers to the sequences
v not containing a fixed alternating sequence. The theorgenferdized DS sequences
investigates, dr fixed sequenca using eadly k symbols, tle function exu, n) defined
as the maximum length df-sparse sequenceswhich ae overn symbols andv ¥ u.
Note that exu, n) extends As(n) sinceis(n) = ex(ababa...,n) whereababa... has
length s + 2. In the definition of exu, n) one has to require that is k-sparse because
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no condition, or even onlyk — 1)-sparseness, would allow an infinitewith v  u; for
exanple,v = 12121212 .. % abca= u andv is 2-sparse (lt not 3-sparse). An easy
pigeonhole argument shows thatexn) < oo for everywv.

DS sequences were introduced by Davenport and Schirdel{d strongest bounds on
As(n) for generak were obtained by Agarwal et aR]f We shall need their bound

ho() < n - 200Me? -
(recall that\g(n) = ex(ababababn)). Hart and Sharir]3] proved that
na(n) < Az(nN) < na(n). @)

In Klazar [14] we proved that ifu is a sguence usingg > 2 synbols andu| =1 > 5, then
for everyn e N

ex(u, n) < n-k2'—3. (10K)2 M H+8am'S, (5)

it is easy to how that fork = 1 orl < 4 we have egu, n) < n. In patticular, for the
sejuence

uk,l)=12...k12...k...12.. .k (6)

with | segmets 12. ..k we have, or every fixeck > 2 andl > 3,

ex(u(k, 1), n) < n- k<=3 (10Kk)2x M +8a =S @)
We denote thefactor multiplyingn in (7) asg(k, I, n). Thus

Bk, 1, n) = k2K —3(10k) 2"~ +8a =S (8)

Let us see now how3] and the lower bound in4) imply (2). Let G = ([n], E) be
any simple graph not containin@og (given in (1)) as an ordered subgraph. Consider the
sejuence

v=I1l2... 1y

over[n] wherel; is the decreasing ordering of the ligt: {j,i} € E & j < i}. Note hat
l1 = ¢ and|v| = |E|.

Lemma 1.1. If v = abababab then @is an ordered subgraph of G.

Proof. Letv have an 8-term alternating subsequence

..a1...b1...az...bz...ag...bg...a4...b4...

where the appearances of two numbars: b are indexed for further discussion. We
distinguish two cases. B < b thenay, by, a4, andby lie, respectively, in four distinct
intervalslp, Iqg, Ir, andls, p < g <r < s, (since every; is decreasing) anbl < p (since
b, precedesy). HenceGg is an ordered subgraph @&. If b < a thenby, ap, b3, anday
lie, respectively, in four distinct intervals, Iq, Ir, andls, p < g <r < s, anda < p.
Again, Gg is an ordered subgraph &. O
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Thusv has no 8-term alternating subsequencev limmediate repetitions may appear
only on the transitions; I; ;1. Deleting at mosn — 1 (actuallyn — 2 becausel; = ¢)
terms from v we obtain a 2-sparse subsequenceon which we can apply3). We
have

El = [v] < [w|+n—1<isn)+n—1«n.2trodem?

On the other hand, let € N andv be the longest 2-sparse sequence gngsuchthat
v ¥ ababa It uses alln symbols and, by the lower bound id)( |v| > cha(n) for an
absolute constamt > 0. Notice that every € [n] appears irv at least twice. We rename
the synbols inv so that fa everyi andj, 1 <i < j < n, the first gpearance of in v
precedes that adf this affects neither the property# ababanor the 2-sparseness. By an
extremalterm of v we mean the first or the last appearance of a symbwalithe sguence
v has exactly 8 extrenal terms. We decomposeuniquely intointervalsv = I1l>... Io,
so thatevery |; ends with an extremal term and contains no other extremal term. Every
I; consists of distinct terms because a repetitiob...b... in I; would force a 5-term
alternating subsequence.a...b...a...b...a... in v. We define a simple (bipartite)
graphG* = ([3n], E) by

{i,j}e E<=1ie[n]& je[n+1, 3n]andi appearsinj_n.

G* has 31 verticesandE| = |v| > cha(n) edges. Suppose th@t* contains the forbidden
ordered subgrap®g on the vertices 1< a; < a2 < --- < ag < 3n. By the ddfinition
of G*, ajapajap appears inv as a subsequenceand the four terms ok appear in
lag—n, - - ., lag—n, resgectively. Sinceap > a1, numbera, must appear in beforez starts
and therefore contains a 5-term alternating subsequence, which is forbidde®* Smes
not containGg and shows that

g(n) > na(n).

This concludes the proof og).

Open Problem 1.2. Narrow he gapisz(n) < g(n) < Ag(n) in (2). What is the precise
asymptotics ofy(n)?

Our example showshat the ordered version of a simple graph extremal problem
may differ dramatically from the unordered one. Classical extremal theory of graphs and
hypergraphs, which deals with unordered vertex sets, produced many results of great
variety—se, for example, Bollads [3, 4], Frankl [9], Furedi [11], and Tuza 20, 21].
However, only little attention has been paid to ordered extremal problems. The only
systematic studies devoteal this pic known to us are lredi and Hajnal 12] (bipartite
graphs with ordered parts) and Brass et @]l.(Eyclically ordered graphs). We think that
ordered extremal problems should be studied and investigated more intensively. First,
for their intrinsic combinatorial beauty. Second, since they present to us new orders of
growth of extremal functions which are not encountered in the classical theory: nearly
linear extremal functions, likax(n) or nlog n, seem characteristic foordeed extremal
problems. Third, estimates coming from erdd extremal problems were successfully
applied in combinatorial geometry (here often the right key to a problem turns out to
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be some linear or partial ordering) and to obtain further applications it is desirable to
understand more thoroughly combinatorial cores of these arguments.

Before summarizing our results, we return to DS sequences and show that the sequential
containment< can be naturally interpreted in terms of particular hypergraphs, (set)
patitions. A sequenca = ajay . .. & over the phabetA may be viewed as a partitio?
of [r] suchthati andj are in the same block d® if and only if & = a;. Thus blocks of
P correspond to the positions of symbolainFor example,u = abacchbais the partition
{{1,3,7},{2,6},{4,5}}. If u = ([r], ~y) andv = ([S], ~,) are two sequences given as
patitions by equivalence relations, than< v if andonly if there is arincreasingnjection
f :[r] — [s] suchthatx ~y, y & f(X) ~, f(y) foreveryx,y e [r].

In this paper we investigate hypergraph containment generalizing both the ordered
subgraph relation and the sequential containment. The containment and its associated
extrenal functions ex(F, n) and ex(F, n) are introduced inDefinitions 2.1and 2.2
The function ex(F, n) counts edges in extremal simple hypergraphsiot containing
a fixed hypergraphF and the function gXF, n) counts sums of edgeardinalities. In
Theorem 2.3we show that for many one has eXF,n) <« ex(F,n). Theorem 3.1
shows that ifF is a dmple graph, then in some cases good bounds @iFex) can
be obtained from bounds on the ordered graph extremal functiofFgex We aply
Theorem 3.%o prove inTheorem 3.3hat forG1 = ({1, 3}, {1, 5}, {2, 3}, {2, 4}) one has
exe(G1, n) < n-(log n)2-(log log n)3 and the same bound forigG1, n); this gereralizes
thebound gexG1, n) « n-log n of Firedi. In another applicatiomheorem 3.5we prove
that for evey forestF the unorderedhypergraph extremal function g, n) is < n. In
Theorem 4.1e generalize the bound) to hypergraphs. ITheorem 4.3ve prove that if
F is a star forest, then g&~, n) has an almost linear upper bound in termse@f); this
generalizes the upper bound ) (In the concluding section we introduce the notion of
orderly bipartite forests and pose some problems.

This paper is a revised version of about one half of the material in the technical report
[16]. We present the other half i1 §].

2. Definitions and bounding weight by size

By ahypergraph H= (E; : i € |) we shall understand a finite list of finite nonempty
subsetsEj of N = {1,2, ...}, callededges H is simpleif Ej # E; for everyi, j € I,
i # J. His agraphif |Ej| = 2 for everyi € |. H is apatition if EE N Ej = ¢
for everyi,j € I,i # j. The eements of JH = | J;; Ei C N are calledvertices
Note that our hypergraphs have no isolated vertices. Sihglificationof H is the simple
hypergraph obtained frorl by keeping from each family of mutually equal edges just
one edge. The standard linear orderMnnduces a linear ordering on every vertex set
|J H and this ordering is crucial for our extrertheory. It would be more precise to speak
of ordered hypergraphandordered graphsut hopefully the shorter terms will cause no
confusion.

Definition 2.1. LetH = (Ej : i € I)andH’' = (E{ : i € |") be two hypergraphdd
contains H, written H > H’, if there exist anncreasinginjectionF : | JH’ — [ J H and



130 M. Klazar / European Journal of Combinatorics 25 (2004) 125-140

an injectionf : I’ — | suchthat
F(El/) C Ef(i)
for every index € |’. Else we ay thatH is H’-freeand writeH % H’.

The hypergraph containmenrt extends the sequential containment and the ordered
subgraph relationH = (Ej : i € 1) andH’ = (E/ : i € ') areisonorphic (as ordered
hypergraphs) if there are ancreasingbijection F : | JH’ — (JH and a bijection
f : 1" — | suchthat F(E)) = Ef() for everyi e |’. H' is areductionof H if
I” c | andE/ C E; for everyi e I’. Herce the containmerii’ < H means thaH’
is isomophic to a reduction oH. We call that reduction ofH an H’-copyin H. For
exampe, if H' = ({1}, {1}) (H' is a singleton edge repeated twice) the¢nt H’ if and
only if H is a partition. Another example: K’ = ({1, 3}, {2, 4}) thenH is H'-free if and
only if H has no four verticea < b < ¢ < d suchthata andc lie in oneedge ofH while
b andd lie in anoher edge.

Theorderv(H) of H = (E; : i € I) is the number of vertices(H) = ||J H|, the
size €H) is thenumber of edges(H) = |H| = |1 |, and theweight i(H) is the nuniber of
incidences between the vertices and the edgds = ) ;| |Ej|. Trivially, v(H) <i(H)
ande(H) <i(H) for everyH.

Definition 2.2. Let F be any hypergraph. We associate withthe extremhfunctions
exe(F),ex (F) : N — N, defined by

exe(F,n) =maxe(H): H ¥ F & H issimple &v(H) < n}
ex(F,n)=maxi(H): H # F & H is simple &v(H) < n}.

We mnsidered exF, n) and ex(F, n) implicitly already in Klazar 15]. Except for
this paper, to our knowledge, this extremal setting is new and was not investigated before.
Obviously, for everyn € N andF, ex(F, n) < 2" — 1 and ex(F, n) < n2"~1 but much
better bounds can be usually given. Treeersalof a hypergraptH = (E; : i € 1) with
N = max(_J H) is the hypergraptH = (E; :i € |) whereEj = {N —x+1:x € E}.
Thus reversals are obtained by reverting the linear ordering of vertices. It is clear that
exe(F, n) = exe(F, n) and ex(F, n) = ex (F, n) for everyF andn.

We give a fewcomments orDefinitions 2.1and 2.2 Note hat our containmenk is
not an induced one. For graphsHb > Hj; andH» is simple thenH; is simple as well.
But asimple hypergraph may contain nonsimple hypergraphBefinition 2.2H must be
simple because allowing all would usually produce the valueco (the simpicity of H
may be dropped only foF = ({1}, {1}, ..., {1})). On the other hand, for the forbiddén
we allow any hypergraphF need not be simple and may have singleton edges. Another
perhaps unusual feature of our extremal theory is thet BndF edges of all cardinalities
are allowed; in extremal theories with forbidden substructures it is more common to have
edges of just one cardinality. This led naturally to the functior{lexn) which accounts
for edges of all sizes. Trivially, kF, n) > ex(F, n) for every hypergrapf andn € N.
On the oter hand,Theorem 2.3hows thafor many F one has exF, n) « ex(F, n).
In Definition 2.2we take allH with v(H) < nthat the extremal functions be automatically
nondecreasing. ReplacingH) < nwith v(H) = n would give more information on the
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extrenal functions but would also bring the complication that then extremal functions are
not always nondecreasing. It happens For= ({1}, {2}, ..., {k}) and we analyse this
phenomenon inl6, 18].

Theorem 2.3. Suppose that no edge of the hypergraph F precedes completely (in the
linear ordering of( J F) another edge. Let g= v(F) and g = e(F) > 1. Then ér every
neN,

ex(F.n) < @2p—-1(q—-1-ex(F,n.

Proof. Let H be a simple hypergraph satisfyitfdH = [m], m < n, H # F and
i (H) = ex (F, n). We transformH in a newhypergraptH’ by keepim all edges withless

thanp vertices and replacing every edge= {v1, v2, ..., vs},v1 < v2 < --- < vs, With at
leastp vertices byt = [|E|/p] new p-element edgefvs, ..., vp}, {vpt1, ..., v2p), ..o
{vi—np+1. - .-, vtp}. H may not be simple and we Il¢1” be the smplification of H'.

Two observations: (i) no edge ¢i’ repeatsy or moretimes and (ii))H” is F-free. If (i)
were false, there would epdistinct edges, . . ., Eq in H suchthat]| ﬂﬁzl Ei| > p. But
this implies the contradictioR < H. As for (i), any F-copy in H” may use from every
E € H at most one new edge” c E (each two new edges born froEhare separated in
the manner excluded irF) and soit is an F-copy in H as well. The observations and the
definitions ofH” andH” give

2p-1-iH) _@p-H@-1-i(H"

p p
<@2p-1(@-1-eH")

=@2p-D(@-1 - ex(F,n.

ex(F,n)=i(H) <

The last inequality follows from the fact thatg¥, n) is nondecreasing by definition.[d

However, ex(F, n) <« ex(F,n) does not hold fofr = Fx = ({1}, {2}, ..., {k}),
k > 2, because Fi,nN) = 2k —1forn > k — 1 and ex(Fx,n) = (k — Hn— (k — 2)
for n > maxk, 2¢~2) ([16, 18]). Note that forF = ({1}) both extremal functions are
undefined and that, sind& is highly symmetric, the ordering of vertices is irrelevant for
the ontainmentH > F.

Open Problem 2.4. Prove that if F is not imorphic to ({1}, {2},..., {k}) then
ex (F, n) < exe(F, n).

3. Bounding hypergraphs by means of graphs

For a fanily of simple graphsR andn € N we define

gex(R,n) = maxe(G) : G ¥ G' forall G’ ¢ R& G is a simple graph
& v(G) < n}

and for one simple grapd we write gexG, n) insteadof gex{G}, n). Firedi proved
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in [10], see also12, that for

G =({1,3},{1,5},{2,3},{2,4}) = @ 9

one has

nlog n « gex(Gy, n) < nlog n. (10)

(In [10] and [12] the invesigated objects are 0-1 matds, which can be viewed as
bipartite graphs with ordered parts, but in the casé&gfthe bounds are easily extended
to all ordered graphs.) Attempts to generalize the upper bound inlBpgtd hypergraphs
motivated the next theorem.

Fork € N we say that a simple gragh is ak-blow-upof a simple grapl@ if for every
edge colouringy : G’ — N using every colour at mosttimes there is &-copy inG’
with totally different colours, that iy is injective on theG-copy. Fork € N and a simple
graphG we write B(k, G) to denote the set of ak-blow-ups ofG.

Theorem 3.1. Let F be a snple gaph with p= v(F) and g = e(F) > 1 and let
B c B((5). F). If f : N— Nisanondecreasing function such that

gexB,n) <n- f(n)
for every ne N, then

exe(F,n) < q-gexF,n)-ex(F,2f(n)+ 1) (11)
for everyne N, n > 3.

Proof. Let H be a simple hypergraph satisfyitfgH = [m], m < n, H # F and
e(H) = ex(F,n). We put in H" every elge of H with more than 1 and less thgm
vertices, and for everfg € H with |[E| > p we put in H’ an arbitrary subseE’ c E,
|[E’| = p. S0 2< |E| < pforeveryE € H' and no edge oH’ repeats more thag — 1
times, for elseve would haveH > F. Let H” be the amplification of H’. H” is F-free.
We have

e(H) <n+(g—De(H".

Let G be the simple graph consisting of all edd&ssuchthatE* C E for someE € H”.

Observe that iff’ € B andF’ < G, thenF < H” and thusF < H. (For theedges
E* € G forming anF’-copy consider the colouring(E*) = E whereE € H” is such
that E* C E. Every cdour is used at mog$) times and theffere, sinceF’ is a (5)-blow-

up of F, we have arF-copy in G for which the correspondende* — E is injective.)
HenceF’ < GfornoF’ € B. Letv(G) = n’; n’ < n. We have

e(G) <gexB,n) <n' - f(n).
There exists a vertexy € | J G suchthat
d = deg; (vo) < 2f(n') < 2f(n).
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Fix an arlitrary edgeE§, vo € E} € G. Let X C [n] be the union of all edgeB € H”
satisfyingE§ C E andm be the number of such edgeshti’. We have theinequalities

m < exe(F, | X)) and X <d+1.
Thus
m < exe(F, | X]) < exe(F,d + 1) < ex(F,2f () +1).

We see thatite two-element se; is contained in at lea®ne and at most gkF, 2f (n) +
1) edges oH"”. More generally, for every subhypergrafhf of H” there is a two-element
set that is ontained in at least one and at mos§@x 2 f (n) 4 1) edges oH/'. It follows
that there $ a mgping M from H” to two-element subsets ¢fi] suchthatM(E) c E
for everyE € H” and|M~1(E*)| < ex(F, 2f(n) + 1) for everyE* C [n], |E*| = 2.
Let G’ be the simple graph consisting of the imageévbfandv(G’) = n’; n’ < n. Clearly,
e(H"”) < ex(F,2f(n)+1)-e(G). The ontainment- < G’ implies, by the definition of
G/, thatF < H” and hencé < H, which isnot allowed. Thus

e(G") < gexF,n’) < gexF,n).
Putting it all together, we obtain (since déxn) > n—1ifq > 1)
exe(F,n)=eH) <n+(q—1-eH")
<n+(Q-1-ex(F 2f(n)+1) - eG)
g-ex(F,2f(n)+1) - -gexF,n)

A

foreveryn > 3. 0O

We give three pplications of tlis theorem. The first one is the promised generalization of
the upper bound inX0). We need a technical lemma.

For fixedk € N consider all simple graphs having this structure; JG = AU {v} U
BUC with A < v < B < C, |A] =k, the vertexy has degre& and is connected to every
vertex in A, everyvertex in A has degreelk+ 1 and isbesidesy connected tdk vertices
in B and tok vertices inC, andG has no other edges. The edges incident witine called
backward edgeand the edges incident with verticesBnu C are calledforward edges
We denote the set of all such graphs b/(k).

Lemma 3.2. Let G; be as defined if9) and M(k) be the above sets of graphs.

1. For every k, M3k 4+ 1) C B(k, Gy). In particular, M(31) C B ((g) Gl).
2. For every k,gexM(k), n) < nlog n.

Proof. 1. LetG € M(3k + 1) andy : G — N be an edge colouring using each colour at
mostk times. We select i two backward edgeB; = {i, v} andEy = {j, v},i < | < v,
with different colours. It follows that we can select@two forward edgess = {i, |} and
Es = {j,I’} suchthatv < I’ < | and the four colourg (Ej),i = 1,...,4 are disinct.
EdgesE,, ..., E4 form aGi-copy on whichy is injective. ThusG € B(k, G1).

2. Letn > 2 andG be any simple graph such thaf G = [n] andG ¥ F for every
F € M(k). For eachi € [n] we deoteJ; = {E € G : minE = i}. In everyJ; we mark
the 1st,(k + Dth, (2k + Dth, ..., (pk 4+ 1)th edge wherep = []J;|/k] — 1 (the elges
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in J; are ordered by their endpoints). Then each two marked edges are separated by
unmarked edges, the last marked edge is followed by at keast unmarked edges, and
we have marked|Ji|/k]| > |J|/k — 1 edges. The grapls’ formed by all marked edges
satisfies

e(G) > e(G)/k —n.

Also, forever edgefi, j} € G',i < j,there ae at bastk — 1 edges{i, |} € Gwith| > |,
and for every two edge8, j},{i,j’} € G',i < ] < |/, there ae at kastk — 1 edges
{i,I} e Gwith j < < j’. Now we proceed as inwedi [L0]. We say thafi, j} € G/,
i < j, hastype(j, m), wherem > 0 is an integesatisfying 2" < n, if there are two

edged|i, |} and{i,I’} in G’ suchthatj < | < I”andl — j < 2™ < |’ — j. Considerthe
partition
G =G"uUG*™

whereG* is formed by edges with at least one type a8Bd* by edges without type. It
follows from the definition of type and d&’ that if k edges ofG* have the same type, then
F < G for someF € M (k) which is fobidden. Thus any type is shared by at most 1
edges. Since the number of types is less thdr+- log, n), we have

e(G*) < (k—1n+ (k— Dnlog, n.

To bounde(G**), we fix a verteX € [n] and consider the endpoints< jo < j1 < --- <
jt—1 < nofallt edgesE € G’ which have o type and mirE = i. Letd, = j, — jr_1
forl <r <t—21andD = di +---+0di—-1 = ji—1 — jo. If d1 < D/2, then
d; < 2™ < D for some integem > 0 and tle alge{i, jo} would have type(jo, m)
because of the edgéis j1} and{i, ji—1}. Thusd; > D/2 andD —d; < D/2. By the same
argument applied téi, j1}, d> > (D — d1)/2 andthusD — d; — d2 < D/4. In general,
1<D-dp—---—d <D/2forl<r <t—2 Thust <log, D +2 < 2+ log,n.
Summing these inequalities for alk [n], we have

e(G*™) < 2n+nlog, n.
Altogether we have
e(G) < kn+k(e(G*) + e(G**)) < (k? + 2k)n + k?nlog, n.

We oonclude that gefM (k), n) <« nlog n and the constant iRk depends quadratically
onk. O

Theorem 3.3. Let G; be the simple graph given {i9). We have the following bounds.

1. n-log n < ex(G1, n) < n- (log n)?- (log log n)3.
2. n-logn <« ex(Gy,n) < n- (logn)?- (log log n)3.

Proof. 1. The lower bound follows from the lower bound ihQf. To prove the upper
bound, we us&heorem 3.1By 2 of Lemma 3.2we have geg@V (31), n) <« nlog n. Also,
gexGi1,n) « nlog n (by the upper bound in1Q) or by geXG1, n) < gexM(Kk), n)).
By 1 of Lemma 3.2we can applyTheorem 3.with B = M(31). Stating with the trivial
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bound ex(G1, n) < 2", (11) with f(n) « log n gives
exe(Gy,n) « n°
wherec > 0 is aconstant. Feeding this bound back 1d); we get
e%(G1,n) < n- (log M+t
Two moreiterations of (1) give
exe(G1, n) < n- (log n)?- (log log n)**
and
exe(G1, n) < n- (log n)? - (log log n)? - (log log logn)®+*

which is dightly better than the stated bound.
2. The lower bound follows from e&G1, n) > eX(G1, n). The upper bound follows
by Theorem 2.3rom the upper bound in 1.0

Open Problem 3.4. What is the gact asymptotics of XG1, n)?

The second application offheorem 3.1concerns unordered extremal functions
exa(F, n) and geX(G, n). They ae defined as exF, n) and gexG, n) except that in
the containment the injection betweerrtex sets need not be increasing. So'géx n)
is the classical graph extremal function. It is well known, see for example BudIfh”
Exercise 24 in IV.7], that for every foreBtone has gk F, n) < (e(F)—1)-n. We extend
this linear bound to unordered hypergraphiseorem 3.holds also in the unordered case
because the proof is independent of order@gdering is cruciabnly for obtaining linear
or almost linear bounds on ggx, n) and gexB, n) because the inequalityl {) is usdess
if f(n) is not almost constant. The proof ®heorem 3.lalsoshows that ifF is a forest
and all members oB are forests (which is not the case f8Br= M (k)) then(g) can be
replaced byp — 1 (because ifE| = p then everyp two-element sets contained ihforce
cycle ut noF’ € B has a cycle).

Theorem 3.5. Let F be a forest. Its unordered hypergraph extremal function satisfies
exa(F,n) <« n.

Proof. Letv(F) = pande(F) = q > 1 (caseq = 1 is trivial). Adaging the construction
of graphs in the setd (k), it is not hard to construct a foreft’ with Q edges (one can
takeQ < (pg?)d™Y) that is a(p — 1)-blow-up of F. We setB = {F’} and use {1) with
the bounds ge%(F, n) < (g — 1)n, f(n) = Q — 1 (since ge%(B,n) = geX(F’,n) <
(Q —Dn), and eX(F, n) < 2" (trivial):

eU(F,m) <q-(q—1n-2201 = (g>4Q O

One can prove the bound B«F, n) <« n also directly, withoufTheorem 3.1by adating
the poof of geX(F, n) « nto hypergraphs. The third application ®heorem 3.Xollows
in the next section.
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4, Partitionsand star forests

The bound¥) tells us that ifF is any fixed partition wittk blocks andH is ak-sparse
patition with H ¥ F, thenv(H)(= i (H)) has an almost linear upper bound in terms of
e(H). The following theorem boundgH) almost linearly in terms o&(H) in the wider
class of (not necessarily simple) hypergraphsTheproof is based onf).

Theorem 4.1. Let F be a partition with p= v(F) and q= e(F) > 1and H be a F-free
hypergraph, not necessarily simple. Then

i(H)<@-1)-v(H)+eH)-B(q,2p, eH)) 12)
whereg (K, I, n) is the almost onstant function defined i{8).

Proof. Let|JH = [n] and the edges dfl be E1, Ep, ..., Ec wheree = e(H). We set,
forl1<i <n,§ ={je[e]:i € Ej}and consider the sequence

v=lI1la...1n

wherel; is an arbitrary ordering of . Clearly,v is over[e] and|v| =i (H). To bound|v|

by means of 7) we needv be sufficiently sparse but this may be violated on the transitions
li li+1. We fix this by setcting an appropriate subsequencelt is easy to see that we
can delete at most — 1 terms from the beginning of eadh i > 1, so that the resulting
subsequence is g-sparse; thetw| > |v| — (q — 1)(n — 1). It follows that if w (or v)
containsu(q, 2p), whereu(k, ) is defined in §), thenH containsF but this is fobidden.
(Note that the subsequenaabin v forces the first and theb to appear in two distinct
segmentd; and thus it gives incidences &, and E, with two distinct vertices.) Hence

w ¥ u(q, 2p) and we can bounf| by means of 7):

i(H)=pl <@-Dn+|w| <(q—Dn+e-B(q,2p,e). U

We show that for the partition

F=H;=({1,3,5},{2,4}) = @

the factor multiplyinge(H) in (12) must bex> «a(e(H)). We proceed as in the proof of
g(n) = gexGp,n) > na(n) in (2) and take a Zparse sequenaeover [n] suchthat
v 12121,|v| > na(n), andv = I112... I2, where every interval; consists of distinct
terms. We define the hypergraph

H=(E:ie€[n) with Ej = {j € [2n] : i appearsin;}.

We havei (H) = |v| > na(n), JH = [2n], v(H) = 2n, ande(H) = n. It is clear that
H # Ho because ¥ 12121.

Corollary 4.2. If F is apartition, p=v(F) and q= e(F) > 1, then

ex (F,n) < (qg—Dn+ex(F,n) - B(q, 2p, exe(F, n)).
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Proof. TakeH to be simplefF-free,| J H = [n] and with the maximum weight, and apply
Theorem 4.1 O

This bound is slightly weaker than the linear boundTineorem 2.3but on theother
hand it applies to every partitiorr, while Theorem 2.3ays nothing about partitions with
separated edges, suchfas= ({1, 3, 5}, {2, 4, 8}, {6, 7}).

Our last theorem generalizes in two ways the upper boun@)inFrst, we consider
a class of fobidden forests that contairdy as a member. Second, we extend the almost
linear upper bound to hypergraphs. The class consigtaoforestsvhich are forests$-
with this structure{ JF = AU B for some setA < B such that every vertex irB has
degree 1 and every edge BfconnectsA andB. In other wordsF is a star forest if every
component of- is a star and every central vertex of a star is smaller than every leaf.

Theorem 4.3. Let F be a star forest with = 1 components, p vertices, and-g p —r
edges. Let= (p— 1) (g — 1) + 1andg(k,I, n) be the almost constant function defined
in (8). We have the following bounds.

1. gexF,n) < (r —Hn+n-B(r, 29, n).
2. ex(F,n) < n-B(r, 2tq, n)s.
3. ex(F,n) <« n-B(r, 2tq, n)3.

Proof. 1. We give the leaves of tretar with the smallest centre label 1, the leaves of the
star with the second smatiecentre label 2, and so on. All labels form a sequanceer

[r] of lengthp — r. Now let G be any simple graph withJG = [n] andG % F. We
consider the sequence

v=I1l2...1n

wherel; is any ordering of the sei € [n] : {i,j} € G,i < j}. As in theproof of
Theorem 4.1we seéct anr-sparse subsequenaeof v with length |w| > |v] — (r —
1)(n—1). Suppose thatv = u(r, 2(p—r)) whereu(k, ) is defined in §). This means that
w has a (not necessarily consecutive) subsequentée form

ajay...araqa2...a ...a1a2...a

with 2(p — r) segmentsyay. ..a,. For a pemutdioniy,io,...,ir of [r], &; < &, <

-+ < @&, . We give @eryterma;; in z label j. If we slect one term from the 2nd, 4th,.,
2(p—r)th segment ot so that the labls on the selected terms form the sequanaehich
is clearly possible, thethe selected terms lie ip — r distinct intervalslj,, ..., Ij, .,
j1 < .-+ < jp-r. Since the selected terms are preceded by one segmasnt. . a;, we
havea, < ji1. The @lges connectingy,...,a; andji,..., jp_r corresponding to the
sekcted terms form aR-copy inG, which isa contradiction. Therefore % u(r, 2(p—r))
and we can apply?):

eG) == -Dn+|w < —-Dn+n- B 2(p—r),n).

2. Suppose thaF has the vertex sdtp] (so that[r] are the centres of the stars and
[r + 1, p] are the leaves). Fdt € N we denote F (k) the star forest with the vertex set
[r + (p — r)k] in which [r] are again the centres of stars andifoe 1,2,...,p—r
the vertices inr + (i — 1)k + 1,r + ik] are joined to the same vertex [n] asr + i
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is joined in F. It is easy to see thaF(t) = F(p— 1D —21 + 1) isa(p— 1)-
blow-up of F. Also, e(F (k)) = kg. We setB = {F(t)} and use 11) with the bounds
gex(F,n) <« n-B(r,2q,n) = n- B’ (bound 1 forF), f(n) = cB(r,2tq,n) = cB fora
constant > 0 (bound 1 forF(t)), and ex(F, n) < 2" (trivial):

exe(F,n) < n-p . 22+ < . 2+,
The second application oL{) gives

exe(F,n) < n- g - p.22CHDAE.20.26+1) . g3
becausgs’ < g and

B(r, 2tg, x) < log log x

(this is true with any number of logarithms).
3. Thisfollows from 2 byTheorem 2.3 O

The lower bound inZ) shows that in general in the bounds 1-3Tdfeorem 4.3he factor
multiplying n cannot be replaced with a constant and may be as big agn). The bounds
of Theorem 4.3lso hold for the revaals of star forests.

5. Concluding remarks

One can call a functiof : N — R nearlylinear if n1~¢ « f(n) <« n*¢ holds
for everye > 0. We identify a candidate for the class of hypergraphwith nearly
linear ex(F, n). If F isisomorphic to the hypergraptil}, {2}, ..., {k}), then ex(F, n)
is eventually constant 1B]) and thus is not nearly linear. For other hypergraphs we have
exe(F,n) > n becausd= £ ({1}, {2}, ..., {n}). An ordely bipartite forestis a simple
graphF suchthatF has no cycle and miE < maxE’ holds for every two edges d¢. In
other wordsF is a forest and there is a partitip F = AU B suchthat A < B and every
edge ofF connectsA and B. We denote the class of orderly bipartite forests by OBF. We
say thatF is anorderly bipartite forest with singletong F = F; U F> whereF; € OBF
and F» is a hypergraph consisting of possibly repeated singleton edges. For exdmple,
may be

F = ({8}, {6}. {6}. {2}. {1. 6}. {3, 6}, {4, 5}. {4. 7}).

The class OBF subsumes star forests and their reve@abiefined in @) belongs to OBF
but is néther a star forest nor a reversed star forest.

Lemma5.1. If the hypergraph F is not an orderly bipartite forest with singletons, then
there is aconstanty > 1 suchthat

exe(F, n) > n”
and hencexe(F, n) is not nearly linear.

Proof. If F is not an orderly bipartite forest with singletons, thEnhas (i) an edge
with more than two elements or (ii) two separated two-element edges or (iii) a two-path
isomorphic to ({1, 2}, {2, 3}) or (iv) a repeated two-element edge or (v) an even cycle
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of two-element edges (odd cycles are subsumed in (iii)). In the cases (i)—(iv) we have
exe(F, n) > n? because the complete bipartite graph with paing2]]1and[[n/2| + 1, n]

does not contaif. As for the case (v), an application of the probabilistic method ¢&rd”
[8]) provides an unordered graph that masertices,> n'*/* edges, and no even cycle

of lengthk. Thus, in the case (v), e&F, n) > n1t1/K for somek e N. O

We mnjecture that ex(F, n) is nearly linear if and only ifF is an orderly bipartite forest
with singlebns not isomorphic té{1}, {2}, ..., {k}). Since every orderly bipartite forest
with singletons is contained in some orderly bipartite forest, it suffices to consider only
orderly bipartite forests.

Open Problem 5.2. Prove (or disprove) that for every orderly bipartite forEstve have
exe(F, n) < n(log n)®
for some constart > 0.

It is not hard to construct, for evelfy € OBF andk € N, anF’ € OBF that is &-blow-
up of F. Thus the previous bound would follow byheorem 3.1from the graph bound
gex(F, n) < n(log n)C.

It is natural to consider two subclasses GBE OBF* ¢ OBF where OBE consists
of all F € OBF with ex(F,n) « n and OBF consists of allF € OBF with
eXe(F,n) « n- f(a(n)) for a primtive recursive functionf (n). Both inclusions are
strict, as witnessed b$o andG; (defined in () and ©)). In this paper the class OBRas
ignored and we showed that OBEontains all star forests (and their reversals). It would
be interesting to learn more about OB#hd OBF. Does he later class consist only of
star faests and their reversals?
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