2,082 research outputs found

    Maximum-rate Transmission with Improved Diversity Gain for Interference Networks

    Full text link
    Interference alignment (IA) was shown effective for interference management to improve transmission rate in terms of the degree of freedom (DoF) gain. On the other hand, orthogonal space-time block codes (STBCs) were widely used in point-to-point multi-antenna channels to enhance transmission reliability in terms of the diversity gain. In this paper, we connect these two ideas, i.e., IA and space-time block coding, to improve the designs of alignment precoders for multi-user networks. Specifically, we consider the use of Alamouti codes for IA because of its rate-one transmission and achievability of full diversity in point-to-point systems. The Alamouti codes protect the desired link by introducing orthogonality between the two symbols in one Alamouti codeword, and create alignment at the interfering receiver. We show that the proposed alignment methods can maintain the maximum DoF gain and improve the ergodic mutual information in the long-term regime, while increasing the diversity gain to 2 in the short-term regime. The presented examples of interference networks have two antennas at each node and include the two-user X channel, the interferring multi-access channel (IMAC), and the interferring broadcast channel (IBC).Comment: submitted to IEEE Transactions on Information Theor

    Integer-Forcing Linear Receivers

    Get PDF
    Linear receivers are often used to reduce the implementation complexity of multiple-antenna systems. In a traditional linear receiver architecture, the receive antennas are used to separate out the codewords sent by each transmit antenna, which can then be decoded individually. Although easy to implement, this approach can be highly suboptimal when the channel matrix is near singular. This paper develops a new linear receiver architecture that uses the receive antennas to create an effective channel matrix with integer-valued entries. Rather than attempting to recover transmitted codewords directly, the decoder recovers integer combinations of the codewords according to the entries of the effective channel matrix. The codewords are all generated using the same linear code which guarantees that these integer combinations are themselves codewords. Provided that the effective channel is full rank, these integer combinations can then be digitally solved for the original codewords. This paper focuses on the special case where there is no coding across transmit antennas and no channel state information at the transmitter(s), which corresponds either to a multi-user uplink scenario or to single-user V-BLAST encoding. In this setting, the proposed integer-forcing linear receiver significantly outperforms conventional linear architectures such as the zero-forcing and linear MMSE receiver. In the high SNR regime, the proposed receiver attains the optimal diversity-multiplexing tradeoff for the standard MIMO channel with no coding across transmit antennas. It is further shown that in an extended MIMO model with interference, the integer-forcing linear receiver achieves the optimal generalized degrees-of-freedom.Comment: 40 pages, 16 figures, to appear in the IEEE Transactions on Information Theor

    Degrees of Freedom of Wireless X Networks

    Full text link
    We explore the degrees of freedom of M×NM\times N user wireless XX networks, i.e. networks of MM transmitters and NN receivers where every transmitter has an independent message for every receiver. We derive a general outerbound on the degrees of freedom \emph{region} of these networks. When all nodes have a single antenna and all channel coefficients vary in time or frequency, we show that the \emph{total} number of degrees of freedom of the XX network is equal to MNM+N−1\frac{MN}{M+N-1} per orthogonal time and frequency dimension. Achievability is proved by constructing interference alignment schemes for XX networks that can come arbitrarily close to the outerbound on degrees of freedom. For the case where either M=2 or N=2 we find that the outerbound is exactly achievable. While XX networks have significant degrees of freedom benefits over interference networks when the number of users is small, our results show that as the number of users increases, this advantage disappears. Thus, for large KK, the K×KK\times K user wireless XX network loses half the degrees of freedom relative to the K×KK\times K MIMO outerbound achievable through full cooperation. Interestingly, when there are few transmitters sending to many receivers (N≫MN\gg M) or many transmitters sending to few receivers (M≫NM\gg N), XX networks are able to approach the min⁥(M,N)\min(M,N) degrees of freedom possible with full cooperation on the M×NM\times N MIMO channel. Similar to the interference channel, we also construct an example of a 2 user XX channel with propagation delays where the outerbound on degrees of freedom is achieved through interference alignment based on a simple TDMA strategy.Comment: 26 page

    Interference alignment at intermediate SNR with perfect or noisy CSI

    Get PDF
    Interference alignment is a new technique combining transmitter precoding and receiver interference suppression to achieve the optimal multiplexing gain in interference networks by exploiting knowledge of channel state information of all transmission links. So far closed form solutions for the transmit filters have only been found in certain cases. Also the feasibility of interference alignment schemes based on symbol extensions, over a limited number of signalling dimensions, is still an open problem. In this work we investigate the performance in terms of bit error rates, of interference alignment schemes at intermediate signal-to-noise ratios, through Monte Carlo simulations. We focus our attention on the three and four users time-varying interference channel, using both the closed form solutions known at present as well as iterative algorithms. We then investigate the impact of noisy channel state information on the performances of some of the interference alignment systems considered. In the single input single output interference channel the closed form solutions of the interference alignment cause considerably different bit error rates for the different nodes in the network. In the multiple input multiple output interference channel we exhibit that bit error rate saturates at moderate signal-to-noise ratios when interference alignment schemes are infeasible and even when they are feasible, some of the analyzed algorithms show unpredictable behaviors by deteriorating the performance as the signal-to-noise ratio exceeds a threshold. Further renements are necessary in order to obtain better bit error rates in these cases. We evince that additional improvements are also needed to the original interference alignment schemes in order to mitigate their sensitivity to noisy channel state informatio

    Smart antennas: state of the art

    Get PDF
    Aim of this contribution is to illustrate the state of the art of smart antenna research from several perspectives. The bow is drawn from transmitter issues via channel measurements and modeling, receiver signal processing, network aspects, technological challenges towards first smart antenna applications and current status of standardization. Moreover, some future prospects of different disciplines in smart antenna research are given.Peer Reviewe
    • 

    corecore