6 research outputs found

    Space-Efficient Routing Tables for Almost All Networks and the Incompressibility Method

    Get PDF
    We use the incompressibility method based on Kolmogorov complexity to determine the total number of bits of routing information for almost all network topologies. In most models for routing, for almost all labeled graphs Θ(n2)\Theta (n^2) bits are necessary and sufficient for shortest path routing. By `almost all graphs' we mean the Kolmogorov random graphs which constitute a fraction of 11/nc1-1/n^c of all graphs on nn nodes, where c>0c > 0 is an arbitrary fixed constant. There is a model for which the average case lower bound rises to Ω(n2logn)\Omega(n^2 \log n) and another model where the average case upper bound drops to O(nlog2n)O(n \log^2 n). This clearly exposes the sensitivity of such bounds to the model under consideration. If paths have to be short, but need not be shortest (if the stretch factor may be larger than 1), then much less space is needed on average, even in the more demanding models. Full-information routing requires Θ(n3)\Theta (n^3) bits on average. For worst-case static networks we prove a Ω(n2logn)\Omega(n^2 \log n) lower bound for shortest path routing and all stretch factors <2<2 in some networks where free relabeling is not allowed.Comment: 19 pages, Latex, 1 table, 1 figure; SIAM J. Comput., To appea

    Kolmogorov Random Graphs and the Incompressibility Method

    Get PDF
    We investigate topological, combinatorial, statistical, and enumeration properties of finite graphs with high Kolmogorov complexity (almost all graphs) using the novel incompressibility method. Example results are: (i) the mean and variance of the number of (possibly overlapping) ordered labeled subgraphs of a labeled graph as a function of its randomness deficiency (how far it falls short of the maximum possible Kolmogorov complexity) and (ii) a new elementary proof for the number of unlabeled graphs.Comment: LaTeX 9 page

    Compact Routing on Internet-Like Graphs

    Full text link
    The Thorup-Zwick (TZ) routing scheme is the first generic stretch-3 routing scheme delivering a nearly optimal local memory upper bound. Using both direct analysis and simulation, we calculate the stretch distribution of this routing scheme on random graphs with power-law node degree distributions, PkkγP_k \sim k^{-\gamma}. We find that the average stretch is very low and virtually independent of γ\gamma. In particular, for the Internet interdomain graph, γ2.1\gamma \sim 2.1, the average stretch is around 1.1, with up to 70% of paths being shortest. As the network grows, the average stretch slowly decreases. The routing table is very small, too. It is well below its upper bounds, and its size is around 50 records for 10410^4-node networks. Furthermore, we find that both the average shortest path length (i.e. distance) dˉ\bar{d} and width of the distance distribution σ\sigma observed in the real Internet inter-AS graph have values that are very close to the minimums of the average stretch in the dˉ\bar{d}- and σ\sigma-directions. This leads us to the discovery of a unique critical quasi-stationary point of the average TZ stretch as a function of dˉ\bar{d} and σ\sigma. The Internet distance distribution is located in a close neighborhood of this point. This observation suggests the analytical structure of the average stretch function may be an indirect indicator of some hidden optimization criteria influencing the Internet's interdomain topology evolution.Comment: 29 pages, 16 figure

    An algorithmically random family of MultiAspect Graphs and its topological properties

    Get PDF
    This article presents a theoretical investigation of incompressibility and randomness in generalized representations of graphs along with its implications on network topological properties. We extend previous studies on plain algorithmically random classical graphs to plain and prefix algorithmically random MultiAspect Graphs (MAGs). First, we show that there is an infinite recursively labeled infinite family of nested MAGs (or, as a particular case, of nested classical graphs) that behaves like (and is determined by) an algorithmically random real number. Then, we study some of their important topological properties, in particular, vertex degree, connectivity, diameter, and rigidity

    Space-Efficient Routing Tables For Almost All Networks And The Incompressibility Method

    No full text
    We use the incompressibility method based on Kolmogorov complexity to determine the total number of bits of routing information for almost all network topologies. In most models for routing, for almost all labeled graphs \Theta(n 2 ) bits are necessary and sufficient for shortest path routing. By `almost all graphs&apos; we mean the Kolmogorov random graphs which constitute a fraction of 1 \Gamma 1=n c of all graphs on n nodes, where c ? 0 is an arbitrary fixed constant. There is a model for which the average case lower bound rises to \Omega\Gamma n 2 log n) and another model where the average case upper bound drops to O(n log 2 n). This clearly exposes the sensitivity of such bounds to the model under consideration. If paths have to be short, but need not be shortest (if the stretch factor may be larger than 1), then much less space is needed on average, even in the more demanding models. Full-information routing requires \Theta(n 3 ) bits on average. For worst-case static netw..
    corecore