5 research outputs found

    Robust and Space-Efficient Dual Adversary Quantum Query Algorithms

    Get PDF
    The general adversary dual is a powerful tool in quantum computing because it gives a query-optimal bounded-error quantum algorithm for deciding any Boolean function. Unfortunately, the algorithm uses linear qubits in the worst case, and only works if the constraints of the general adversary dual are exactly satisfied. The challenge of improving the algorithm is that it is brittle to arbitrarily small errors since it relies on a reflection over a span of vectors. We overcome this challenge and build a robust dual adversary algorithm that can handle approximately satisfied constraints. As one application of our robust algorithm, we prove that for any Boolean function with polynomially many 1-valued inputs (or in fact a slightly weaker condition) there is a query-optimal algorithm that uses logarithmic qubits. As another application, we prove that numerically derived, approximate solutions to the general adversary dual give a bounded-error quantum algorithm under certain conditions. Further, we show that these conditions empirically hold with reasonable iterations for Boolean functions with small domains. We also develop several tools that may be of independent interest, including a robust approximate spectral gap lemma, a method to compress a general adversary dual solution using the Johnson-Lindenstrauss lemma, and open-source code to find solutions to the general adversary dual

    Improved Quantum Query Upper Bounds Based on Classical Decision Trees

    Get PDF
    We consider the following question in query complexity: Given a classical query algorithm in the form of a decision tree, when does there exist a quantum query algorithm with a speed-up (i.e., that makes fewer queries) over the classical one? We provide a general construction based on the structure of the underlying decision tree, and prove that this can give us an up-to-quadratic quantum speed-up in the number of queries. In particular, our results give a bounded-error quantum query algorithm of cost O(?s) to compute a Boolean function (more generally, a relation) that can be computed by a classical (even randomized) decision tree of size s. This recovers an O(?n) algorithm for the Search problem, for example. Lin and Lin [Theory of Computing\u2716] and Beigi and Taghavi [Quantum\u2720] showed results of a similar flavor. Their upper bounds are in terms of a quantity which we call the "guessing complexity" of a decision tree. We identify that the guessing complexity of a decision tree equals its rank, a notion introduced by Ehrenfeucht and Haussler [Information and Computation\u2789] in the context of learning theory. This answers a question posed by Lin and Lin, who asked whether the guessing complexity of a decision tree is related to any measure studied in classical complexity theory. We also show a polynomial separation between rank and its natural randomized analog for the complete binary AND-OR tree. Beigi and Taghavi constructed span programs and dual adversary solutions for Boolean functions given classical decision trees computing them and an assignment of non-negative weights to edges of the tree. We explore the effect of changing these weights on the resulting span program complexity and objective value of the dual adversary bound, and capture the best possible weighting scheme by an optimization program. We exhibit a solution to this program and argue its optimality from first principles. We also exhibit decision trees for which our bounds are strictly stronger than those of Lin and Lin, and Beigi and Taghavi. This answers a question of Beigi and Taghavi, who asked whether different weighting schemes in their construction could yield better upper bounds

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum
    corecore