382 research outputs found

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Linear Transmission of Composite Gaussian Measurements over a Fading Channel under Delay Constraints

    Get PDF
    Delay constrained linear transmission (LT) strategies are considered for the transmission of composite Gaussian measurements over an additive white Gaussian noise fading channel under an average power constraint. If the channel state information (CSI) is known by both the encoder and decoder, the optimal LT scheme in terms of the average mean-square error distortion is characterized under a strict delay constraint, and a graphical interpretation of the optimal power allocation strategy is presented. Then, for general delay constraints, two LT strategies are proposed based on the solution to a particular multiple measurements-parallel channels scenario. It is shown that the distortion decreases as the delay constraint is relaxed, and when the delay constraint is completely removed, both strategies achieve the optimal performance under certain matching conditions. If the CSI is known only by the decoder, the optimal LT strategy is derived under a strict delay constraint. The extension to general delay constraints is elusive. As a first step towards understanding the structure of the optimal scheme in this case, it is shown that for the multiple measurementsparallel channels scenario, any LT scheme that uses only a oneto-one linear mapping between measurements and channels is suboptimal in general

    Scaling up MIMO: Opportunities and Challenges with Very Large Arrays

    Full text link
    This paper surveys recent advances in the area of very large MIMO systems. With very large MIMO, we think of systems that use antenna arrays with an order of magnitude more elements than in systems being built today, say a hundred antennas or more. Very large MIMO entails an unprecedented number of antennas simultaneously serving a much smaller number of terminals. The disparity in number emerges as a desirable operating condition and a practical one as well. The number of terminals that can be simultaneously served is limited, not by the number of antennas, but rather by our inability to acquire channel-state information for an unlimited number of terminals. Larger numbers of terminals can always be accommodated by combining very large MIMO technology with conventional time- and frequency-division multiplexing via OFDM. Very large MIMO arrays is a new research field both in communication theory, propagation, and electronics and represents a paradigm shift in the way of thinking both with regards to theory, systems and implementation. The ultimate vision of very large MIMO systems is that the antenna array would consist of small active antenna units, plugged into an (optical) fieldbus.Comment: Accepted for publication in the IEEE Signal Processing Magazine, October 201

    Eigen-Based Transceivers for the MIMO Broadcast Channel with Semi-Orthogonal User Selection

    Full text link
    This paper studies the sum rate performance of two low complexity eigenmode-based transmission techniques for the MIMO broadcast channel, employing greedy semi-orthogonal user selection (SUS). The first approach, termed ZFDPC-SUS, is based on zero-forcing dirty paper coding; the second approach, termed ZFBF-SUS, is based on zero-forcing beamforming. We first employ new analytical methods to prove that as the number of users K grows large, the ZFDPC-SUS approach can achieve the optimal sum rate scaling of the MIMO broadcast channel. We also prove that the average sum rates of both techniques converge to the average sum capacity of the MIMO broadcast channel for large K. In addition to the asymptotic analysis, we investigate the sum rates achieved by ZFDPC-SUS and ZFBF-SUS for finite K, and show that ZFDPC-SUS has significant performance advantages. Our results also provide key insights into the benefit of multiple receive antennas, and the effect of the SUS algorithm. In particular, we show that whilst multiple receive antennas only improves the asymptotic sum rate scaling via the second-order behavior of the multi-user diversity gain; for finite K, the benefit can be very significant. We also show the interesting result that the semi-orthogonality constraint imposed by SUS, whilst facilitating a very low complexity user selection procedure, asymptotically does not reduce the multi-user diversity gain in either first (log K) or second-order (loglog K) terms.Comment: 35 pages, 3 figures, to appear in IEEE transactions on signal processin

    Cooperative Transmitter-Receiver Arrayed Communications

    No full text
    This thesis is concerned with array processing for wireless communications. In particular, cooperation between the transmitter and receiver or between systems is exploited to further improve the system performance. Based on this idea, three technical chapters are presented in this thesis. Initially in Chapter 1, an introduction including array processing, multiple-input multiple-output (MIMO) communication systems and the background of cognitive radio is presented. In Chapter 2, a novel approach for estimating the direction-of-departure (DOD) is proposed using the cooperative beamforming. This proposed approach is featured by its simplicity (beam rotation at the transmitter) and effectiveness (illustrated in terms of channel capacity). Chapter 3 is concerned with integration of spatio-temporal (ST) processing into an antenna array transmitter, given a joint transmitter-receiver system with ST processing at the receiver but spatial-only processing at the transmitter. The transmit ST processing further improves the system performance in convergence, mean-square error (MSE) and bit error rate (BER). In Chapter 4, a basic system structure for radio coexistence problem is proposed based on the concept of MIMO cognitive radio. Cooperation between the licensed radio and the cognitive radio is exploited. Optimisation of the sum channel capacity is considered as the criterion and it is solved using a multivariable water-filling algorithm. Finally, Chapter 5 concludes this thesis and gives suggestions for future work
    • …
    corecore