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Abstract. We investigate topological, combinatorial, statistical, and enumeration properties of 
finite graphs with high Kolmogorov complexity (almost all graphs) using the novel incompressibility 
method. Example results are (i) the mean and variance of the number of (possibly overlapping) 
ordered labeled subgraphs of a labeled graph as a function of its randomness deficiency (how far it 
falls short of the maximum possible Kolmogorov complexity) and (ii) a new elementary proof for the 
number of unlabeled graphs. 
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1. Introduction. The incompressibility of individual random objects yields a 
simple but powerful proof technique. The incompressibility method [9] is a new general 
purpose tool and should be compared with the pigeon hole principle or the proba
bilistic method. Here we apply the incompressibility method to randomly generated 
graphs and "individually random" graphs-graphs with high Kolmogorov complexity. 

In a typical proof using the incompressibility method, one first chooses an in
dividually random object from the class under discussion. This object is effectively 
incompressible. The argument invariably says that if a desired property does not hold, 
then the object can be compressed. This yields the required contradiction. Since a 
randomly generated object is with overwhelming probability individually random and 
hence incompressible, one usually obtains the property with high probability. 

Results. We apply the incompressibility method to obtain combinatorial prop
erties of graphs with high Kolmogorov complexity. These properties are parametri
zed in terms of a "randomness deficiency" function. 1 This can be considered as a 
parametrized version of the incompressibility method. In section 2 we show that for 
every labeled graph on n nodes with high Kolmogorov complexity (also called "Kol
mogorov random graph" or "high-complexity graph"), the node degree of every vertex 
is about n/2 and there are about n/4 node-disjoint paths of length 2 between every 
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1 Randomness deficiency measures how far the object falls short of the maximum possible Kol
mogorov complexity. It is formally defined in Definition 4. 
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pair of nodes. In section 2.2, we analyze "normality" properties of Kolmogorov ran
dom graphs. In analogy with infinite sequences one can call an infinite !a~led 
normal if each finite ordered labeled subgraph of size k occurs in the appropriate sense 
(possibly overlapping) with limiting frequency rm. It follows from the '.\lartin L<>f 
theory of effective tests for randomness [14] that individually random (high 
ity) infinite labeled graphs are normal. Such properties cannot hold precisely for 
graphs, where randomness is necessarily a matter of degree: We determine dose quan
titative bounds on the normality (frequency of subgraphs) of high-complexity finiti' 
graphs in terms of their randomness deficiency. 

Denote the number of unlabeled graphs on n nodes by 9n· In section 2.3 w~.' 
demonstrate the use of the incompressibility method and Kolmogorov random 
by providing a new elementary proof that 9n '""' 2(~) /n!. This has previously bt'!::n 
obtained by more advanced methods [12]. Moreover, we give a good estimate' of the 
error term. Part of the proof involves estimating the order (number of 
s(G) of graphs G as a function of the randomness deficiency of G. For c·Mrn .. m .. 

show that labeled graphs with randomness deficiency appropriately le&'i than 
rigid (have but one automorphism: the identity automorphism). 

Related work. Several properties (high degree nodes, diameter 2. 
also been proven by traditional methods to hold with high probability for nu:tuu.uu' 

generated graphs [5, 4]. We provide new proofs for these results using the incun:mn~s
ibility method. They are actually proved to hold for the definite class of nvmR'l"."l 

random graphs--rather than with high probability for randomly generated 
In [10] (also [9]) Li and Vitanyi investigated topological properties of !alw!ed 

graphs with high Kolmogorov complexity and proved them using the incompressibility 
method to compare ease of such proofs with the probabilistic method [7] and the 
entropy method. 

In [8] it was shown that every labeled tree on n nodes with randomne&l 
O(logn) has maximum node degree of O(logn/loglogn). Analysis of Ko!m(igorov 
random graphs was used to establish the total interconnect length of Euclidean 
world) embeddings of computer network topologies [15] and the size of 
ing tables in computer networks [6]. Infinite binary sequences that . 
have equal numbers of Os and ls and, more generally, where every block of 
occurs (possibly overlapping) with frequency l/2k were called "normal" by E. Bc:rel 
[2]. References [9, 11] investigate the quantitative deviation from nor.ma! as a functiur:. 
of the Kolmogorov complexity of a finite binary string. Here we consider ~n 
question for Kolmogorov random graphs. 2 Finally, there is a d~se relation and gen
uine difference between high-probability properties and properties of 
objects; see [9, Section 6.2]. 

1 1 K 1 l xity. We use the following notation. Let A be a . . o mogorov comp e . . _ 0 L't r he., 
finite set. By d(A) we denote the cardinality of A. In part1cula:, .. - · E • · ' 

( ) d t th l th (number of bits) of ;r. In finite binary string. Then l x eno es · e eng · 
l(E) = 0, where E denotes the empty word. , ',,• 

al be , Identify N and 1 ' Let x, y, z E N, where JI denotes the natur num rs. 

. t randomlv generated graphs. but as far a.~ t.he 
2There are some results along these Imes related 0 J • aiid Andrzei· Rucinski around .lm_w . ( It' Al Frieze Svante • anson. . authors could ascertam consu mg an • d . h e det"'i·1 as here See. for exa.m_ple. l l, . b · stigate m t e sam 0• • • • 1996) such properties have not een mve , 1 ._ d'fferent from KohnO';ol:Ori:>V ri1ndom1i<;,;.~. 

pp. 125-140]. But note that pseudorandomness a so 1"' 1 • 
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according to the correspondence 

(0, E), (1, 0), (2, 1), (3, 00), (4, 01), .... 

Hence, the length l(x) of x is the number of bits in the binary string or number 
x. Let To, T1, ... be a standard enumeration of all Turing machines. ·Let (·, ·) be a 
standard one-to-one mapping from N x N to N, for technical reasons chosen such 
that l( (x, y)) = l(y) + O(l(x) ). An example is (x, y) = ll(x)Oxy. This can be iterated 
to((·,-),·). 

Informally, the Kolmogorov complexity [13] of x is the length of the shortest 
effective description of x. That is, the Kolmogorov complexity C(x) of a finite string x 
is simply the length of the shortest program, say in FORTRAN (or in Turing machine 
codes) encoded in binary, which prints x without any input. A similar definition holds 
conditionally in the sense that C(xly) is the length of the shortest binary program 
which computes x on input y. Kolmogorov complexity is absolute in the sense of 
being independent of the programming language up to a fixed additional constant 
term which depends on the programming language but not on x. We now fix one 
canonical programming language once and for all as reference and thereby C(). For 
the theory and applications, see [9]. A formal definition is as follows: 

DEFINITION 1. Let U be an appropriate universal Turing machine such that 

U(({i,p),y)) = Ti((p,y)) 

for all i and {p, y). The conditional Kolmogorov complexity of x given y is 

C(xly) = min {l(p): U((p,y)) = x}. 
pE{O,l}* 

The unconditional Kolmogorov complexity of x is defined as C(x) := C(xlE). 
It is easy to see that there are strings that can be described by programs much 

shorter than themselves. For instance, the function defined by f(l) = 2 and f(i) = 
2f(i-l) for i > 1 grows very fast, f(k) is a "stack" of k twos. Yet for each kit is clear 
that f(k) has complexity at most C(k) + 0(1). What about incompressibility? 

By a simple counting argument one can show that whereas some strings can be 
enormously compressed, the majority of strings can hardly be compressed at all. 

For each n there are 2n binary strings of length n but only 2::1:01 2i = 2n - 1 
possible shorter descriptions. Therefore, there is at least one binary string x of length 
n such that C(x) ~ n. We call such strings incompressible. It also follows that for 
any length n and any binary string y, there is a binary string x of length n such that 
C(x\y) ~ n. Generally, for every constant c we can say a string x is c-incompressible 
if C(x) ~ l(x) - c. Strings that are incompressible (say, c-incompressible with small 
c) are patternless, since a pattern could be used to reduce the description length. 
Intuitively, we think of such patternless sequences as being random, and we use 
"random sequence" synonymously with "incompressible sequence." 3 By the same 
counting argument as before we find that the number of strings of length n that are 
c-incompressible is at least 2n - 2n-c + L Hence there is at least one 0-incompressible 
string of length n, at least one-half of all strings of length n are 1-incompressible, at 
least three-fourths of all strings of length n are 2-incompressible, ... , and at least 
the (1 - 1/2c)th part of all 2n strings of length n are c-incompressible. This means 

3It is possible to give a rigorous formalization of the intuitive notion of a random sequence as a 
sequence that passes all effective tests for randomness; see, for example, [9]. 
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that for each constant c ~ 1 the majority of all strings of length n (with n > c) 
is c-incompressible. We generalize this to the following simple but extremely useful 
lemma. 

LEMMA 1. Let c be a positive integer. For each fixed y, every set A of cardinality 
m has at least m(l - 2-c) + 1 elements x with C(xiy) ~ Llogmj - c. 

Proof The proof is by simple counting. D 
As an example, set A= {x : l(x) = n}. Then the cardinality of A ism= 2n. 

Since it is easy to assert that C(x) ::; n + c for some fixed c and all x in A, Lemma 1 
demonstrates that this trivial estimate is quite sharp. The deeper reason is that since 
there are few short programs, there can be only few objects of low complexity. We 
require another quantity: The prefix Kolmogorov complexity which is defined just as 
C(·i·) but now with respect to a subset of Turing machines that have the property 
that the set of programs for which the machine halts is prefix-free; that is, no halting 
program is a prefix of any other halting program. For details see [9]. Here we require 
only the quantitative relation below. 

DEFINITION 2. The prefix K olmogorov complexity of x conditional to y is denoted 
by K(xiy). It satisfies the ineqiiality 

C(xiy)::; K(xiy)::; C(xiy) + 2logC(xiy) + 0(1). 

2. Kolmogorov random graphs. Statistical properties of strings with high 
Kolmogorov complexity have been studied in [11]. The interpretation of strings as 
more complex combinatorial objects leads to a new set of properties and problems that 
have no direct counterpart in the "flatter" string world. Here we derive topological, 
combinatorial, and statistical properties of graphs with high Kolmogorov complexity. 
Every such graph possesses simultaneously all properties that hold with high proba
bility for randomly generated graphs. They constitute "almost all graphs" and the 
derived properties a fortiori hold with probability that goes to 1 as the number of 
nodes grows unboundedly. 

DEFINITION 3. Each labeled graph G = (V, E) on n nodes V = {l, 2, ... , n} 
can be represented (up to automorphism) by a binary string E( G) of length (~). We 
simply assume a fixed ordering of the G) possible edges in an n-node graph, e.g., 
lexicographically, and let the ith bit in the string indicate presence (1) or absence (0) 
of the ith edge. Conversely, each binary string of length (;) encodes an n-node graph. 
Hence we can identify each such graph with its binary string representation. 

DEFINITION 4. A labeled graph G on n nodes has randomness deficiency at most 
6(n) and is called 8(n)-random if it satisfies 

(2.1) C(E(G)ln) ;:: (~) - 6(n). 

2.1. Some basic properties. Using Lemma 1, with y = n, A the set of strings 
oflength (;), and c = 8(n) gives us the following lemma. 

LEMMA 2. A fraction of at least l - l/26(n) of all labeled graphs G on n nodes is 
6(n)-random. 

As a consequence, for example, the clog n-random labeled graphs constitute a 
fraction of at least (1 - l/nc) of all graphs on n nodes, where c > 0 is an arbitrary 
constant. 

Labeled graphs with high complexity have many specific topological properties, 
which seem to contradict their randomness. However, these are simply the likely 
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properties, whose absence would be rather unlikely. Thus, randomness enforces strict 
statistical regularities-for example, to have diameter exactly 2. 

We will use the following lemma (Theorem 2.6.1 in [9]). 
LEMMA 3. Let x = x 1 ... Xn be a binary string of length n, and y a much smaller 

string of length l. Let p = 2-1 and #y(x:) be the number of (possibly overlapping) 
distinct occurrences of y in x. For convenience, we assume that x "wraps around'' so 
that an occurrence of y starting at the end of x and continu'ing at the start also counts. 
Assume that l ::; log n. There is a constant c such that for all n and x E { 0, 1} n if 
C(x) 2 n - b(n), then 

l#y(x) - pnl :S ./CiPri 

with a= [K(yln) + logl + 8(n) + c]31/loge. 
LEMMA 4. All o(n)-random labeled graphs have n/4+o(n) d-isjoint paths of length 

2 between each pair of nodes i,j. In particular, all o(n)-random labeled graphs have 
diameter 2. 

Proof The only graphs with diameter 1 are the complete graphs that can be 
described in 0(1) bits, given n, and hence are not random. It remains to consider an 
o(n)-random graph G = (V, E) with diameter greater than or equal to 2. Let i, j be 
a pair of nodes connected by r disjoint paths of length 2. Then we can describe G by 
modifying the old code for G as follows: 

• a program to reconstruct the object from the various parts of the encoding 
in 0(1) bits; 

• the identities of i < j in 2 log n bits; 
• the old code E( G) of G with the 2( n- 2) bits representing presence or absence 

of edges (j, k) and ( i, k) for each k "I- i, j deleted; 
• a short program for the string ei,j consisting of the (reordered) n - 2 pairs of 

bits deleted above. 
From this description we can reconstruct G in 

O(logn) + (~) - 2(n - 2) + C(ei,jln) 

bits, from which we may conclude that C(ei,Jln) 2 l(ei,j) - o(n). As shown in [11] or 
[9] (here Lemma 3) this implies that the frequency of occurrence in ei,j of the aligned 
2-bit block "11"-which by construction equals the number of disjoint paths of length 
2 between i and j-··is n/4 + o(n). D 

A graph is k-connected if there are at least k node-disjoint paths between every 
pair of nodes. 

COROLLARY l. All o(n)-random labeled graphs are(~+ o(n))-connected. 

LEMMA 5. Let G = (V, E) be a graph on n nodes wdh randomness deficiency 
O(logn). Then the largest clique in G has at most L2lognJ + 0(1) nodes. 

Proof The proof is the same as the largest size transitive subtournament in a 
high-complexity tournament as in [9]. D 

With respect to the related property of random graphs, in [1, pp. 86-87], it is 
shown that a random graph with edge probability 1/2 contains a clique on asymptot

ically 2 log n nodes with probability at least 1 - e-n2
• 

2.2. Statistics of subgraphs. We start by defining the notion of labeled sub
graph of a labeled graph. 
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DEFINITION 5. Let G = (V, E) be a labeled graph on n nodes. Consider a labeled 
graph H on k nodes { 1, 2, ... , k}. Each subset of k nodes of G induces a subgraph G k 

of G. The subgraph G k is an ordered labeled occurrence of H when we obtain H by 
relabeling the nodes i1 < i2 < · · · < ik of G1c as 1, 2, ... , k. 

It is easy to conclude from the statistics of high-complexity strings in Lemma 3 
that the frequency of each of the two labeled two-node subgraphs (there are only two 
different ones: the graph consisting of two isolated nodes and the graph consisting of 
two connected nodes) in a 6(n)-random graph G is 

n(n4-l) ± ~(o(n)+O(l))n(n-1)/loge. 

This case is easy since the frequency of such subgraphs corresponds to the frequency 
of ls or Os in the G)-length standard encoding E(G) of G. However, to determine 
the frequencies of labeled subgraphs on k nodes (up to isomorphism) fork > 2 is a 
matter more complicated than the frequencies of substrings of length k. Clearly, there 
are G) subsets of k nodes out of n and hence that many occurrences of subgraphs. 
Such subgraphs may overlap in more complex ways than substrings of a string. Let 
#H( G) be the number of times H occurs as an ordered labeled sub graph of G (possibly 
overlapping). Let p be the probability that we obtain H by flipping a fair coin to decide 
for each pair of nodes whether it is connected by an edge or not: 

(2.2) P = rk<k-1)12. 

THEOREM 1. Assume the terminology above with G = (V, E) a labeled graph on 
n nodes, k is a positive integer dividing n, and H is a labeled graph on k :$ vf2 log n 
nodes. Let C(E(G)ln) ~ G) - b(n). Then 

with n := (K(Hln) + 8(n) +log(~) /(n/k) + 0(1) )3/ log e. 
Proof. A cover of G is a set C = {S1 , ... , SN} with N = n/k, where the Si's 

are pairwise disjoint subsets of V and LJi":1 Si = V. According to [3], we have the 
following claim. 

Claim 1. There is a partition of the G) different k-node subsets into h = (~) / N 
distinct covers of G, each cover consisting of N = n/k disjoint subsets. That is, each 
subset of k nodes of V belongs to precisely one cover. 

Enumerate the covers as Co, C2 , ••. , Ch-l· For each i E {O, 1, ... , h - l} and 
k-node labeled graph H, let #H(G, i) be the number of (now nonoverlapping) occur
rences of subgraph H in G occurring in cover Ci. 

Now consider an experiment of N trials, each trial with the same set of 2k(k-l)/2 

outcomes. Intuitively, each trial corresponds to an element of a cover, and each 
outcome corresponds to a k-node subgraph. For every i we can form a string si 
consisting of the N blocks of (~) bits that represent presence or absence of edges within 
the induced subgraphs of each of the N subsets of Ci. Since G can be reconstructed 
from n,i,si, and the remaining (~) - N(;) bits of E(G), we find that C(siln) ~ 
l(si) - b(n) - log h. Again, according to Lemma 3 this implies that the frequency of 
occurrence of the aligned (;)-block E(H), which is #H(G, i), equals 

Np±~ 
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with a as in the statement of Theorem 1. One can do this for each i independently, 
notwithstanding the dependence between the frequencies of subgraphs in different 
covers. Namely, the argument depends on the incompressibility of G alone. If the 
number of occurrences of a certain subgraph in any of the covers is too large or too 
small then we can compress G. Now, 

l#H(G)- PG) I=~ l#H(G,i)- Npl 

$ (~) Ja(k/n)p. 0 

In [9, 11] we investigated up to which length l all blocks of length l occurred at 
least once in each 6(n)-random string oflength n. 

THEOREM 2. Let 8(n) < 2v'& logn /4logn and G be a 8(n)-random graph on n 
nodes. Then for sufficiently large n, the graph G contains all subgraphs on v'2 log n 
nodes. 

Proof. We are sure that Honk nodes occurs at least once in G if(~) Ja(k/n)p in 
Theorem 1 is less than (~)p. This is the case if a< (n/k)p. This inequality is satisfied 
for an overestimate of K(Hln) by (;) +2 log(;) +O(l) (since K(Hln) $ K(H)+O(l) ), 
and p = 2-k(k-l)/2 , with k set at k = v'2 log n. This proves the theorem. 0 

2.3. Unlabeled graph counting. An unlabeled graph is a graph with no labels. 
For convenience we can define this as follows: Call two labeled graphs eq·uivalent (up 
to relabeling) if there is a relabeling that makes them equal. An unlabeled graph is an 
equivalence class of labeled graphs. An automorphism of G = (V, E) is a permutation 
7r of V such that (7r(u), 7r(v)) EE iff (u, v) EE. Clearly, the set of automorphisms of 
a graph forms a group with group operation of function composition and the identity 
permutation as unity. It is easy to verify that 7r is an automorphism of G iff 7r( G) 
and G have the same binary string standard encoding, that is, E(G) = E(7r(G)). This 
contrasts with the more general case of permutation relabeling, where the standard 
encodings may be different. A graph is rigid if its only automorphism is the identity 
automorphism. It turns out that Kolmogorov random graphs are rigid graphs. To 
obtain an expression for the number of unlabeled graphs we have to estimate the 
number of automorphisms of a graph in terms of its randomness deficiency. 

In [12] an asymptotic expression for the number of unlabeled graphs is derived 
using sophisticated methods. We give a new elementary proof by incompressibility. 
Denote by 9n the number of unlabeled graphs on n nodes-that is, the number of 
isomorphism classes in the set 9n of undirected graphs on nodes {O, 1, ... , n - l}. 

2(2) 
THEOREM 3. 9n"' rtr· 
Proof Clearly, 

where G is the isomorphism class of graph G. By elementary group theory, 

- d(Sn) n! 
d(G) = d(Aut(G)) = d(Aut(G))' 

where Sn is the group of permutations on n elements and Aut( G) is the automorphism 
group of G. Let us partition 9n into 9n = Q~ U · · · U g;;, where Q;;' is the set of graphs 
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for which m is the number of nodes moved (mapped to another node) by any of its 
automorphisms. 

Claim 2. For GE 9;;', d(Aut(G)) S nm= 2mlogn. 

Proof d(Aut(G)) S (;;,)m! S nm. D 

Consider each graph GE 9n having a probability Prob(G) = z-(~). 
Claim 3. Prob(G E 9;;') S 2-m(-B'-'W--logn). 

Proof By Lemma 2 it suffices to show that if G E 9;;' and 

C(E(G)jn, m);?: (;) - 8(n, m) 

then 8(n, m) satisfies 

(2.3) ( n 3m ) 8 ( n, m) ;?: m 2" - S - log n . 

Let rr E Aut(G) move m nodes. Suppose 7r is the product of k disjoint cycles of 
sizes c1 , ... , ck. Spend at most m log n bits describing n: For example, if the nodes 
i 1 < · · · < im are moved then list the sequence n(i1), ... , 7r(im)· Writing the nodes of 
the latter sequence in increasing order we obtain ii, ... , im again; that is, we execute 
permutation ?T- 1 and hence we obtain n. 

Select one node from each cycle--say, the lowest numbered one. Then for every 
unselected node on a cycle, we can delete the n - m bits corresponding to the presence 
or absence of edges to stable nodes, and m - k half-bits corresponding to presence or 
absence of edges to the other, unselected cycle nodes. In total we delete 

~ ( m-k) ( m+k) {:j'(ci -1) n -m + - 2- = (m - k) n- - 2-

bits. Observing that k = m/2 is the largest possible value for k, we arrive at the 
claimed 8(n, m) of G (difference between savings and spendings is 3(n- 3;' )-mlogn) 
of (2.3). D 

We continue the proof of Theorem 3: 

_ '"" _1 __ '"" d(Aut(g)) _ 2(~) E 
gn - L,, d(G) - L,, n! - n! n, 

GEQn GEQ,, 

where En := LGEQ,, Prob(G)d(Aut(G)) is the expected size of the automorphism 
group of a graph on n nodes. Clearly, En ;:::: 1, yielding the lower bound on 9n· For 
the upper bound on 9n, noting that g~ = 0 and using the above claims, we find 

n 

En= L Prob(G E Q;:')AvgGEQ:;'d(Aut(G)) 
m=O 

n 

S l + L: z-m( -B'- 3[{" -2 log n) 

m=Z 

S l + z-(n-4logn-2), 

which proves the theorem. D 
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The proof of the theorem shows that the error in the asymptotic expression is 
very small. 

C 2Cn 2m ( 4n4 ) 
OROLLARY 2. nI ::; 9n::; n! 1 + 2n · 

The next corollary follows from (2.3) (since m = 1 is impossible). 
COROLLARY 3. If a graph G has randomness deficiency slightly less than n (more 

precisely, C(E(G)ln) 2 G) - n - logn - 2) then G is rigid. 
The expression for gn can be used to determine the maximal complexity of an 

unlabeled graph on n nodes. Namely, we can effectively enumerate all unlabeled 
graphs as follows: 

• Effectively enumerate all labeled graphs on n nodes by enumerating all binary 
strings of length n and for each labeled graph G do the following: 
If G cannot be obtained by relabeling from any previously enumerated labeled 
graph then G is added to the set of unlabeled graphs. 

This way we obtain each unlabeled graph by precisely one labeled graph representing 
it. Since we can describe each unlabeled graph by its index in this enumeration, we 
find by Theorem 3 and Stirling's formula that if G is an unlabeled graph then 

C(E(G)ln)::; (;) - nlogn + O(n). 

THEOREM 4. Let G be a labeled graph on n nodes and let Go be the unlabeled 
version of G. There exists a graph G' and a label permutation 7f such that G' = 
7r(G) and up to additional constant terms C(E(G')) = C(E(Go)) and C(E(G)ln) = 
C(E(Go), 7rln). 

By Theorem 4, for every graph G on n nodes with maximum complexity there is 
a relabeling (permutation) that causes the complexity to drop by as much as n log n. 
Our proofs of topological properties by the incompressibility method required the 
graph G to be Kolmogorov random in the sense of C(E(G)ln) 2 G) - O(logn) or for 
some results C(E(G)ln) 2 (~)-o(n). Hence by relabeling such a graph we can always 
obtain a labeled graph that has a complexity too low to use our incompressibility 
proof. Nonetheless, topological properties do not change under relabeling. 

REFERENCES 

[1) N. ALON, J.H. SPENCER, AND P. ERDOS, The Probabilistic Method, Wiley, 1992, 
[2) E. BOREL, Le9ons sur la Theorie des FUnctions, 2nd ed., Gauthier-Villars, Paris, 1914, pp. 

182-216. 
[3) BARANYAI, Zs., On the factorization of the complete uniform hyper-graph, in Infinite and Finite 

Sets, Proc. Coll. Keszthely, A. Hajnal, R. Rado, and V.T. Sos, eds., Colloq. Math. Soc. 
Janos Bolyai 10, North-Holland, Amsterdam, 1995, pp. 91-108. 

[4) B. BOLLOBAS, Graph Theory, Springer-Verlag, New York, 1979. 
[5] B. BOLLOBAS, Random Graphs, Academic Press, London, 1985. 
[6] H. BUHRMAN, J.H. HOEPMAN, AND P. VITANYI, Space-efficient routing tables for almost all 

networks and the incompressibility method, SIAM J. Comput., 28 (1999), pp. 1414-1432. 
[7] P. ERDOS AND J. SPENCER, Probabilistic Methods in Combinatorics, Academic Press, New 

York, 1974. 
[8] W.W. KIRCHHERR, Kolmogorov complexity and random graphs, Inform. Process. Lett., 41 

(1992), pp. 125-130. 
[9] M. LI AND P.M.B. VITANYI, An Introduction to Kolmogorov Complexity and Its Applications, 

2nd ed., Springer-Verlag, New York, 1997. 
[10] M. LI AND P.M.B. VITANYI, Kolmogorov complexity arguments in Combinatorics, J. Combin. 

Theory Ser. A, 66 (1994), pp. 226-236. Errata, J. Combin. Theory Ser. A, 69 (1995), p. 183. 
[11) M. LI AND P .M.B. VITANYI, Statistical properties of finite sequences with high Kolmogorov 

complexity, Math. Systems Theory, 27 (1994), pp. 365-376. 



KOLMOGOROV RANDOM GRAPHS 599 

[12] F. HARARY AND E.M. PALMER, Graphical Enumeration, Academic Press, New York, London, 
1973. 

[13] A.N. KOLMOGOROV, Three approaches to the quantitative definition of information, Problems 
Inform. Transmission, 1 (1965), pp. 1-7. 

[14] P. l\1ARTIN-LOF, On the definition of random sequences, Inform. and Control, 9 (1966), PP· 
602-619. 

[15] P .M.B. VITANYI, Physics and the new computation, in Proceedings of the 20th International 
Symposium on Math. Foundations of Computer Science, Prague, 1995, Lecture Notes in 
Comput. Sci. 969, Springer-Verlag, Heidelberg, 1995, pp. 106-128. 


