29,863 research outputs found

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    Developing Efficient Metaheuristics for Communication Network Problems by using Problem-specific Knowledge

    Full text link
    Metaheuristics, such as evolutionary algorithms or simulated annealing, are widely applicable heuristic optimization strategies that have shown encouraging results for a large number of difficult optimization problems. To show high performance, metaheuristics need to be adapted to the properties of the problem at hand. This paper illustrates how efficient metaheuristics can be developed for communication network problems by utilizing problem-specific knowledge for the design of a high-quality problem representation. The minimum communication spanning tree (MCST) problem finds a communication spanning tree that connects all nodes and satisfies their communication requirements for a minimum total cost. An investigation into the properties of the problem reveals that optimum solutions are similar to the minimum spanning tree (MST). Consequently, a problem-specific representation, the link biased (LB) encoding, is developed, which represents trees as a list of floats. The LB encoding makes use of the knowledge that optimum solutions are similar to the MST, and encodes trees that are similar to the MST with a higher probability. Experimental results for different types of metaheuristics show that metaheuristics using the LB-encoding efficiently solve existing MCST problem instances from the literature, as well as randomly generated MCST problems of different sizes and types

    Dominators in Directed Graphs: A Survey of Recent Results, Applications, and Open Problems

    Get PDF
    The computation of dominators is a central tool in program optimization and code generation, and it has applications in other diverse areas includingconstraint programming, circuit testing, and biology. In this paper we survey recent results, applications, and open problems related to the notion of dominators in directed graphs,including dominator verification and certification, computing independent spanning trees, and connectivity and path-determination problems in directed graphs

    Maximum Performance at Minimum Cost in Network Synchronization

    Full text link
    We consider two optimization problems on synchronization of oscillator networks: maximization of synchronizability and minimization of synchronization cost. We first develop an extension of the well-known master stability framework to the case of non-diagonalizable Laplacian matrices. We then show that the solution sets of the two optimization problems coincide and are simultaneously characterized by a simple condition on the Laplacian eigenvalues. Among the optimal networks, we identify a subclass of hierarchical networks, characterized by the absence of feedback loops and the normalization of inputs. We show that most optimal networks are directed and non-diagonalizable, necessitating the extension of the framework. We also show how oriented spanning trees can be used to explicitly and systematically construct optimal networks under network topological constraints. Our results may provide insights into the evolutionary origin of structures in complex networks for which synchronization plays a significant role.Comment: 29 pages, 9 figures, accepted for publication in Physica D, minor correction
    corecore