520 research outputs found

    Forward-Looking Radar Clutter Suppression Using Frequency Diverse Arrays

    Get PDF
    This thesis introduces a new array structure, the Frequency Diverse Array (FDA), where each channel transmits and receives at a different frequency. The resulting range-dependent FDA antenna pattern is proposed to improve forward-looking clutter suppression. The planar FDA radar data model is derived and analytically verified to be equivalent to the constant frequency data model when each element frequency is set to the same value. The linear FDA at high platform altitude provides significant benefits? by reducing the range ambiguous clutter contribution, improving target detection by up to 10 dB. At low altitudes without range ambiguous clutter the linear FDA achieved a small but consistent performance improvement of 1 to 2 dB attributed to sample support data homogeneity. Planar FDA showed up to a 20 dB detection improvement for a high altitude platform with an airborne target. The simulation results show the FDA provides considerable benefit for low relative velocity targets, improving ground target detection for platforms such as Joint Surveillance and Target Attack Radar System (JSTARS) and Unmanned Aerial Vehicles (UAV)

    Airborne Radar Interference Suppression Using Adaptive Three-Dimensional Techniques

    Get PDF
    This research advances adaptive interference suppression techniques for airborne radar, addressing the problem of target detection within severe interference environments characterized by high ground clutter levels, levels, noise jammer infiltration, and strong discrete interferers. Two-dimensional (2D) Space-Time Adaptive Processing (STAP) concepts are extended into three-dimensions (3D) by casting each major 2D STAP research area into a 3D framework. The work first develops an appropriate 3D data model with provisions for range ambiguous clutter returns. Adaptive 3D development begins with two factored approaches, 3D Factored Time-Space (3D-FTS) and Elevation-Joint Domain Localized (Elev-JDL). The 3D adaptive development continues with optimal techniques, i.e., joint domain methods. First, the 3D matched Filter (3D-MF) is derived followed by a 3D Adaptive Matched Filter (3D-AMF) discussion focusing on well-established practical limitations consistent with the 2D case. Finally, a 3D-JDL method is introduced. Proposed 3D Hybrid methods extend current state-of-the-art 2D hybrid methods. The initial 3D hybrid, a functional extension of the 2D technique, exhibits distinct performance advantages in heterogeneous clutter. The final 3D hybrid method is virtually impervious to discrete interference

    Overview of frequency diverse array in radar ECCM applications

    Get PDF

    Adaptive Illumination Patterns for Radar Applications

    Get PDF
    The fundamental goal of Fully Adaptive Radar (FAR) involves full exploitation of the joint, synergistic adaptivity of the radar\u27s transmitter and receiver. Little work has been done to exploit the joint space time Degrees-of-Freedom (DOF) available via an Active Electronically Steered Array (AESA) during the radar\u27s transmit illumination cycle. This research introduces Adaptive Illumination Patterns (AIP) as a means for exploiting this previously untapped transmit DOF. This research investigates ways to mitigate clutter interference effects by adapting the illumination pattern on transmit. Two types of illumination pattern adaptivity were explored, termed Space Time Illumination Patterns (STIP) and Scene Adaptive Illumination Patterns (SAIP). Using clairvoyant knowledge, STIP demonstrates the ability to remove sidelobe clutter at user specified Doppler frequencies, resulting in optimum receiver performance using a non-adaptive receive processor. Using available database knowledge, SAIP demonstrated the ability to reduce training data heterogeneity in dense target environments, thereby greatly improving the minimum discernable velocity achieved through STAP processing

    FM airborne passive radar

    Get PDF
    The airborne application of Passive Bistatic Radar (PBR) is the latest evolution of the now established international interest in passive radar techniques. An airborne passive system is cheaper to construct, easier to cool, lighter and requires less power than a traditional active radar system. These properties make it ideal for installation on an Unmanned Aerial Vehicle (UAV), especially for the next generation of Low Observable (LO) UAVs, complementing the platforms LO design with an inherently Low Probability of Intercept (LPI) air-to-air and air-to-ground sensing capability. A comprehensive literature review identified a lack of practical and theoretical research in airborne passive bistatic radar and a quantitative model was designed in order to un- derstand the theoretical performance achievable using a hypothetical system and FM as the illuminator of opportunity. The results demonstrated a useable surveillance volume, assuming conservative estimates for the receiver parameters and allowed the scoping and specification of an airborne demonstrator system. The demonstrator system was subsequently designed and constructed and flown on airborne experiments to collect data for both air-to-air and air-to-ground operation analysis. Subsequent processing demonstrated the successful detection of air targets which correlated with the actual aircraft positions as recorded by a Mode-S/ADS-B receiver. This is the first time this has been conclusively demonstrated in the literature. Doppler Beam Sharpening was used to create a coarse resolution image allowing the normalised bistatic clutter RCS of the stationary surface clutter to be analysed. This is the first time this technique has been applied to an airborne passive system and has yielded the first quantitive values of normalised bistatic clutter RCS at VHF. This successful demonstration of airborne passive radar techniques provides the proof of concept and identifies the key research areas that need to be addressed in order to fully develop this technology

    Performance comparison of reflector and AESA-based digital beamforming for small satellite spaceborne SAR

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) sensors play an ever increasingly important role in Earth observation in the fields of science, geomatics, defence, commercial products and services. The user community requirements for large, high temporal and spatial resolution swaths has driven the need for low-cost, high-performance systems. The increasing availability of commercial launch vehicles shall bolster the manufacturing and industrialisation of a smaller class sensor. This work deals with the performance comparison between a small satellite class planar array and reflector antenna system. Here the focus lies on digital beamforming techniques for the operation in wide-swath, high-resolution stripmap mode. For this the sensor sensitivity and ambiguity suppression performance in range and azimuth are derived. The Jupyter notebook environment with code in the Python language served as a convenient mechanism for modelling and verifying different performance aspects. These performance metrics are simulated and verified against existing systems. The limitations the spherical Earth geometry has on the transmitter timing and the imaged scene are derived. This together with the SAR platform orbital characteristics lead to the establishment of antenna design constraints. A planar array and reflector system are modelled with common design specifications and compared to a sea ice monitoring scenario. The use of digital beamforming techniques together with a high gain reflector antenna surface provided evidence that a reflector antenna would serve as a feasible alternative to planar arrays for spaceborne SAR missions

    Spaceborne synthetic aperture radar pilot study

    Get PDF
    A pilot study of a spaceborne sidelooking radar is summarized. The results of the system trade studies are given along with the electrical parameters for the proposed subsystems. The mechanical aspects, packaging, thermal control and dynamics of the proposed design are presented. Details of the data processor are given. A system is described that allows the data from a pass over the U. S. to be in hard copy form within two hours. Also included are the proposed schedule, work breakdown structure, and cost estimate

    Applications of FM Noise Radar Waveforms: Spatial Modulation and Polarization Diversity

    Get PDF
    Two possible radar application spaces are explored through the exploitation of highdimensional nonrecurrent FM-noise waveforms. The first involving a simultaneous dual-polarized emission scheme that provides good separability with respect to co- and cross-polarized terms and the second mimicking the passive actuation of the human eye with a MIMO emission. A waveform optimization scheme denoted as pseudorandom optimized (PRO) FM has been shown to generate FM-noise radar waveforms that are amenable to high power transmitters. Each pulse is generated and optimized independently and possesses a non-repeating FM-noise modulation structure. Because of this the range sidelobes of each pulse are unique and thus are effectively suppressed given enough coherent integration. The PRO-FM waveform generation scheme is used to create two independent sets of FM-noise waveforms to be incorporated into a simultaneous dual-polarized emission; whereby two independent PRO-FM waveforms will be transmitted simultaneously from orthogonal polarization channels. This effectively creates a polarization diverse emission. The random nature of these waveforms also reduce cross-correlation effects that occur during simultaneous transmission on both channels. This formulation is evaluated using experimental open-air measurements to demonstrate the effectiveness of this high-dimensional emission. This research aims to build upon previous work that has demonstrated the ability to mimic fixational eye movements (FEM) employed by the human eye. To implement FEM on a radar system a MIMO capable digital array must be utilized in conjunction with spatial modulation beamforming. Successful imitation of FEM will require randomized fast-time beamsteering from a two-dimensional array. The inherent randomness associated with FEM will be paired with the PRO-FM waveforms to create an emission possessing randomness in the space and frequency domains, called the FEM radar (FEMR). Unlike traditional MIMO, FEMR emits a coherent and time varying beam. Simulations will show the inherent enhancement to spatial resolution in two-dimensional space (azimuth and elevation) relative to standard beamforming using only the matched filter to process returns

    Frequency diversity wideband digital receiver and signal processor for solid-state dual-polarimetric weather radars

    Get PDF
    2012 Summer.Includes bibliographical references.The recent spate in the use of solid-state transmitters for weather radar systems has unexceptionably revolutionized the research in meteorology. The solid-state transmitters allow transmission of low peak powers without losing the radar range resolution by allowing the use of pulse compression waveforms. In this research, a novel frequency-diversity wideband waveform is proposed and realized to extenuate the low sensitivity of solid-state radars and mitigate the blind range problem tied with the longer pulse compression waveforms. The latest developments in the computing landscape have permitted the design of wideband digital receivers which can process this novel waveform on Field Programmable Gate Array (FPGA) chips. In terms of signal processing, wideband systems are generally characterized by the fact that the bandwidth of the signal of interest is comparable to the sampled bandwidth; that is, a band of frequencies must be selected and filtered out from a comparable spectral window in which the signal might occur. The development of such a wideband digital receiver opens a window for exciting research opportunities for improved estimation of precipitation measurements for higher frequency systems such as X, Ku and Ka bands, satellite-borne radars and other solid-state ground-based radars. This research describes various unique challenges associated with the design of a multi-channel wideband receiver. The receiver consists of twelve channels which simultaneously downconvert and filter the digitized intermediate-frequency (IF) signal for radar data processing. The product processing for the multi-channel digital receiver mandates a software and network architecture which provides for generating and archiving a single meteorological product profile culled from multi-pulse profiles at an increased data date. The multi-channel digital receiver also continuously samples the transmit pulse for calibration of radar receiver gain and transmit power. The multi-channel digital receiver has been successfully deployed as a key component in the recently developed National Aeronautical and Space Administration (NASA) Global Precipitation Measurement (GPM) Dual-Frequency Dual-Polarization Doppler Radar (D3R). The D3R is the principal ground validation instrument for the precipitation measurements of the Dual Precipitation Radar (DPR) onboard the GPM Core Observatory satellite scheduled for launch in 2014. The D3R system employs two broadly separated frequencies at Ku- and Ka-bands that together make measurements for precipitation types which need higher sensitivity such as light rain, drizzle and snow. This research describes unique design space to configure the digital receiver for D3R at several processing levels. At length, this research presents analysis and results obtained by employing the multi-carrier waveforms for D3R during the 2012 GPM Cold-Season Precipitation Experiment (GCPEx) campaign in Canada
    • …
    corecore