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1 Introduction

This bibliography introduces literature on graph thickness, outerthickness
and arboricity. In addition to the pointers to the literature we also give some
conjectures concerning known open problems on the area.

The bibliography given is most likely incomplete. The authors welcome
supplementing information by e-mail (tp@cs.uta.fi).

2 Thickness

The following conjecture was given by Harary [26]:

Prove or disprove the following conjecture: For any graph G with
9 points, G or its complementary graph G is nonplanar.

The problem is the same as determining whether K9 is biplanar or not,
that is, a union of two planar graphs. The problem was solved independently
by Battle et al. [6] and Tutte [51] by constructing all subgraphs for K9.
They showed that K9 is not biplanar. Tutte [52] generalized the problem by
defining the concept of the thickness of a graph.

Definition 2.1. The graph-theoretical thickness (thickness, for short) of a
graph, denoted by Θ(G), is the minimum number of planar subgraphs into
which the graph can be decomposed.

1



The thickness of a planar graph is 1 and the thickness of a nonplanar
graph is at least 2. Thickness has applications, for example, in VLSI (Very
Large Scale Integration) design [1] and network design [48].

It was long an open question whether Θ(K16) = 3 or 4. Harary offered 10
pounds to anyone who could compute Θ(K16). Finally a professor of French
literature, Jean Mayer [42], won the prize by showing that Θ(K16) = 3.

The NP-status of thickness was solved by Mansfield.

Theorem 2.2 ([40]). Determining the thickness of a graph is NP-complete.

The only non-trivial graph classes with known thicknesses are the com-
plete graphs, complete bipartite graphs, and hypercubes. The optimal solu-
tion for the thickness of complete graphs Kn was given for almost all values
of n by Beineke and Harary [12]. A decade later Alekseev and Gonchakov
[3], and independently Vasak [53], solved the remaining cases.

Theorem 2.3 ([3, 12, 53]). For complete graphs, Θ(Kn) = bn+7
6
c, except

that Θ(K9) = Θ(K10) = 3.

See Figure 1 for a decomposition of K9 into three planar subgraphs.
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Figure 1: A minimum planar decomposition of K9.

For complete bipartite graphs Km,n, thickness is solved for almost all
values of m and n.

Theorem 2.4 ([13]). For complete bipartite graphs, Θ(Km,n) = d mn
2(m+n−2)

e,
except possibly when m and n are odd, and there exists an integer k satisfying
n = b2k(n−2)

n−2k
c.

If m = n, Theorem 2.4 has the following shorter form.

Corollary 2.5. Θ(Kn,n) = bn+5
4
c.
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The thickness of hypercubes (an n-cube is denoted by Qn) was determined
by Kleinert [37].

Theorem 2.6 ([37]). Θ(Qn) = dn+1
4
e.

Next we give two lower bounds for thickness, see Beineke et al. [13] for ref-
erences concerning their origin. The first lower bound is a direct application
of Euler’s polyhedron formula.

Theorem 2.7. Let G = (V,E) be a graph with |V | = n and |E| = m. Then
Θ(G) ≥ d m

3n−6
e.

If a graph does not contain any triangles, as it is for bipartite graphs, a
tighter lower bound can be derived.

Theorem 2.8. Let G = (V,E) be a graph with |V | = n, |E| = m and with
no triangles. Then Θ(G) ≥ d m

2n−4
e.

The lower bounds of Theorems 2.7 and 2.8 are also the exact values for
the thickness of almost all complete and complete bipartite graphs.

Wessel [55] gave lower and upper bounds for the thickness of a graph as
a function of the minimum and maximum degree. The upper bound was
independently given also by Halton [25].

Theorem 2.9 ([25, 55]). Let G be a graph with minimum degree δ and
maximum degree ∆. Then it holds that d δ+1

4
e ≤ Θ(G) ≤ d∆

2
e.

Halton conjectured a stronger upper bound Θ(G) ≤ d∆+2
4

e. Sýkora et
al. [50] gave a counterexample by constructing a class of regular graphs of
degree d with thickness dd/2e. The construction shows that the upper bound
of Theorem 2.9 is tight.

Dean et al. [22] gave an upper bound as a function of the number of edges.

Theorem 2.10 ([22]). Let G be a graph with m edges, then it holds that
Θ(G) ≤ b

√

m/3 + 3/2c.

Czabarka et al. [19] have presented a bound for the thickness of a graph
by using the crossing number of the graph in question.

The thickness of degree-constrained graphs is studied by Bose and Prabhu
[14], and results for the thickness of random graphs are given by Cooper [18].
Mutzel et al. [33] have shown that the thickness of the class of graphs without
K5-minors is at most two.

The genus of a graph is the minimum number of handles that must be
added to the plane to embed the graph without any crossings. Asano has
studied the thickness of graphs with genus at most 2 [4, 5]. Thickness results
for other surfaces are reported by White and Beineke [56] and Ringel [49].
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3 Outerthickness

Instead of decomposing the graph into planar subgraphs, outerthickness seeks
a decomposition into outerplanar subgraphs.

Definition 3.1. The outerthickness of a graph, denoted by Θo(G), is the
minimum number of outerplanar subgraphs into which the graph can be de-
composed.

Outerthickness seems to be studied first in Geller’s unpublished manuscript
(see [27], pp. 108 and 245), where it was shown that Θo(K7) is 3 by similar
exhaustive search as in the case of the thickness of K9. See Figure 2 for a
decomposition of K7 into three outerplanar subgraphs.
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Figure 2: A minimum outerplanar decomposition of K7.

The outerthickness of complete graphs was solved by Guy and Nowakowski.

Theorem 3.2 ([59]). For complete graphs, Θo(Kn) = dn+1
4
e, except that

Θo(K7) = 3.

The same authors also gave optimal solutions for the outerthickness of
complete bipartite graphs and hypercubes.

Theorem 3.3 ([60]). For complete bipartite graphs with m ≤ n, Θo(Km,n) =
d mn

2m+n−2
e.

Theorem 3.4 ([59]). Θo(Qn) = dn+1
3
e.

It is possible to apply Euler’s polyhedron formula to derive lower bounds
for outherthickness similarly as for the graph thickness.

Theorem 3.5 ([58]). Let G = (V,E) be a graph with |V | = n and |E| = m.
Then Θo(G) ≥ d m

2n−3
e.
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Theorem 3.6 ([58]). Let G = (V,E) be a graph with |V | = n, |E| = m and
with no triangles. Then Θo(G) ≥ d m

3n/2−2
e.

The lower bounds of Theorems 3.5 and 3.6 are also the exact values
for the outerthickness of complete graphs, complete bipartite graphs, and
hypercubes.

The following theorem gives lower and upper bounds in the terms of
minimum and maximum degree of a graph.

Theorem 3.7 ([25, 55, 47]). For a graph with with minimum degree δ and
maximum degree ∆, it holds that dδ/4e ≤ Θo(G) ≤ d∆/2e.

Since Θo(G) ≥ Θ(G) and the upper bound is tight for thickness [50], it
follows that the upper bound is tight also for outerthickness.

Heath [61] has shown that a planar graph can be divided into two outer-
planar graphs. Therefore, Θo(G) ≤ 2Θ(G).

4 Arboricity

As thickness is defined using planar graphs and outerthickness by using out-
erplanar graphs, it is natural to continue to tighten the definition by replacing
outerplanar graphs by trees. This gives us the concept of arboricity. Hence,
the arboricity of a graph, denoted by Υ(G), is the minimum number of trees
whose union is G. Nash-Williams [81] gave the exact solution for arboricity

Υ(G) = max
⌈ mH

nH − 1

⌉

,

where the maximum is taken over all nontrivial subgraphs H of G. The num-
ber of vertices and edges in H are denoted by nH and mH , respectively. Ap-
plying Nash-Williams’ result, Dean et al. [22] showed that Υ(G) ≤ d

√

m/2e.
This gives also a lower bound for outerthickness.

Trees can be further replaced by stars, caterpillars [74, 79, 77] or linear
forests [72, 85]. (The bibliography concerning star, caterpillar, and linear
arboricity is by no means complete.)

5 Conjectures

Computational experiments [47] have shown that Theorem 2.4 holds for all
m < 30. For example, it was unknown if Θ(K17,21) is equal to 5 or 6 (the
thickness of K13,17 is at least 5 due to Euler’s polyhedron formula and it
cannot be more than Θ(K18,21) = 6 or Θ(K17,22) = 6). In general, the
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unknown values of Θ(Km,n) are quite rare, for an arbitrary m, there are
fewer than m/4 unsolved cases [10].

Conjecture 5.1. The claim of Theorem 2.4 holds for all complete bipartite
graphs.

Dean et al. [22] have conjectured a tighter upper bound for the thickness
as a function of the number of edges in the graph.

Conjecture 5.2 ([22]). Θ(G) ≤
√

m/16 + O(1) for an arbitrary graph G
with m edges.

The complexity status of outerthickness is open, but since thickness and
maximum planar subgraph problem are NP -complete, we conjecture that
determining the outerthickness of a graph is also NP -complete.

Conjecture 5.3. Determining the outerthickness of a graph is NP-complete.

Dean et al. [22] gave an upper bound for thickness as a function of the
number of edges (Theorem 2.10). If their proof technique is applied straight-
forward to outerplanar graphs, the bound d

√

m/2 + 1/2e is obtained. The
upper bound is of the right order, since the outerthickness of the complete
graph with n vertices is O(n). On the other hand, since Θo(Kn) is ap-
proximately

√

m/8 and Θo(Kn,n) is approximately
√

m/9, it seems that the
constant is not the best possible. We conjecture the following upper bound
for outerthickness.

Conjecture 5.4. Θo(G) ≤
√

m/8 + O(1) for an arbitrary graph G with m
edges.

Dean et al. [20] proposed an open problem related on bar k-visibility
graphs.

Conjecture 5.5 ([20]). Bar k-visibility graphs have thickness no greater
than k + 1.

6 Related problems

We can also consider other types of subgraphs whose union is the given graph.
For an interested reader, we recommend an article by Dujmovic and Wood
[23] for further references related to these subgraph classes.

The star arboricity of a graph G is the minimum number of stars whose
union is G. Similarly, the linear arboricity is the minimum number of linear
forests.
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In the book thickness of a graph, which is sometimes called the pagenum-

ber or stacknumber, vertices are placed on a line (the spine) and edges are
routed without intersections via half-planes (pages) having common bound-
ary with the spine. Book thickness indicates the minimum number of needed
pages.

Geometric thickness is the smallest number of layers such that the graph
can be drawn in the plane with straight line edges and each edge assigned to
a layer such that no two edges cross. Geometric outerthickness, geometric

arboricity and geometric star-aboricity are defined analogously.
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[47] T. Poranen and E. Mäkinen. Remarks on the thickness and outerthick-
ness of a graph. Computers & Mathematics with Applications, 50:249–
254, 2005.

[48] S. Ramanathan and E.L. Lloyd. Scheduling algorithms for multihop
radio networks. IEEE/ACM Transactions on Networking, 1:166–177,
1993.

[49] G. Ringel. Die torodiale Dicke des vollständigen Graphen. Mathematis-
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