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Abstract—The computation of dominators is a central tool in
program optimization and code generation, and it has applica-
tions in other diverse areas including constraint programming,
circuit testing, and biology. In this paper we survey recent
results, applications, and open problems related to the notion of
dominators in directed graphs, including dominator verification
and certification, computing independent spanning trees, and
connectivity and path-determination problems in directed graphs.

I. INTRODUCTION

A flow graph G = (V,A, s) is a directed graph with a
distinguished start vertex s such that every vertex is reachable
from s. A vertex u dominates a vertex v (u is a dominator of
v) if every path from s to v contains u; if u ̸= v, u is a strict
dominator of v. The dominator relation is transitive and can be
represented in compact form as a tree D, the dominator tree of
G. Tree D is rooted at s and is such that every vertex dominates
all its descendants and is dominated by all its ancestors. See
Figure 1. The parent d(v) of v in D is the immediate dominator
of v, the unique strict dominator of v dominated by all strict
dominators of v. Tree D is flat if each vertex v ̸= s has
d(v) = s. Let T be a rooted tree with vertex set V . Tree T
has the parent property if for all (v, w) ∈ A, the parent of w
in T is an ancestor of v in T . Tree T has the sibling property
if v does not dominate w for all siblings v and w. The parent
and sibling properties are necessary and sufficient for a tree to
be the dominator tree [1], [2]. A flow graph G = (V,A, s) is
reducible if every strongly connected subgraph S has a single
entry vertex v such every path from s to a vertex in S contains
v [3], [4]. A reducible flow graph becomes acyclic when every
arc (v, w) such that w dominates v is deleted [4].

The dominator tree is a central tool in program optimization
and code generation [5]. Compilers use dominators exten-
sively during program analysis and optimization, for vari-
ous goals such as natural loop detection (which enables a
host of optimizations), structural analysis [6], scheduling [7],
and the computation of dependence graphs and static single-
assignment forms [8]. Dominators have applications in other
diverse areas including constraint programming [9], circuit
testing [10], theoretical biology [11], memory profiling [12],
connectivity and path-determination problems [13]–[15], and
the analysis of diffusion networks [16].

II. ALGORITHMS FOR COMPUTING DOMINATORS

The problem of finding dominators has been extensively
studied. In 1972 Allen and Cocke [17] showed that the
dominator relation can be computed iteratively from a set of
data-flow equations. A direct implementation of this method
has an O(mn2) worst-case time bound. Cooper, Harvey, and
Kennedy [18] presented a clever tree-based space-efficient
implementation of the iterative algorithm. Although it does
not improve the O(mn2) worst-case time bound, the tree-
based version is much more efficient in practice. Purdom and
Moore [19] introduced a simple, reachability-based algorithm
with time complexity O(mn). Improving on previous work by
Tarjan [20], Lengauer and Tarjan [21] gave two near-linear-
time algorithms for computing D that run fast in practice
and have been used in many applications. The simpler of
these runs in O(m log(m/n+1) n) time, and the other runs
in O(mα(m,n)) time, where α is a functional inverse of
Ackermann’s function [22]. (Note that m ≥ n − 1 by the
assumption that all vertices are reachable from s.) The core of
the computations performed by the Lengauer-Tarjan algorithm
is to find minima of a function defined on the paths of a
depth-first search spanning tree of G [23]. This can be done
efficiently by a data structure that supports link and eval opera-
tions, which resemble the unite and find operations of a disjoint
set union data structure [22], but involve a more elaborate
use of path compression and tree balancing. With a simple
linking strategy the algorithm runs in O(m log(m/n+1) n) time,
and with a more complicated balanced linking strategy it
achieves the O(mα(m,n)) time bound. Subsequently, more-
complicated but truly linear-time algorithms to compute dom-
inators were discovered [24]–[27]; these algorithms are based
on the Lengauer-Tarjan algorithm and achieve linear time
by incorporating several other techniques, including the pre-
computation of answers to small subproblems. Very recently,
Gabow [28] and Fraczak et al. [29] presented linear-time algo-
rithms that are based on a different approach, and require only
simple data structures and a data structure for static tree set
union [30]. Gabow’s algorithm uses the concept of minimal-
set posets [31], [32], while the algorithm of Fraczak et al. uses
vertex contractions. Of those linear-time algorithms, [24], [26],
[28], [29] use bit-manipulation techniques, so they run on the
random-access-machine (RAM) model of computation. On the
other hand, [25], [27] are implementable on the less power-
ful pointer-machine model [33]. Ramalingam and Reps [34]
presented an incremental algorithm for finding dominators in
an acyclic graph. Their algorithm uses a data structure thatISCIM 2013, pp. 15-20 c⃝ 2013 Authors

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Epoka University

https://core.ac.uk/display/152487679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


16

f [3] e[7]

g[6]

d[2]
e[7]g[6] a[8]

b[5]c[4]f [3]

D

s[1]

d[2]

c[4]b[5]

e[7]

a[8]

B R

s[1]

a[8]

b[5] c[4]

d[2]

f [3]

g[6]

c[4]

G

s[1]

a[8]

e[7]

s[1]

g[6]

f [3]

d[2]

b[5]

Fig. 1. A flow graph G, its dominator tree D with vertices numbered in low-high order (numbers in brackets), and two strongly independent spanning trees
B and R.

computes nearest common ancestors in a tree that grows by
leaf additions. (See also [35], [36].) For this incremental near-
est common ancestors problem, Gabow [37] gave an O(m)-
time RAM algorithm, and Alstrup and Thorup [38] gave an
O(m log log n)-time pointer machine algorithm. These results
give implementations of the Ramalingam-Reps algorithm that
run in O(m) time on a RAM and in O(m log log n) time on a
pointer machine. Ramalingam [36] showed how to reduce the
problem of computing dominators in an arbitrary flow graph to
computing dominators in an acyclic graph. His reduction uses
static-tree disjoint set union, so it runs in O(mα(m,n)) time
on a pointer machine [22], and in O(m) time on a RAM [30].
Therefore, the combination of any linear-time algorithm for
computing dominators in an acyclic graph with Ramalingam’s
reduction gives a linear-time RAM algorithm for computing
dominators in a general graph.

A hybrid algorithm, named SNCA, which combines the
simple version of the Lengauer-Tarjan algorithm with the
Cooper-Harvey-Kennedy algorithm, was presented in [39].
This algorithm runs in O(n2) time in the worst-case but is
reported to perform much better in practice. An experimental
study of algorithms for computing dominators was presented
in [39], where careful implementations of both versions of the
Lengauer-Tarjan algorithm, the iterative algorithm of Cooper,
Harvey and Kennedy, and SNCA were given. In these ex-
perimental results the performance of all these algorithms

was similar, but the simple version of the Lengauer-Tarjan
algorithm and SNCA were most consistently fast, and their
advantage increased as the input graph got bigger or more
complicated. The graphs used in [39] were taken from the
application areas in program optimization, circuit testing, and
biology, and have moderate size (at most a few thousand
vertices and edges) and simple enough structure that they
can be efficiently processed by the iterative algorithm. Recent
experimental results for computing dominators in large graphs
are reported in [14], [40], [41]. There it is apparent that the
simple iterative algorithms are not competitive with the more
sophisticated algorithms based on Lengauer-Tarjan. The graphs
used in these experiments were taken from applications of
dominators in memory profiling [12], [42], testing 2-vertex
connectivity and computing sparse 2-vertex connected span-
ning subgraphs [13], [14], and computing strong articulation
points and strong bridges in directed graphs [15], which
typically involve much larger and complicated graphs.

III. DOMINATOR VERIFICATION AND CERTIFICATION

The most efficient algorithms for computing dominators
that we mentioned in Section II have some conceptual com-
plexities. This gives rise to the question of how does one
know that the output produced by these fast but complicated
algorithms for finding dominators is correct. This is an impor-
tant instance of software verification, a prominent and costly
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problem in software engineering [43]. One approach to deal
with this problem is to formally prove the correctness of the
program, but this may currently be beyond reach for programs
that implement sophisticated algorithms. Another option is to
implement a checker [44], which given an input-output pair
verifies that this pair satisfies the desired input-output relation.
A third option is to provide a certifying algorithm [43], i.e., an
algorithm that produces not only the desired output but also
a correctness certificate that can be validated by a certifier.
A certifier is an algorithm that is given an input-output pair
and a certificate, and uses the certificate to verify that the
input-output pair satisfies the desired input-output relation. The
certified algorithm should be as efficient (to within a constant
factor) as the most efficient non-certifying algorithm. Moreover
the certifier should be much simpler and easy to prove correct.

In the dominator verification problem, running time is not
the only measure of simplicity, since O(m) time is necessary
and sufficient for constructing the dominator tree, and hence
for verifying it. We are not aware of any formal verification
of a fast algorithm to compute dominators; a much simpler
but much slower algorithm has been formally verified [45].
The problem of verifying a dominator tree, i.e., providing a
checker that, given a flow graph G and a tree T , verifies that
T is the dominator tree of G, was considered in [1], [46].
There, linear-time algorithms were given, which are based
on the concepts of headers and loop nesting forests [36],
[47]. Although these algorithms are simpler than computing
dominators from scratch, they are not straightforward. A more
satisfying answer to the dominator verification problem was
achieved in [1], [2]. There, it is shown that an appropriate
certificate for a dominator tree D of a flow graph G is a
preorder of the vertices of D with a certain property, which
is called low-high. A preorder is of D is low-high on G if,
for all v ̸= s, (d(v), v) ∈ A or there are two arcs (u, v) ∈ A,
(w, v) ∈ A such that u is less than v, v is less than w, and w
is not a descendant of v. Figure 1 gives an example. Verifying
that an order is low-high is entirely straightforward and can
be done easily in linear time. Also, computing a low-high
order given G and D can be done in linear-time. Then, by
augmenting an efficient algorithm to compute D so that it also
computes a low-high order, one obtains an efficient certifying
algorithm.

Efficient implementations of certified algorithms for com-
puting dominators, based on the Lengauer-Tarjan algorithm,
were presented in [41]. There it is reported that the computa-
tion of the certificate (low-high order) adds a small overhead,
usually within a factor of two, to the running time of the non-
certified algorithm.

IV. INDEPENDENT SPANNING TREES

Consider a flow graph G = (V,A, s) and two spanning
trees B and R of G, rooted at s. We call such spanning trees
disjoint, if, for any v, the paths from s to v in B and R share
only s and v. We call B and R strongly disjoint, if, for any
distinct vertices v and w, either the path in B from s to v
and the path in R from s to w share only s, or the path in
R from s to v and the path in B from s to w share only s.

Whitty [48] proved that any flow graph G with flat dominator
tree has two strongly disjoint spanning trees. Plehn [49] and
independently Cheriyan and Reif [50] gave simpler proofs of
Whitty’s result using what Cheriyan and Reif called a directed
st-numbering as an intermediary. A directed st-numbering of
a directed graph G = (V,A) with two distinct vertices s and t,
is a numbering π : V 7→ {1, 2, . . . , n} of its vertices such that
π(s) = 1, π(t) = n, and every other vertex v has entering arcs
from a vertex u and a vertex w with π(u) < π(v) < π(w).
The proofs in [48]–[50] imply polynomial-time constructions
of directed st-numberings and of strongly disjoint spanning
trees, which seem to require Ω(nm) time in the worst case.
Later, Huck [51] gave an O(nm)-time algorithm to find two
disjoint spanning trees.

The above concepts were extended to arbitrary flow graphs
in [1], [2], [46]. Let G be a flow graph with vertex set V , arc
set A, and start vertex s. Two spanning trees B and R rooted
at s are independent if for all v, the paths from s to v in B
and R share only the dominators of v; B and R are strongly
independent if for every pair of vertices v and w, either the
path in B from s to v and the path in R from s to w share only
the common dominators of v and w, or the path in R from s
to v and the path in B from s to w share only the common
dominators of v and w. These definitions, also illustrated in
Figure 1, extend the notions of disjoint and strongly disjoint
spanning trees, respectively; low-high orders extend the notion
of directed st-numberings. Moreover, [1], [2], [46] presented
linear-time algorithms for their construction.

Independent spanning trees are closely related to low-high
orders, i.e., the certificate for dominator trees mentioned in
Section III: Given two independent spanning trees of G one
can construct in linear time a low-high order; conversely,
given a low-high order of G, one can construct two strongly
independent spanning trees in linear time [1], [2], [46].

V. CONNECTIVITY AND DISJOINT-PATHS PROBLEMS

A directed (undirected) graph is k-vertex connected if it has
at least k+1 vertices and the removal of any set of at most k−1
vertices leaves the graph strongly connected (connected). The
problem of testing the 2-vertex connectivity of a directed graph
can be reduced in linear time to verifying that the dominator
tree of a flow graph is flat [13], [15]. This way we obtain a
linear-time algorithm to test 2-vertex connectivity, either by
using a linear-time algorithm to compute dominators, or a
linear-time algorithm to verify that the dominator tree of given
flow graph is flat.

The linear-time algorithms [1], [2], [46] for computing two
(strongly) independent spanning trees can be used in a data
structure that computes pairs of vertex-disjoint s-t paths in 2-
vertex connected directed graphs (for any two query vertices
s and t) [13], and in fast algorithms for approximating the
smallest 2-vertex connected spanning subgraph of a directed
graph [14].

In [52], Tholey considers the following disjoint-paths prob-
lem: Let (ui, vi), 1 ≤ i ≤ k, be k pairs of vertices of a
directed acyclic graph with two distinguished start vertices s1
and s2. For each pair (ui, vi), we wish to test if there are two
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vertex disjoint paths P1 = (s1, . . . , t1) and P2 = (s2, . . . , t2),
where {t1, t2} = {ui, vi}, and to construct such paths if they
exist. Tholey showed how to test the existence of P1 and P2

in constant time and how to produce them in O(|P1| + |P2|)
time after linear-time preprocessing. He then uses this result
to give a linear-time algorithm for the 2-disjoint paths problem
on a directed acyclic graph. Tholey’s algorithm for testing
the existence of P1 and P2 and for constructing them uses
dominator trees, shortest-path trees, a topological order of the
directed acyclic graph, and other structures. The use of a low-
high order gives us an alternative solution that works for a
general directed graph G [2].

VI. DYNAMIC DOMINATORS

Now we consider the problem of dynamically maintaining
the dominator relation of a flow graph that undergoes both in-
sertions and deletions of edges. Vertex insertions and deletions
can be simulated using combinations of edge updates. A graph
problem is fully dynamic if it requires to process both insertions
and deletions of edges, incremental if it requires to process
edge insertions only and decremental if it requires to process
edge deletions only. The fully dynamic dominators problem
arises in various applications, such as data flow analysis and
compilation [53]. Moreover, [13], [15] imply that a fully
dynamic dominators algorithm can be used for dynamically
testing 2-vertex connectivity, and maintaining the strong ar-
ticulation points and strong bridges of a directed graph. The
decremental dominators problem appears in the computation
of 2-connected components in directed graphs [15].

Consider the effect that a single edge update (insertion
or deletion) has on the dominator tree D. Let (x, y) be the
inserted or deleted edge. We say that a vertex v is affected by
the update if its immediate dominator changes. It is easy to
verify that an edge insertion can violate the parent property of
D, while an edge deletion can violate the sibling property of
D. The difficulty in updating the dominance relation lies on
two facts: (i) An affected vertex can be arbitrarily far from the
updated edge, and (ii) a single update may affect many vertices.
In fact, we can construct sequences of Θ(n) edge insertions
(deletions) such that each single insertion (deletion) affects
Θ(n) vertices [54]. This implies a lower bound of Ω(n2)
time for any algorithm that maintains D explicitly through
a sequence of Ω(n) edge insertions or a sequence of Ω(n)
edge deletions, and a lower bound of Ω(mn) time for any
algorithm that maintains D through an intermixed sequence
of Ω(m) edge insertions and deletions.

The problem of updating the dominator relation has been
studied in [34], [53]–[58]. However, a worst-case complex-
ity bound for a single update better than O(m) has been
only achieved for special cases, mainly for incremental or
decremental problems. Specifically, the algorithm of Cicerone
et al. [53] achieves O(nmax{k,m} + q) running time for
processing a sequence of k edge insertions interspersed with q
queries of the type “does x dominate y?”, for a flow graph
with n vertices and initially m edges. The same bound is
also achieved for a sequence of k deletions, but only for a
reducible flow graph. This algorithm does not maintain the

dominator relation in a tree but in an n × n matrix, so a
query can be answered in constant time. Alstrup and Lauridsen
describe in a technical report [55] an algorithm that maintains
the dominator tree through a sequence of k edge insertions
interspersed with q queries in O(mmin{k, n} + q) time. In
this bound m is the number of edges after all insertions.
However, the description of this algorithm is incomplete and
seem to contain some incorrect arguments [54]. Recently, [54]
presented an algorithm that uses a depth-based search of the
dominator tree in order to locate the affected vertices, using
some ideas from [55], [58]. The algorithm is fully dynamic and
requires O(m) time for insertion and O(n2) time for deletion,
but is reported to perform much better in practice [54]. For
the incremental problem, the algorithm of [54] maintains the
dominator tree through a sequence of k edge insertions in
O(mmin{k, n}+ kn) time, where m is the number of edges
after all insertions.

VII. FURTHER APPLICATIONS AND OPEN PROBLEMS

We conclude by mentioning some further applications of our
constructions and some open problems.

a) Low-high orders: In [2], [41] it is conjectured that
a low-high order is a topological order of a directed graph
induced by the arcs of the independent spanning trees B and
R constructed by the algorithms in [2], [46]. Experiments on
large graphs, reported in [41] suggest that this is true, but there
is no proof.

Another related problem is whether there is a simple way
to extend the iterative algorithm of Cooper, Harvey and
Kennedy [18], or incremental algorithms for computing dom-
inators [34], [54], [58] so that they also compute a low-high
order of the dominator tree. Such an extension would make
these into certifying algorithms.

b) Independent Spanning Trees: Verifying that two span-
ning trees are independent or strongly disjoint is not easy.
Given a flow graph G, its dominator tree D, and two trees
B and R, we can test in O(n log n) time if B and R are
independent spanning trees of G using the techniques of [59].
Is there a linear-time algorithm for this test? Is there a fast
way to test if B and R are strongly independent?

Huck [60] showed that for any k ≥ 3 there is a k-connected
graph that does not have k independent spanning trees. This
result does not hold in special cases, such as planar graphs [61],
and acyclic graphs [62], [63]. For undirected graphs, Itai
and Rodeh [64], [65] conjectured that for any k-connected
undirected graph G = (V,E) and for any vertex v ∈ V , G
has k independent spanning trees rooted at v. Itai and Rodeh
proved their conjecture for the case k = 2, and gave a linear-
time construction. The case k = 3 was proved by Cheriyan
and Maheshwari [66], who also gave a corresponding O(n2)-
time algorithm, and by Itai and Zehavi [67]. Curran, Lee
and Yu [68] provided a O(n3)-time algorithm that constructs
four independent spanning trees of a 4-connected graph, thus
proving the k = 4 case. To the best of our knowledge, the case
k ≥ 5 is open.

c) Interprocedural Dominators: The most efficient algo-
rithms to compute dominators operate in the intraprocedural
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setting where all flow graph paths are valid. This suffices for
standard compilers, since they compute dominators in the flow
graph of each procedure separately. In the context of whole-
program analysis, however, we deal with an interprocedural
flow graph that is composed from all the procedures in the pro-
gram. An interprocedural flow graph contains context-sensitive
edges, such that every valid path in the flow graph must have a
proper nesting of procedure calls and returns. As a result, the
transitive reduction D of the interprocedural dominator relation
is a directed acyclic graph (DAG), and cannot be computed
by the most efficient algorithms for finding intraprocedural
dominators. In practice interprocedural flow graphs can be very
large, and therefore the use of algorithms that are not time and
space efficient is not a viable option in many cases. Computing
interprocedural dominators efficiently is an important step
towards whole-program optimization [69]. Reps, Horwitz and
Sagiv [70] gave polynomial-time algorithms for a general class
of interprocedural dataflow analysis problems by transforming
them to a special kind of graph reachability. A reachability-
based algorithm for interprocedural dominance was presented
by Ezick, Bilardi and Pingali [71]. Their algorithm builds the
complete dominance relation in O(mn) time and O(n2) space.
An iterative algorithm was given by de Sutter, van Put and de
Bosschere [69]. Although its running time is O(mn3) in the
worst case it is reported to perform well in practice with the
help of several heuristics. The important open question here
is whether there is a provably fast and practical algorithm to
compute interprocedural dominators.
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