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Abstract

The general adversary dual is a powerful tool in quantum computing because it gives a query-optimal
bounded-error quantum algorithm for deciding any Boolean function. Unfortunately, the algorithm
uses linear qubits in the worst case, and only works if the constraints of the general adversary dual
are exactly satisfied. The challenge of improving the algorithm is that it is brittle to arbitrarily
small errors since it relies on a reflection over a span of vectors. We overcome this challenge and
build a robust dual adversary algorithm that can handle approximately satisfied constraints. As one
application of our robust algorithm, we prove that for any Boolean function with polynomially many
1-valued inputs (or in fact a slightly weaker condition) there is a query-optimal algorithm that uses
logarithmic qubits. As another application, we prove that numerically derived, approximate solutions
to the general adversary dual give a bounded-error quantum algorithm under certain conditions.
Further, we show that these conditions empirically hold with reasonable iterations for Boolean
functions with small domains. We also develop several tools that may be of independent interest,
including a robust approximate spectral gap lemma, a method to compress a general adversary dual
solution using the Johnson-Lindenstrauss lemma, and open-source code to find solutions to the
general adversary dual.
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1 Introduction

The query model of computation has proven a powerful model in which to prove quantum-
classical separations [26, 19, 15] and to understand the limits of quantum algorithms [2, 6, 28].
The power and usefulness of this computational model in the quantum setting in part derives
from the fact that bounded-error quantum query complexity for Boolean function evaluation
is tightly and beautifully described by a semidefinite program (SDP) – the general adversary
bound [46, 44]. The dual of this semidefinite program has played an important role in the
development and understanding of quantum algorithms. In particular, the dual has been used
to show the optimality of span program algorithms, which are a critical element for several
algorithm design paradigms [45, 8, 30, 32] and are useful in a wide range of applications
[11, 20, 12, 9, 7]. While we have methods to create a bounded-error quantum algorithm for
function evaluation based on a set of vectors that exactly satisfy the constraints of the general
adversary dual [44], it is natural to ask how robust this algorithm is to transformations
and perturbations. For example, can we take a vector set that satisfies the dual adversary
constraints and modify it to obtain an algorithm with better space complexity? Or can we
create an algorithm from a vector set that satisfies relaxed dual adversary constraints? In
this paper, we find criteria under which these modified or approximately satisfying vector
sets yield viable algorithms, and we consider two problems where such robustness is useful.

First, we study when we can reduce the space complexity of dual adversary-derived
algorithms. Almost all Boolean functions on n bits have unitary space complexity Ω(n) [31],
but we hope to discover conditions under which less space might be required. We do this by
determining when we can compress the dimension of a set of vectors that exactly satisfies
the dual adversary constraints. While the dual adversary is most commonly studied in the
context of query complexity, is it also closely related to unitary space complexity [31], and
the dimension of the satisfying vectors to the dual adversary problem determines the space
used by the algorithm. As building large quantum computers will likely continue to be a
technical challenge in the near to medium term [29], finding ways to minimize the space used
by quantum computers is important.

We use two approaches to compress the dimension of a satisfying vector set, and hence
reduce the space used by the resulting algorithm. First, we consider using a unitary
transformation to rotate the vectors to a smaller space. Next, we analyze applying the
Johnson-Lindenstrauss (JL) lemma, which is a powerful tool for compressing the dimension
of a vector set while approximately preserving the structure of the vectors. With our analysis,
we find the simpler, unitary transformation always results in a better compression than
the JL approach. But, with either compression method, we can show for any function
with polynomially many 1-valued inputs, or polynomially many 0-valued inputs, there is a
query-optimal algorithm that uses logarithmic space. While it is not surprising that there
is an algorithm that uses logarithmic space for such problems (one could iterate through
possible 1/0-valued inputs and run Grover’s search to test each one), it is not obvious that
there is a query-optimal algorithm that uses logarithmic space.

The second problem we consider is how to create an algorithm using the output of a
numerical SDP solver applied to the general adversary dual. One can plug the general
adversary dual into a classical SDP solver and find a set of vectors that is close to a
query-optimal, exactly satisfying vector set. Due to finite precision, we expect that the
numerical solution will almost never be exactly satisfying, but we would like to know if we
can still produce a query-optimal quantum algorithm. With our tools for creating robust
dual adversary algorithms, we bound the error that can be tolerated, and we describe how
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to take a vector set that does not quite satisfy the dual adversary constraints, but is within
the tolerable error, and use it to create a bounded-error algorithm. In the worst case, our
analysis requires an error that scales inversely with the number of 1-valued or 0-valued inputs.
While this can be exponential in number of bits in the function, prior to our work, it was
not clear how to create any algorithm from an approximately satisfying solution. Moreover,
the general adversary bound is an SDP with dimension |X| where X is the function domain,
so in general, solvers will already take time polynomial in |X| to solve classically [48], so we
expect that attaining this level of precision will only contribute polynomially to the overall
runtime. Additionally, we show numerically that, at least for small functions, the error bound
we require is easily attainable.

One may naturally wonder why a vector set that approximately satisfies the dual adversary
constraints does not immediately yield an appropriate algorithm. The challenge is that
the standard algorithm is based on a reflection about the span of a subset of those vectors.
For example, consider a vector set that should ideally be {|0⟩, |1⟩, |0⟩+ |1⟩}, but is instead
{|0⟩ + 10−10|2⟩, |1⟩, |0⟩ + |1⟩}. The span of the first set is 2-dimensional, but the span of
the second set is 3-dimensional, even though the two vector sets are very close by almost
any metric. If the algorithm reflects over a space that is much larger than it should, it
might not correctly evaluate the function on all inputs. Our techniques allow us to find
appropriate reflections (or in fact unitaries that are close to reflection) so that the algorithms
can proceed, even with errors like the example above. Along the way towards proving our
main results, we also develop several tools that may be of independent interest, including a
robust approximate spectral gap lemma and open-source code to find solutions to the general
adversary dual.

1.1 Related Work
Space Complexity and Compression

Reichardt observes that that the space used by the dual adversary algorithm is the log of
the rank of Z, where Z is the positive semidefinite matrix that optimizes the primal general
adversary bound, and he notes that this provides a worst case log(n|X|) space complexity
for n-bit functions with domain X [44, 43]. Our exact compression result (Theorem 9) is of
a similar flavor, except that we are using the “rank” of the dual. Barnum, Saks, and Szegedy
use a different family of SDPs to characterize query complexity [5] (these SDPs can give
improved performance in the case of small or zero error algorithms), and their algorithm
again depends on the rank of the satisfying positive semidefinite matrix, but in the worst
case uses log |X|+ 1 qubits.

The key tool we use in our compression application is the Johnson-Lindenstrauss lemma.
The lemma guarantees that high-dimensional vectors randomly compressed into a lower-
dimensional space approximately preserves the inner products of the vectors [34]. The JL
lemma is used in a variety of classical applications including compressed sensing, dimension-
ality reduction, and machine learning [23, 49, 13], and it works even with sparse compression
matrices [35]. In fact, our work, in which we compress the dual solution to an SDP, has
similarities to work by So et al. [47], which uses JL compression to reduce the rank of the
matrix that is the primal solution to a semidefinite programming problem, at the cost of only
approximately satisfying the constraints. It is also known that the compressed dimension
given by the Johnson-Lindenstrauss lemma is optimal up to constant factors [39].

The idea of relaxing SDP constraints in order to improve the space used by an algorithm
has also been considered in the classical regime. Ding et al. create a storage-optimal SDP
solver by relaxing constraints [22].

ESA 2023
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In the quantum arena, a natural application of the JL lemma would be to compress
the size of quantum states, but Harrow et al. found that there is no such mapping that
significantly reduces the dimension of quantum states while preserving the Schatten 2-norm
distance with high probability [27]. However, the JL lemma was used to compress the space
used by a quantum finger printing protocol [25].

Span programs (which are equivalent to the dual adversary [44, 46]) were in fact originally
formulated in order to understand classical space complexity [36], and Jeffery shows lower
bounds on the space complexity of function evaluation that depend on minimum span
program and approximate span program sizes [31].

Numerical Solutions to the Dual Adversary

The idea of using classical computers to design quantum algorithms is not new. The
variational quantum eigensolver iteratively uses a classical computer to make a ground state
ansatz, which is then tested by a quantum computer [42]. A classical machine learning
algorithm can be used to guide quantum algorithm design [4]. However, the dual adversary
semidefinite programming problem is different in that it automatically produces a query-
optimal algorithm, rather than an iterative process guided by classical, heuristic optimization
methods.

1.2 Open Questions
Our techniques for space compression preserve the quantum query complexity of the original
algorithm, while attempting to reduce space complexity. It would be very interesting if they
could be modified to reduce space at the cost of increased query complexity; this might
provide insight into one of Aaronson’s 2021 open query complexity problems [1]: better
understanding space and query trade offs, specifically for the problems of collision and
element distinctness.

While we analyze dual adversary algorithms, these are closely related to span program
algorithms. It should be possible to translate the bounds and conditions we find on the
robustness of the general adversary dual into analogous bounds and conditions on span
program algorithms. We are especially curious if these relaxed constraints could be related
to Approximate Span Programs [30], which are another way of relaxing the constraints of
standard span programs.

While we show conditions under which it is possible to create dual adversary algorithms,
we do not prove lower bounds. It would be interesting to study whether, with more detailed
analysis, or under additional natural conditions, the JL approach to space compression could
be improved, or whether the analysis we present is optimal.

Generalizations of the general adversary bound characterize the problems of quantum
state conversion [40] and quantum subspace conversion [10]. Perhaps our techniques could
be extended to these additional regimes.

2 Preliminaries

A few notational conventions: we use ∥|ψ⟩∥ do denote the ℓ2 norm of |ψ⟩, [n] to denote
{1, 2, . . . , n}, and δi,j to denote the Kronecker delta function. If |λ⟩ is an eigenvector of
U with eigenvalue eiβ , we say the phase of |λ⟩ is β. For any unitary U , let PΘ(U) be the
orthogonal projector onto the eigenvectors of U with phase at most Θ. That is, PΘ(U) is the
orthogonal projector onto span{|λ⟩ : U |λ⟩ = eiβ |λ⟩ with |β| ≤ Θ}.
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We consider the quantum query complexity and space complexity of evaluating a function
f : X → {0, 1} where X ⊆ {0, 1}n. For such a function f , we define f−1(b) = {x ∈ X :
f(x) = b}. For some x ∈ X ⊆ {0, 1}n, we are given access to an oracle Ox that acts on
Cn⊗C2 as Ox|i⟩|b⟩ = |i⟩|b⊕xi⟩, where |i⟩ for i ∈ [n] and |b⟩ for b ∈ {0, 1} are standard basis
states, and xi is the ith bit of x. Given Ox, we would like to determine f(x). We do this by
implementing a bounded-error quantum query algorithm, which without loss of generality
takes the form

UTOxUT−1Ox · · ·U1OxU0|0̂⟩, (1)

followed by a two-outcome measurement that determines the output of the algorithm, where
U0, . . . UT are unitary operations acting on a Hilbert space of size S, such that for every input
x ∈ X, the probability of outputting f(x) is at least 2/3. The algorithm uses T applications
of the oracle and logS qubits of space. The bounded-error query complexity of f is the
minimum query complexity of any bounded-error query algorithm for f .

The general adversary dual is used in designing query-optimal quantum algorithms for
function evaluation:

▶ Definition 1 (General Adversary Dual). Let f : X → {0, 1} for X ⊆ {0, 1}n. The following
semidefinite optimization problem is called the dual of the general adversary bound, or what
we call the general adversary dual:

min
m∈N

|vx,j⟩∈Cm

max
x∈X

∑
j

∥|vx,j⟩∥2

 (2)

s.t. ∀x, y ∈ X : f(x) ̸= f(y), 1 =
∑

j:xj ̸=yj

⟨vx,j |vy,j⟩. (3)

While Definition 1 seeks to minimize the dimension m of the vectors {|vx,j⟩}x∈X,j∈[n]
(we will drop the set-building subscript and use {|vx,j⟩} when clear from context) that also
minimizes maxx∈X

∑
j ∥|vx,j⟩∥2, we note that to design an algorithm, we only need a vector

set {|vx,j⟩} that satisfies the constraints in Equation (3). This motivates the following
definition, similar to converting vector sets in [3].

▶ Definition 2 (Deciding Vector Set and Related Terms). Let f : X → {0, 1} for X ⊆ {0, 1}n,
and let m ∈ N. Then {|vx,j⟩ ∈ Cm}x∈X,j∈[n] is an f -deciding vector set if

∀x, y ∈ X : f(x) ̸= f(y), 1 =
∑

j:xj ̸=yj

⟨vx,j |vy,j⟩. (4)

We say the size of {|vx,j⟩} is maxx∈X
∑
j ∥|vx,j⟩∥2, the dimension is m, and the maximum

rank is maxj∈[n] rank{|vx,j⟩ : f(x) = 1}.

Given an f -deciding vector set, one can design a query algorithm to decide f :

▶ Theorem 3 ([44, 40]). For f : X → {0, 1} with X ⊆ {0, 1}n let {|vx,j⟩}x∈X,j∈[n] be an
f -deciding vector set with size A and dimension m. Then there is a bounded-error quantum
query algorithm that decides f with query complexity O (A) and space complexity O(log(nm)).

Because any n-bit function can be decided in n queries, we assume A = O(n). Additionally,
applying Cauchy-Schwarz to Equation (4), we have A ≥ 1.

We sketch the proof of Theorem 3 to make it easier to compare with our algorithms.
(For a more detailed description using similar notation, see Ref. [14, Chapter 23.6]). The
subroutine used in both Theorem 3 and in our algorithms is (parallelized) phase estimation.

ESA 2023
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▶ Lemma 4 (Phase Estimation [37, 16, 41]). Let U be a unitary that acts on n qubits, and
let δ,Θ > 0. Then there is a phase estimation style circuit that has precision Θ, error δ, acts
on n+ b qubits for b = O

(
log 1

Θ log 1
δ

)
, and uses O

( 1
Θ log 1

δ

)
calls to control-U applied to a

single instance of the state |ψ⟩, such that p0, the probability of outcome 0, satisfies

∥PΘ/2(U)|ψ⟩∥2(1− δ)− δ ≤ p0 ≤ ∥PΘ(U)|ψ⟩∥2 + δ. (5)

We prove Lemma 4 in the full version of the paper [17], which relies heavily on prior analyses
of phase estimation circuits.

The algorithm of Theorem 3 applies phase estimation with precision O(1/A) on a unitary
U with an initial state |0̂⟩. U acts on the space H = C⊕ Cn ⊗ Cm ⊗ C2, and is a product
of two reflections: U = (2Πx − I)(2∆ − I), where Πx = |0̂⟩⟨0̂| +

∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ |xi⟩⟨xi|

(here I acts on Cm, and |0̂⟩ is orthogonal to
∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ (|0⟩⟨0|+ |1⟩⟨1|)) and ∆ is the

orthogonal projector onto the following set of normalized vectors:

|ψy⟩ = 1
√
νy

|0̂⟩+ 1√
cA

∑
i∈[n]

|i⟩|vy,i⟩|yi⟩

 ∀y : f(y) = 1, (6)

s.t. νy = 1 + 1
cA

∑
i∈[n]

∥|vy,i⟩∥2 ≤ 1 + 1/c, (7)

where νy ≥ 1 is chosen to normalize |ψy⟩, and c is a constant chosen depending on the desired
success probability. We note (2Πx − I) requires 2 uses of Ox to implement, and (2∆ − I)
depends on the choice of the deciding vector set but is independent of the input x.

Then when f(x) = 1 and c = 2, |0̂⟩ has high overlap with |ψx⟩, which is easily verified to
be a 0-phase eigenvector of U , so by Lemma 4, the probability of measuring a phase of 0
when we perform phase estimation is large when δ (the error of phase estimation) is a small
constant.

On the other hand, when f(x) = 0, we consider the following normalized vector:

|ϕx⟩ = 1
√
µy

|0̂⟩ − √cA∑
i∈[n]

|i⟩|vx,i⟩|x̄i⟩

 (8)

s.t. µx = 1 + cA
∑
i∈[n]

∥|vx,i⟩∥2 ≤ 1 + cA2, (9)

where µy ≥ 1 is chosen to normalize the vector. Because {|vy,i⟩} is a deciding vector set, we
have ∀y : f(y) = 1, ⟨ψy|ϕx⟩ = 0. Thus {|ϕx⟩} is orthogonal to ∆. Next we use the effective
spectral gap lemma:

▶ Lemma 5 (Effective Spectral Gap Lemma [40]). Let Π,∆ be orthogonal projectors, let
U = (2Π− I)(2∆− I), and ∆|w⟩ = 0. Then

∥PΘ(U)Π|w⟩∥ ≤ Θ/2∥|w⟩∥. (10)

Then the probability of measuring a phase of 0 when we perform phase estimation
when f(x) = 0, by Lemma 4 is upper bounded by a term that depends on ∥PΘ(U)|0̂⟩∥2 =
µy∥PΘ(U)Πx|ϕx⟩∥2. Applying Lemma 5, and using the fact that µy = O(A2), we see
this is small when Θ, the precision of phase estimation, is chosen to be O(1/A). Since
δ (the error of phase estimation) is chosen to be a small constant, by Lemma 4 this
leads to a bounded-error algorithm with query complexity O(A), and space complexity
log(1 + 2nm) +O(logA) = O(log(nm)), as claimed in Theorem 3.
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3 Robust Dual Adversary Algorithm

In this section, we show that the dual adversary algorithm has robustness, in that it tolerates
errors and flexibility in how it is defined. As described in Section 2, we want to create
a bounded-error quantum query algorithm for a Boolean function f : X → {0, 1}, for
X ⊆ {0, 1}n. Similar to the standard algorithm, our robust algorithm will involve applying
phase estimation to a unitary U that acts on the space H = C⊕Cn ⊗Cm ⊗C2. We perform
phase estimation on U with a state |0̂⟩ ∈ H.

We now describe U . As in Section 2, we define the orthogonal projector Πx = |0̂⟩⟨0̂|+∑
i∈[n] |i⟩⟨i| ⊗ I ⊗ |xi⟩⟨xi| on H where I acts on Cm, and |0̂⟩ is orthogonal to

∑
i∈[n] |i⟩⟨i| ⊗

I ⊗ (|0⟩⟨0|+ |1⟩⟨1|). Notice that Πx can be implemented with two applications of the oracle
Ox. Let R be another unitary that acts on the same space as Πx, but R need not be a
reflection. Let U = (2Πx − I)R.

▶ Theorem 6. Let δ, νx, µx > 0, εψ, εϕ ≥ 0, and let U = (2Πx − I)R as defined above, so U
acts on O(lognm) qubits. Consider 0 < θ ≤ 1. Suppose there are sets of (not necessarily
normalized) vectors {|ψx⟩ = 1√

νx
(|0̂⟩ + |ηx⟩)}x:f(x)=1 and {|ϕx⟩ = 1√

µx
(|0̂⟩ + |ηx⟩)}x:f(x)=0

where ∀x ∈ X, ⟨ηx|0̂⟩ = 0, and furthermore, that
1. ∀x : f(x) = 1, ∥(I − U)|ψx⟩∥ ≤ εψ and
2. ∀x : f(x) = 0, Πx|ηx⟩ = 0 and ∥(I +R)|ϕx⟩∥ ≤ εϕ.

Then the probability of measuring a phase of 0 if we do phase estimation on U with initial
state |0̂⟩ with precision θ and error δ when f(x) = 1 is at least√νx(1−

5ε2
ψ

θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ, (11)

and when f(x) = 0 is at most

µx (εϕ/2 + θ/2∥|ϕx⟩∥)2 + δ. (12)

This algorithm uses O
( 1
θ log 1

δ

)
queries and O

(
log(nm) + log 1

θ log 1
δ

)
qubits.

Theorem 6 extends the robustness of the algorithm used to prove Theorem 3 (as described
in Section 2) in several ways. In the standard analysis, εψ and εϕ are both 0, whereas we
now allow them to be non-zero. In addition, Theorem 6 allows for imperfect alignment
between the vector sets {|ψx⟩} and {|ϕx⟩} and the unitary U . This will be the key for our
applications in the following sections. Additionally, in the standard algorithm, R is chosen
to be a reflection, but in Theorem 6, R can be any unitary that satisfies the criterion of
Theorem 6. While none of the applications we describe in this paper use this flexibility in
the design of R, it might be helpful in future use cases.

To prove Theorem 6, we need the following two lemmas, proved in the full version [17]:

▶ Lemma 7. Let U be a unitary and 0 < Θ ≤ 1. If ∥(I−U)|ψx⟩∥2 ≤ ε, then ∥PΘ(U)|ψx⟩∥2 ≥
1− 1.1ε

Θ2 .

Lemma 7 tells us that if a unitary U approximately preserves a state |ψx⟩, then |ψx⟩ has
high overlap with the low phase eigenspace of U . This gives us flexibility when f(x) = 1, in
that our initial state need not have high overlap with the 0-phase space of U , but instead
we only require high overlap with the low-phase-eigenspace of U . The proof of Lemma 7
proceeds by decomposing |ψx⟩ into its eigenbasis with respect to U, and showing that ϵ serves
to bound the amount of amplitude |ψx⟩ can have in states with eigenvalues larger than Θ.

ESA 2023
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▶ Lemma 8 (Robust Approximate Spectral Gap Lemma). Let ε ≥ 0, Π be an orthogonal
projector, R be a unitary, and U = (2Π− I)R. For Θ > 0, if ∥(I +R)|w⟩∥ ≤ ε, then

∥PΘ(U)Π|w⟩∥ ≤ ε

2 + Θ
2 ∥|w⟩∥. (13)

Lemma 8 generalizes the standard approximate spectral gap lemma (Lemma 5), in which
R is a reflection and ε = 0. In particular, Lemma 8 shows that when R is not a reflection
and when |w⟩ is not exactly given a phase of −1 by R, a variant of the approximate spectral
gap lemma still holds.1 The proof of Lemma 8 closely follows the proof approach of [40,
Lemma 4.2], which does not use Jordan’s Lemma, but instead directly uses a series of triangle
inequalities and observations of preserved subspaces to obtain the result.

Proof of Theorem 6. We first consider the case of x such that f(x) = 1. By Lemma 4, the
probability that we get an outcome of 0 when we perform phase estimation on the unitary U
with initial state |0̂⟩ with precision Θ and accuracy δ is at least ∥PΘ/2(U)|0̂⟩∥2(1− δ)− δ.
Now

∥PΘ/2(U)|0̂⟩∥ = ∥PΘ/2(U)
√
νx|ψx⟩ − PΘ/2(U)|ηx⟩∥

≥
√
νx∥PΘ/2(U)|ψx⟩∥ − ∥PΘ/2(U)|ηx⟩∥ (reverse triangle inequality)

≥

√√√√νx

(
1−

5ε2
ψ

Θ2

)
− ∥|ηx⟩∥, (14)

where the first term in the final line combines Lemma 7 and the assumption that ∥(I −
U)|ψx⟩∥ ≤ εψ, so ∥(I −U)|ψx⟩∥2 ≤ ε2

ψ, and the second term uses the fact that projectors can
only decrease the ℓ2 norm of a vector. Thus, using that ∥|ηx⟩∥ =

√
νx∥|ψx⟩∥2 − 1, we have

∥PΘ/2(U)|0̂⟩∥2(1− δ)− δ ≥

√νx(1−
5ε2
ψ

Θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ. (15)

When f(x) = 0, by Lemma 4, the probability that we get an outcome of 0 when we
perform phase estimation on U with initial state |0̂⟩ with precision Θ and accuracy δ is at
most

∥PΘ(U)|0̂⟩∥2 + δ = µx∥PΘ(U)Πx|ϕx⟩∥2 + δ, (16)

since by assumption, Πx|ϕx⟩ = 1/√µx|0̂⟩. Then from Lemma 8 and our assumption that
∥(I +R)|ϕx⟩∥ ≤ εϕ, we have

∥PΘ(U)Πx|ϕx⟩∥ ≤ εϕ/2 + Θ/2∥|ϕx⟩∥. (17)

Combining Equation (16) and Equation (17) gives us a probability of outcome 0 of at most

µx (εϕ/2 + Θ/2∥|ϕx⟩∥)2 + δ. (18)

Finally the query complexity and space complexity come from the requirements of phase
estimation Lemma 4, and that 2Πx − I can be implemented with two uses of the oracle. ◀

1 We note Lemma 8 is similar to Lemma 3.4 in [33], except we allow R to not be a reflection.
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4 Compressing the Dual Adversary Algorithm

In this section, we consider how and when it is possible to reduce the space complexity of the
quantum algorithm built from the general adversary dual. In particular, our goal is to take
an f -deciding vector set, reduce its dimension and hence create an algorithm which requires
fewer qubits to implement.

Our first result, Theorem 9, is a simple compression scheme that shows that an f -deciding
vector set on an n-bit function with maximum rank κ′ and size A can be compressed to an
f -deciding vector set with dimension κ′ and size at most A (see Definition 2 for terminology).
The number of qubits required by the resulting algorithm is then O(log(nκ′)) and the query
complexity is O(A), by Theorem 3 and using that A = O(n). Notice that κ′ is at most the
number of 1-valued inputs, but if many of the f -deciding vectors are linearly dependent, the
maximum rank could be much smaller.

We note that an f -deciding vector set is also an ¬f -deciding vector set by Definition 2,
where ¬f is the negation of f . Also, a ¬f -deciding vector set can be used to design a bounded
error quantum algorithm for deciding f by negating the output of the algorithm. Thus for a
given deciding vector set, we can minimize the space used by the algorithm by considering
either ¬f or f .

▶ Theorem 9. Given an f-deciding vector set with maximum rank κ′ and size A, we can
construct an f-deciding vector set with dimension κ′ and size at most A, resulting in an
algorithm that decides f with query complexity O(A) and space complexity O(log(nκ′)).

To prove Theorem 9, we apply a series of unitaries to rotate the vectors of the deciding vector
set into a smaller dimensional space. This is possible because if we apply the same unitary
to two vectors, their inner product is preserved. Our full proof appears in Ref. [17].

The next natural question is whether we can approximate the solution to the general
adversary dual in a lower dimension. We answer this question by considering a compression of
the vectors in a deciding vector set with guarantees from the Johnson-Lindenstrauss lemma,
which approximately preserve the inner products of the vectors.

It turns out that this straightforward idea is not trivial to implement. The first challenge
is that we must preserve the tensor product structure of our vectors in order to ensure that
the query algorithm can apply queries, so we must be careful about the part of the vectors
that we compress. The second challenge is that the compression only approximately preserves
the inner products of the compressed vectors so we need the robust dual adversary algorithm
described in Theorem 6.

Formally stated in Theorem 14, given an f -deciding vector set with maximum rank κ′ and
size A, we show how to build a quantum algorithm that succeeds with probability 2/3 and
operates in a Hilbert space of dimension O((κ′2 +A4κ′)n) with quantum query complexity
O(A). Since A = O(n), as discussed below Theorem 3, the number of qubits needed to run
the algorithm is no more than O(log(κ′n)).

Thus, this approximate compression using the JL lemma achieves the same space com-
plexity as the exact compression of Theorem 9, to within a constant multiplicative factor.
This may seem surprising that we are not able to do better, since we are no longer requiring
the constraints are exactly satisfied. However, the compression dimension in the JL lemma
has a polynomial dependence on the allowed error, and since the amount of error we can
tolerate roughly scales with maximum rank, we do not get as much compression as one might
hope for.

We now describe at a high level how we prove Theorem 14. While an optimal deciding
vector set might use complex vectors, the following lemma, which we prove in Ref. [17],
shows that at a small cost in increased vector dimension, we can restrict to real vectors:
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▶ Lemma 10. If there is an f-deciding vector set with complex numbers of dimension m

and size A, there exists an f-deciding vector set with only real numbers of dimension 2m
and size A.

The proof of Lemma 10 proceeds by creating a new vector set from the original where
each new real vector consists of the real part of the original complex vector stacked on top of
the imaginary part of the original complex vector.

While the standard Johnson-Lindenstrauss lemma guarantees that there is a compression
matrix that approximately preserves the l2-norm difference of any two vectors in a set, we
use the following corollary, which shows that the compression approximately preserves inner
products in addition to distances, which we prove in Ref. [17]. Our proof of Corollary 11 is
similar to a similar result in [38], except that we do not assume the vectors have norm 1.

▶ Corollary 11. Given ε > 0, a set of finite vectors V ⊂ Rd, and a number N > 8 ln(|V |)/ε2,
there is a compression matrix S ∈ RN×d such that for |v⟩, |u⟩ ∈ V ,

(S|u⟩)†(S|v⟩) = ⟨u|v⟩ ± 2ε(∥|u⟩∥2 + ∥|v⟩∥2). (19)

The Johnson-Lindenstrauss lemma guarantees the existence of such a compression matrix
S, and it can be found probabilistically by sampling random projections. It requires O(|X|n)
time to find such a satisfying projection via random sampling [18]. For our purposes, this
contributes to classical preprocessing time and space resources, and not towards the quantum
query complexity or quantum space use of the quantum algorithm itself. In particular, this
sampling requires no queries, so does not contribute to the query complexity.

We now describe how we use Johnson-Lindenstrauss to compress our deciding vector set.
Let {|vx,i⟩} be a real f -deciding vector set with size A, dimension m, and maximum rank κ′.
Define {|ψx⟩}x:f(x)=1 and {|ϕx⟩}x:f(x)=0 as in Equations (6) and (8) in Section 2. Let κ be
the rank of {|ψx⟩}x:f(x)=1. (We show in Ref. [17] that κ′ ≤ κ ≤ 2nκ′.)

To compress our vectors, it suffices to compress their orthonormal basis. Let {|ζj⟩}j∈[κ] be
an orthonormal basis for the space spanned by {|ψx⟩}x:f(x)=1. Then there are (non-unique)
real numbers {αj,x ∈ R}j∈[n],x∈f−1(1) such that

|ζj⟩ =
∑

x:f(x)=1

αj,x|ψx⟩. (20)

We will approximately preserve the structure of the vectors |ζj⟩ in the compression. Thus we
define their components

|vj,i,b⟩ =
∑

x:f(x)=1
xi=b

αj,x√
νx
|vx,i⟩, ∀j ∈ [κ], i ∈ [n], b ∈ {0, 1}. (21)

We will use the random compression matrix S from Corollary 11 to compress the following
set of vectors to error ε, as in Corollary 11, (and the compression dimension N will be chosen
later to achieve the desired value of ε):

{|vj,i,b⟩}j∈[κ],i∈[n],b∈{0,1}

⋃
{|vy,i⟩}y:f(y)=0,i∈[n] . (22)

We use these compressed vectors to define

∀x : f(x) = 1, |ψ′
x⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ψx⟩,

∀x : f(x) = 0, |ϕ′
x⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ϕx⟩,

∀j ∈ [κ], |ζ ′
j⟩ =

[
|0̂⟩⟨0̂|+ (I ⊗ S ⊗ I)

]
|ζj⟩. (23)
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As one would expect, the primed, compressed versions of these vectors have approximately
the properties of the uncompressed version, as follows:

▶ Lemma 12. For {|ζ ′
j⟩}j∈[κ], {|ψ′

x⟩}x:f(x)=1 and {|ϕ′
x⟩}x:f(x)=0 as described in Equa-

tion (23), these vectors have the following properties
1. ∀j, l ∈ [κ], ⟨ζ ′

j |ζ ′
l⟩ ∈ δj,l ± 4ε

2. ∀j ∈ [κ], x ∈ f−1(0), |⟨ζ ′
j |ϕ′

x⟩| ≤ 2ε(c+ 1)A.
3. ∀x : f(x) = 1,

∣∣∥|ψ′
x⟩∥2 − 1

∣∣ ≤ 4εκ and ∀x : f(x) = 0, |∥|ϕ′
x⟩∥ − 1| ≤ 3ε.

The proof of Lemma 12 uses Corollary 11 in fairly straightforward ways.
Let ∆′ be the orthogonal projector onto the space spanned by {|ψ′

x⟩}x:f(x)=1 and the
reflection R be 2∆′ − I. By definition, observe that R|ψ′

x⟩ = |ψ′
x⟩, so Theorem 6 Item 1 is

satisfied with εψ = 0. Additionally, because |ϕ′
x⟩ has the structure

|ϕ′
x⟩ ∝ |0̂⟩+

∑
i∈[n]

|i⟩|v′
x,i⟩|x̄i⟩ (24)

we have Πx|ϕ′
x⟩ ∝ |0̂⟩, as required by Theorem 6 Item 2. All that is left is to show that

∥(I +R)|ϕ′
x⟩∥ ≤ εϕ.

▶ Lemma 13. Consider ε so that εκ < 1/12. For R as defined below Lemma 12 and |ϕ′
x⟩

defined using Equations (8) and (23), we have ∥(I +R)|ϕ′
x⟩∥ ≤ 8ε(c+ 1)A

√
κ.

We prove Lemma 13 in Ref. [17]. The main idea is to write ∆′ in terms of the vectors
{|ζ ′⟩}, and then use Lemma 12 Item 2. Along the way, we show how to use Gram-Schmidt to
build an orthonormal basis from {|ζ ′

j⟩}, which is already almost orthonormal by Lemma 12
Item 1 (see Ref. [17] for details).

With Lemma 13 in hand, the conditions of Theorem 6 are satisfied and we apply it to
our compressed vectors.

▶ Theorem 14. Consider a Boolean function f : X → {0, 1} where X ⊆ {0, 1}n and
an f-deciding vector set with maximum rank κ and size A. Using Johnson-Lindenstrauss
compression, we can compress the f -deciding vector set to produce a quantum algorithm that
correctly evaluates f(x) with probability 2/3 for every input x ∈ X with O(A) quantum query
complexity. The algorithm uses O(log κn) qubits.

Proof of Theorem 14. We set

Θ = 1
4
√
cA

, ε = min
{

1
4cκ ,

1
32
√
c(c+ 1)A2√κ

}
, δ = 1

25 , and c = 100. (25)

With these choices, we bound the failure probability below 1/3 for all inputs x. (Note c
appears in Equations (6) and (8).)

Case f(x) = 1. By Theorem 6, for x such that f(x) = 1, we have that when εψ = 0, the
probability of measuring a phase of 0 is at least(√

νx −
√
νx∥|ψ′

x⟩∥2 − 1
)2

(1− δ)− δ. (26)

We know that 1 ≤ νx ≤ 1+1/c = 1.01 from Equation (7) and |∥|ψ′
x⟩∥2−1| ≤ 4εκ ≤ 1/100

from Lemma 12 Item 3 and Equation (25) when c = 100, so Equation (26) is at least(√
1−
√

1.01 · 1.01− 1
)2

(1− δ)− δ ≥ 2/3 (27)

where the final inequality is satisfied for δ = 1/25.
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Case f(x) = 0. By Theorem 6, for x such that f(x) = 0, we have that the probability of
measuring a phase of 0 is at most

µx

(
εϕ + Θ

2 ∥|ϕ
′
x⟩∥
)2

+ δ. (28)

We know that µx ≤ 1 + cA2 from Equation (9), εϕ ≤ 8ε(c+ 1)A
√
κ from Lemma 13, and

∥|ϕ′
x⟩∥ ≤ 1 + 3ε from Lemma 12 Item 3. So the probability of measuring a 0 phase is at most

(1 + cA2)
(

8ε(c+ 1)A
√
κ+ Θ

2 (1 + 3ε)
)2

+ δ. (29)

With Θ, ε, δ, and c as set in Equation (25), continuing from Equation (29), we have that
probability of failure when f(x) = 0 is at most

(1 + cA2)
(

1
4
√
cA

+ 1
4
√
cA

)2
+ δ ≤ 1

4cA2 + 1
4 + δ ≤ 1

3 (30)

since A ≥ 1.
To achieve this compression with ε as desired we look to Corollary 11 to see what

compression dimension is achievable. From Equation (22), we see we are compressing at
most 3|X|n vectors. Thus we require a compression dimension

N = O(log(|X|n)/ε2) = O((κ2 +A4κ) log(|X|n)). (31)

Then since our unitary U acts on O(log(nN)) qubits, by Theorem 6, the space complexity is

O(lognN + logA) = O
(
log
(
An(κ2 +A4κ) log(|X|n)

))
= O(log(κn)). (32)

where we’ve used that |X| ≤ 2n and A = O(n). Also, from Theorem 6, the query complexity
is O(A). ◀

▶ Corollary 15. If there are polynomially many 1-valued or 0-valued inputs to a function
f : X → {0, 1}, then there is a query-optimal quantum algorithm that evaluates f , and that
uses O(logn) qubits.

Proof. Notice that κ ≤ n1 where n1 the number of 1-valued inputs to f . When κ = O(nd)
for d = O(1), by Theorem 9 or Theorem 14, we have that for any deciding vector set for f
with size A, we can create an algorithm with query complexity O(A) whose space complexity
is O(logn). Since there is always a deciding vector set for f with size A such that O(A) is
the optimal query complexity of f [44], our results imply that there exists a query-optimal
algorithm that uses logarithmic space. For the case of polynomially many 0-valued inputs,
we use ¬f . ◀

5 Algorithm from a Numerical Solution

While the dual adversary provides a method of designing optimal query algorithms, in
general it might be hard to find an optimal solution. However, since the problem can be
formulated as a semidefinite program, we can find a numerical solution. We show that
numerical solutions that only approximately satisfy the dual adversary constraints can be
used to produce bounded-error quantum algorithms within a constant factor of the objective
function value of the numerical solution.
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We first provide a theoretical result that shows how an algorithm can be constructed
from an approximate deciding vector set, a vector set that only approximately satisfies
Equation (3). Then we introduce a classical Python package implemented specifically to
solve the general adversary dual SDP and show that its solutions often satisfy the error
bounds required by our theoretical results.

5.1 Application of Robust Dual Adversary Algorithm
In previous sections we assumed access to an exact solution to the general adversary dual
which we used to produce approximate solutions. In this section, we use a finite precision
SDP solver to obtain an approximate solution and then build a bounded-error quantum
algorithm with the robust dual adversary algorithm described in Theorem 6.

▶ Theorem 16. Consider a Boolean function f : X → {0, 1} where X ⊆ {0, 1}n and an
approximate f -deciding vector set {|vx,j⟩}x∈X,j∈[n] in the sense that

ε := max
x,y:f(x)̸=f(y)

|⟨ψx|ϕy⟩|, (33)

is small as defined below, where |ψx⟩, |ϕx⟩ are as in Equations (6) and (8). Let A be the size
and m be the dimension of the approximate f-deciding vector set, with size and dimension
defined as in Definition 2. Consider a matrix M with rows |ψx⟩x:f(x)=1. Let the singular
values of M be s1 ≥ s2 ≥ · · · ≥ sκ ≥ sκ+1 := 0 and n1 be |{x : f(x) = 1}|. If there exists
κ∗ ∈ [κ] such that

ε ≤ 1
√
n1

(
sκ∗

2
√
cA
− sκ∗+1

)
and sκ∗+1 ≤

1
2
√

1000cA
, (34)

then there is a quantum algorithm that correctly evaluates f with probability at least 2/3 with
at most O(A) queries and O(log(nm)) qubits.

Given any numerical solution, we can simply set κ∗ = κ in which case we require
ε < sκ/(2

√
cn1A). However, if the singular values fall off sharply then we can obtain a less

stringent constraint on ε, which in turn leads to less precision required by the numerical solver.
So in practice, we search for any κ∗ ∈ [κ] that gives a large enough bound to accommodate
the ε we observe in our numerical solution.

To prove Theorem 16, we apply Theorem 6. For this application, we set R to be equal to
a reflection over the space spanned by the first κ∗ right singular vectors of M, the matrix
whose rows are the vectors {|ψx⟩}x:f(x)=1. We use the following two lemmas to show that
this reflection approximately preserves the vectors {|ψx⟩}x:f(x)=1 and mostly destroys vectors
that are almost orthogonal to all vectors in {|ψx⟩}x:f(x)=1. Their proofs, found in Ref. [17],
use standard results from the singular value decomposition approach to approximating of
matrices.

▶ Lemma 17. Let M be the matrix whose rows are the vectors {|ψx⟩}x∈X1 for some set X1,
and denote M ’s singular values by s1 ≥ s2 ≥ · · · ≥ sκ. Let ∆′ be the orthogonal projector
onto the first κ∗ right singular vectors of M . Then ∀x ∈ X1, (2∆′ − I)|ψx⟩ = |ψx⟩ + |η⟩,
where ∥|η⟩∥ ≤ 2sκ∗+1 and sκ∗+1 = 0 if κ∗ = κ.

▶ Lemma 18. For disjoint sets X1 and Y and sets of vectors {|ψx⟩}x∈X1 and {|ϕy⟩}y∈Y
such that

|⟨ψx|ϕy⟩| ≤ ε ∀x ∈ X1, y ∈ Y, (35)
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let M be the matrix whose rows are the vectors {|ψx⟩}x∈X1 and denote its singular values
by s1 ≥ s2 ≥ · · · ≥ sκ. Let ∆′ be the orthogonal projector onto the first κ∗ right singular
vectors of M . Then ∀y ∈ Y, (2∆′ − I)|ϕy⟩ = |η⟩, where ∥|η⟩∥ ≤ sκ∗+1+ε

√
|X1|

sκ∗ and sκ∗+1 = 0
if κ∗ = κ.

We now use Lemmas 17 and 18 to apply Theorem 6 and prove Theorem 16.

Proof of Theorem 16. Let ∆′ be the orthogonal projector onto the first κ∗ right singular
vectors of M , and set R = 2∆′ − I so as in Theorem 6, U = (2Πx − I)R. Then

εψ := ∥(I − U)|ψx⟩∥ = ∥|ψx⟩ − (2Πx − I)R|ψx⟩∥
= ∥|ψx⟩ − (2Πx − I)(|ψx⟩+ |ηx⟩)∥
= ∥(2Πx − I)|ηx⟩∥ ≤ 2sκ∗+1 (By Lemma 17 and defs of Πx, |ψx⟩)

εϕ := ∥(I +R)|ϕy⟩∥ = ∥2∆′|ϕy⟩∥ ≤ 2
sκ∗+1 + ε

√
n1

sκ∗
. (By Lemma 18)

Then by Theorem 6, if f(x) = 1, the probability of measuring a phase of 0 is at least√νx(1−
5ε2
ψ

Θ2 )−
√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ (36)

≥

√(1−
20s2

κ∗+1
Θ2 )−

√
νx∥|ψx⟩∥2 − 1

2

(1− δ)− δ (37)

≥

√1−
20s2

κ∗+1
Θ2 −

√
1/c

2

(1− δ)− δ ≥ 2/3 (38)

where we set c = 100, δ = 1/25, and Θ = (2
√
cA)−1. In addition, we used that νx is between

1 and 1 + 1/c and that ∥|ψx⟩∥ = 1, both by Equation (6). Recall that s2
κ∗+1 ≤ Θ2/1000 by

assumption.
In the other case, where f(x) = 0, the probability of measuring a phase of 0 is at most

µx

(
2
sκ∗+1 + ε

√
n1

sκ∗
+ Θ/2∥|ϕx⟩∥

)2
+ δ ≤ (1 + cA2)

(
2
sκ∗+1 + ε

√
n1

sκ∗
+ Θ/2

)2
+ δ

(39)

= (1 + cA2)
(

1
4
√
cA

+ 1
4
√
cA

)2
+ δ (40)

≤ 1/3 (by the proof of Theorem 14)

when
sκ∗+1 + ε

√
n1

sκ∗
<

1
8
√
cA
⇐⇒ ε <

1
√
n1

(
sκ∗

2
√
cA
− sκ∗+1

)
. (41)

The algorithm uses within a multiplicative factor of 1
Θ log( 1

δ ) = 20A log(20) queries by
Lemma 4. ◀

The obvious question is whether the conditions in Theorem 16 are met in practice. We
show in the next subsection that the conditions are met in the vast majority of numerical
solutions to the general adversary dual for the random Boolean functions we find on functions
of up to 25 bits with domain size 32.
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5.2 Experiments
In this section, we describe how the numerical error (defined in Equation (33)) behaves in
practice.

The general adversary dual (Definition 1) is a semidefinite programming (SDP) problem.
In order to solve the SDP numerically, we first reformulate it in the following standard form:

min
X∈Sn

tr(CX) s.t. A(X) = b and X ⪰ 0 (42)

where Sn is the set of n× n symmetric matrices, C ∈ Sn, tr(·) is the trace, b ∈ Rm is the
constraint vector, and

A(X) := [tr(A1X), . . . , tr(AmX)]⊤ (43)

for constraint matrices Ai ∈ Sn. The reformulation requires converting the constraints
and introducing appropriate slack variables. The constraints for our SDP are particularly
sparse which makes it inefficient to use standard packages like CVXOPT and SDPA [21, 24].
Instead, we use the alternating direction method of [50] which is specifically designed for
SDP problems with sparse structure and orthogonal constraints. The pseudocode appears in
Algorithm 1.

Algorithm 1 Alternating direction augmented Lagrangian method [50].

Require: Constraint matrices A,C ∈ Sn, constraint vector b ∈ Rm, iterations T , tolerance
t ≥ 0

Ensure: Output X approximately satisfies Equation (42)
X0 ← 0n×n ▷ Zero matrix
S0 ← In×n
for k = 0, 1, . . . , T − 1 do

yk+1 ← −(AA∗)+(A(Xk)− b +A(Sk −C)) ▷ (·)+ denotes Moore-Penrose
pseudoinverse

Vk+1 ← C−A∗(yk+1)−Xk

Sk+1 ← Q+Σ+Q⊤
+ ▷ Q+,Σ+ contain the non-negative eigendecomposition of Vk+1

Xk+1 ← Sk+1 −Vk+1

Xk+1 ← round(Xk+1) ▷ For entries within t of 0 or 1, round to nearest integer
end for
X← XT−1

We slightly adapt Algorithm 1 to our problem: We store each matrix in a sparse format,
round entries of the solution after every iteration, and use the Moore-Penrose pseudoinverse.

The first natural question is how well Algorithm 1 performs. We test this by generating
random Boolean functions f : X → {0, 1} where X ⊆ {0, 1}n for different values of n. Since
the dimension of the SDP grows exponentially with |X|, we fix |X| = 32 for our experiments.
For each instance, we compute the maximum numerical error

ε := max
x,y:f(x)̸=f(y)

|⟨ψx|ϕy⟩|. (44)

The results in Theorem 16 depend on the error ε being small so it’s important that we can
obtain solutions with small error efficiently. Figure 1 shows how ε decreases with the number
of iterations T of the SDP solver.
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The next question is whether the error is sufficiently small to satisfy the requirements of
Theorem 16. Figure 2 shows how ε is typically much smaller than the bound required in
Theorem 16 for random functions of up to 25 bits with domain size 32. Our experiments test
for whether ε satisfies the bound of Theorem 16 in the case that κ∗ = κ. It could be that
even larger ε is tolerated by considering κ∗ < κ.
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Figure 1 For random Boolean functions with a domain of fixed size, the maximum numerical
error decreases with the number of iterations of the SDP solver. Note: the vertical axis is on a
logarithmic scale and the shaded regions contain one standard deviation from 20 random instances.
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Figure 2 For random Boolean functions with a domain of fixed size, the maximum numerical
error stays below the threshold required to construct a provably correct bounded-error quantum
algorithm. Note: both axes are on a logarithmic scale and the green region above the diagonal line
indicates the error is small enough.
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