22 research outputs found

    Embedding multidimensional grids into optimal hypercubes

    Full text link
    Let GG and HH be graphs, with V(H)V(G)|V(H)|\geq |V(G)| , and f:V(G)V(H)f:V(G)\rightarrow V(H) a one to one map of their vertices. Let dilation(f)=max{distH(f(x),f(y)):xyE(G)}dilation(f) = max\{ dist_{H}(f(x),f(y)): xy\in E(G) \}, where distH(v,w)dist_{H}(v,w) is the distance between vertices vv and ww of HH. Now let B(G,H)B(G,H) = minf{dilation(f)}min_{f}\{ dilation(f) \}, over all such maps ff. The parameter B(G,H)B(G,H) is a generalization of the classic and well studied "bandwidth" of GG, defined as B(G,P(n))B(G,P(n)), where P(n)P(n) is the path on nn points and n=V(G)n = |V(G)|. Let [a1×a2××ak][a_{1}\times a_{2}\times \cdots \times a_{k} ] be the kk-dimensional grid graph with integer values 11 through aia_{i} in the ii'th coordinate. In this paper, we study B(G,H)B(G,H) in the case when G=[a1×a2××ak]G = [a_{1}\times a_{2}\times \cdots \times a_{k} ] and HH is the hypercube QnQ_{n} of dimension n=log2(V(G))n = \lceil log_{2}(|V(G)|) \rceil, the hypercube of smallest dimension having at least as many points as GG. Our main result is that B([a1×a2××ak],Qn)3k,B( [a_{1}\times a_{2}\times \cdots \times a_{k} ],Q_{n}) \le 3k, provided ai222a_{i} \geq 2^{22} for each 1ik1\le i\le k. For such GG, the bound 3k3k improves on the previous best upper bound 4k+O(1)4k+O(1). Our methods include an application of Knuth's result on two-way rounding and of the existence of spanning regular cyclic caterpillars in the hypercube.Comment: 47 pages, 8 figure

    On paths and cycles dominating hypercubes

    Get PDF
    AbstractThe aim of the present paper is to study the properties of the hypercube related to the concept of domination. We derive upper and lower bounds and prove an interpolation theorem for related invariants

    A survey of graph burning

    Get PDF
    Graph burning is a deterministic, discrete-time process that models how influence or contagion spreads in a graph. Associated to each graph is its burning number, which is a parameter that quantifies how quickly the influence spreads. We survey results on graph burning, focusing on bounds, conjectures, and algorithms related to the burning number. We will discuss state-of-the-art results on the burning number conjecture, burning numbers of graph classes, and algorithmic complexity. We include a list of conjectures, variants, and open problems on graph burning

    A survey of graph burning

    Get PDF
    Graph burning is a deterministic, discrete-time process that models how influence or contagion spreads in a graph. Associated to each graph is its burning number, which is a parameter that quantifies how quickly the influence spreads. We survey results on graph burning, focusing on bounds, conjectures, and algorithms related to the burning number. We will discuss state-of-the-art results on the burning number conjecture, burning numbers of graph classes, and algorithmic complexity. We include a list of conjectures, variants, and open problems on graph burning

    A Creative Review on Coprime (Prime) Graphs

    Get PDF
    Coprime labelings and Coprime graphs have been of interest since 1980s and got popularized by the Entringer-Tout Tree Conjecture. Around the same time Newman's coprime mapping conjecture was settled by Pomerance and Selfridge. This result was further extended to integers in arithmetic progression. Since then coprime graphs were studied for various combinatorial properties. Here, coprimality of graphs for classes of graphs under the themes: Bipartite with special attention to Acyclicity, Eulerian and Regularity. Extremal graphs under non-coprimality and Eulerian properties are studied. Embeddings of coprime graphs in the general graphs, the maximum coprime graph and the Eulerian coprime graphs are studied as subgraphs and induced subgraphs. The purpose of this review is to assimilate the available works on coprime graphs. The results in the context of these themes are reviewed including embeddings and extremal problems

    Algorithmic embeddings

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2006.Includes bibliographical references (p. 233-242).We present several computationally efficient algorithms, and complexity results on low distortion mappings between metric spaces. An embedding between two metric spaces is a mapping between the two metric spaces and the distortion of the embedding is the factor by which the distances change. We have pioneered theoretical work on relative (or approximation) version of this problem. In this setting, the question is the following: for the class of metrics C, and a host metric M', what is the smallest approximation factor a > 1 of an efficient algorithm minimizing the distortion of an embedding of a given input metric M E C into M'? This formulation enables the algorithm to adapt to a given input metric. In particular, if the host metric is "expressive enough" to accurately model the input distances, the minimum achievable distortion is low, and the algorithm will produce an embedding with low distortion as well. This problem has been a subject of extensive applied research during the last few decades. However, almost all known algorithms for this problem are heuristic. As such, they can get stuck in local minima, and do not provide any global guarantees on solution quality. We investigate several variants of the above problem, varying different host and target metrics, and definitions of distortion.(cont.) We present results for different types of distortion: multiplicative versus additive, worst-case versus average-case and several types of target metrics, such as the line, the plane, d-dimensional Euclidean space, ultrametrics, and trees. We also present algorithms for ordinal embeddings and embedding with extra information.by Mihai Bădoiu.Ph.D

    Proceedings of the 17th Cologne-Twente Workshop on Graphs and Combinatorial Optimization

    Get PDF
    corecore