research

Relaxed spanners for directed disk graphs

Abstract

Let (V,δ)(V,\delta) be a finite metric space, where VV is a set of nn points and δ\delta is a distance function defined for these points. Assume that (V,δ)(V,\delta) has a constant doubling dimension dd and assume that each point pVp\in V has a disk of radius r(p)r(p) around it. The disk graph that corresponds to VV and r()r(\cdot) is a \emph{directed} graph I(V,E,r)I(V,E,r), whose vertices are the points of VV and whose edge set includes a directed edge from pp to qq if δ(p,q)r(p)\delta(p,q)\leq r(p). In \cite{PeRo08} we presented an algorithm for constructing a (1+\eps)-spanner of size O(n/\eps^d \log M), where MM is the maximal radius r(p)r(p). The current paper presents two results. The first shows that the spanner of \cite{PeRo08} is essentially optimal, i.e., for metrics of constant doubling dimension it is not possible to guarantee a spanner whose size is independent of MM. The second result shows that by slightly relaxing the requirements and allowing a small perturbation of the radius assignment, considerably better spanners can be constructed. In particular, we show that if it is allowed to use edges of the disk graph I(V,E,r_{1+\eps}), where r_{1+\eps}(p) = (1+\eps)\cdot r(p) for every pVp\in V, then it is possible to get a (1+\eps)-spanner of size O(n/\eps^d) for I(V,E,r)I(V,E,r). Our algorithm is simple and can be implemented efficiently

    Similar works