485 research outputs found

    Spanners and Reachability Oracles for Directed Transmission Graphs

    Get PDF
    Let P be a set of n points in d dimensions, each with an associated radius r_p > 0. The transmission graph G for P has vertex set P and an edge from p to q if and only if q lies in the ball with radius r_p around p. Let t > 1. A t-spanner H for G is a sparse subgraph of G such that for any two vertices p, q connected by a path of length l in G, there is a p-q-path of length at most tl in H. We show how to compute a t-spanner for G if d=2. The running time is O(n (log n + log Psi)), where Psi is the ratio of the largest and smallest radius of two points in P. We extend this construction to be independent of Psi at the expense of a polylogarithmic overhead in the running time. As a first application, we prove a property of the t-spanner that allows us to find a BFS tree in G for any given start vertex s of P in the same time. After that, we deal with reachability oracles for G. These are data structures that answer reachability queries: given two vertices, is there a directed path between them? The quality of a reachability oracle is measured by the space S(n), the query time Q(n), and the preproccesing time. For d=1, we show how to compute an oracle with Q(n) = O(1) and S(n) = O(n) in time O(n log n). For d=2, the radius ratio Psi again turns out to be an important measure for the complexity of the problem. We present three different data structures whose quality depends on Psi: (i) if Psi = sqrt(3), we get Q(n) = O(Psi^3 sqrt(n)) and S(n) = O(Psi^5 n^(3/2)); and (iii) if Psi is polynomially bounded in n, we use probabilistic methods to obtain an oracle with Q(n) = O(n^(2/3)log n) and S(n) = O(n^(5/3) log n) that answers queries correctly with high probability. We employ our t-spanner to achieve a fast preproccesing time of O(Psi^5 n^(3/2)) and O(n^(5/3) log^2 n) in case (ii) and (iii), respectively

    Relaxed spanners for directed disk graphs

    Get PDF
    Let (V,δ)(V,\delta) be a finite metric space, where VV is a set of nn points and δ\delta is a distance function defined for these points. Assume that (V,δ)(V,\delta) has a constant doubling dimension dd and assume that each point p∈Vp\in V has a disk of radius r(p)r(p) around it. The disk graph that corresponds to VV and r(⋅)r(\cdot) is a \emph{directed} graph I(V,E,r)I(V,E,r), whose vertices are the points of VV and whose edge set includes a directed edge from pp to qq if δ(p,q)≤r(p)\delta(p,q)\leq r(p). In \cite{PeRo08} we presented an algorithm for constructing a (1+\eps)-spanner of size O(n/\eps^d \log M), where MM is the maximal radius r(p)r(p). The current paper presents two results. The first shows that the spanner of \cite{PeRo08} is essentially optimal, i.e., for metrics of constant doubling dimension it is not possible to guarantee a spanner whose size is independent of MM. The second result shows that by slightly relaxing the requirements and allowing a small perturbation of the radius assignment, considerably better spanners can be constructed. In particular, we show that if it is allowed to use edges of the disk graph I(V,E,r_{1+\eps}), where r_{1+\eps}(p) = (1+\eps)\cdot r(p) for every p∈Vp\in V, then it is possible to get a (1+\eps)-spanner of size O(n/\eps^d) for I(V,E,r)I(V,E,r). Our algorithm is simple and can be implemented efficiently

    Undirected Connectivity of Sparse Yao Graphs

    Full text link
    Given a finite set S of points in the plane and a real value d > 0, the d-radius disk graph G^d contains all edges connecting pairs of points in S that are within distance d of each other. For a given graph G with vertex set S, the Yao subgraph Y_k[G] with integer parameter k > 0 contains, for each point p in S, a shortest edge pq from G (if any) in each of the k sectors defined by k equally-spaced rays with origin p. Motivated by communication issues in mobile networks with directional antennas, we study the connectivity properties of Y_k[G^d], for small values of k and d. In particular, we derive lower and upper bounds on the minimum radius d that renders Y_k[G^d] connected, relative to the unit radius assumed to render G^d connected. We show that d=sqrt(2) is necessary and sufficient for the connectivity of Y_4[G^d]. We also show that, for d = 2/sqrt(3), Y_3[G^d] is always connected. Finally, we show that Y_2[G^d] can be disconnected, for any d >= 1.Comment: 7 pages, 11 figure

    Triangles and Girth in Disk Graphs and Transmission Graphs

    Get PDF
    Let S subset R^2 be a set of n sites, where each s in S has an associated radius r_s > 0. The disk graph D(S) is the undirected graph with vertex set S and an undirected edge between two sites s, t in S if and only if |st| <= r_s + r_t, i.e., if the disks with centers s and t and respective radii r_s and r_t intersect. Disk graphs are used to model sensor networks. Similarly, the transmission graph T(S) is the directed graph with vertex set S and a directed edge from a site s to a site t if and only if |st| <= r_s, i.e., if t lies in the disk with center s and radius r_s. We provide algorithms for detecting (directed) triangles and, more generally, computing the length of a shortest cycle (the girth) in D(S) and in T(S). These problems are notoriously hard in general, but better solutions exist for special graph classes such as planar graphs. We obtain similarly efficient results for disk graphs and for transmission graphs. More precisely, we show that a shortest (Euclidean) triangle in D(S) and in T(S) can be found in O(n log n) expected time, and that the (weighted) girth of D(S) can be found in O(n log n) expected time. For this, we develop new tools for batched range searching that may be of independent interest
    • …
    corecore