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SPACE-EFFICIENT ROUTING TABLES FOR ALMOST ALL 
NETWORKS AND THE INCOMPRESSIBILITY METHOD* 

HARRY BUHRMANt, JAAP-HENK HOEPMANl, AND PAUL VIT ANYit 

Abstract. We use the incompressibility method based on Kolmogorov complexity to determine 
the total number of bits of routing information for almost all network topologies. In most models 
for routing, for almost all labeled graphs, 8(n2 ) bits are necessary and sufficient for shortest path 
routing. By "almost all graphs" we mean the Kolmogorov random graphs which constitute a fraction 
of 1- 1/nc of all graphs on n nodes, where c > 0 is an arbitrary fixed constant. There is a model for 
which the average case lower bound rises to n(n2 logn) and another model where the average case 
upper bound drops to O(n log2 n). This clearly exposes the sensitivity of such bounds to the model 
under consideration. If paths have to be short, but need not be shortest (if the stretch factor may 
be larger than 1), then much less space is needed on average, even in the more demanding models. 
Full-information routing requires 9(n3 ) bits on average. For worst-case static networks we prove an 
O(n2 log n) lower bound for shortest path routing and all stretch factors < 2 in some networks where 
free relabeling is not allowed. 
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1. Introduction. In very large communication networks, like the global tele­
phone network or the Internet connecting the world's computers, the message volume 
being routed creates bottlenecks, degrading performance. We analyze a tiny part of 
this issue by determining the optimal space to represent routing schemes in commu­
nication networks for almost all static network topologies. The results also give the 
average space cost over all network topologies. 

A universal routing strategy for static communication networks will, for every 
network, generate a routing scheme for that particular network. Such a routing scheme 
comprises a local routing function for every node in the network. The routing function 
of node u returns for every destination v =/:- u, an edge incident to u on a path from 
u to v. This way, a routing scheme describes a path, called a route, between every 
pair of nodes u, v in the network. The stretch factor of a routing scheme equals 
the maximum ratio between the length of a route it produces and the shortest path 
between the endpoints of that route. 

It is easy to see that we can do shortest path routing by entering a routing table 
in each node u, which for each destination node v indicates to what adjacent node w 
a message to v should be routed first. If u has degree d, it requires a table of at most 
n log d bits, 1 and the overall number of bits in all local routing tables never exceeds 
n2 logn. 
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The stretch factor of a routing strategy equals the maximal stretch factor attained 
by any of the routing schemes it generates. If the stretch factor of a routing strategy 
equals 1, it is called a shortest path rout·ing strategy because then it generates for every 
graph a routing scheme that will route a message between arbitrary u and v over a 
shortest path between u and v. 

In a full-information shortest path routing scheme, the routing function in u must, 
for each destination v, return all edges incident to u on shortest paths from u to v. 
These schemes allow alternative, shortest paths to be taken whenever an outgoing 
link is down. 

We consider point to point communication networks on n nodes described by an 
undirected graph G. The nodes of the graph initially have unique labels taken from 
a set { 1, ... , m} for some m > n. Edges incident to a node v with degree d ( v) are 
connected to ports, with fixed labels 1, . , . , d ( v), by a so-called port assignment. This 
labeling corresponds to the minimal local knowledge a node needs to route: (a) a 
unique identity to determine whether it is the destination of an incoming message, 
(b) the guarantee that each of its neighbors can be reached over a link connected to 
exactly one of its ports, and ( c) the guarantee that it can distinguish these ports. 

1.1. Cost measures for routing tables. The space requirements of a routing 
scheme are measured as the sum over all nodes of the number of bits needed on each 
node to encode its routing function. If the nodes are not labeled with {l, ... , n }-the 
minimal set of labels-~we have to add to the space requirement, for each node, the 
number of bits needed to encode its label. Otherwise, the bits needed to represent 
the routing function could be appended to the original identity yielding a large label 
that is not charged for but does contain all necessary information to route. 

The cost of representing a routing function at a particular node depends on the 
amount of (uncharged) information initially there. Moreover, if we are allowed to 
relabel the graph and change its port assignment before generating a routing scheme 
for it, the resulting routing functions may be simpler and easier to encode. On a 
chain, for example, the routing function is much less complicated if we can relabel 
the graph and number the nodes in increasing order along the chain. We list these 
assumptions below and argue that each of them is reasonable for certain systems. We 
start with the options IA, IB, and II for the amount of information initially available 
at a node: 

I. Nodes do not initially know the labels of their neighbors and use ports to 
distinguish the incident edges. This models the basic system without prior 
knowledge. 
IA. The assignment of ports to edges is fixed and cannot be altered. This 

assumption is reasonable for systems running several jobs where the 
optimal port assignment for routing may actually be bad for those other 
jobs. 

IB. The assignment of ports to edges is free and can be altered before 
computing the routing scheme (as long as neighboring nodes remain 
neighbors after reassignment). Port reassignment is justifiable as a local 
action that usually can be performed without informing other nodes. 

II. Nodes know the labels of their neighbors and over which edge to reach them. 
This information is free. Or, to put it another way, an incident edge carries 
the same label as the node to which it connects. This model is concerned only 
with the additional cost of routing messages beyond the immediate neighbors 
and applies to systems where the neighbors are already known for various 
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other reasons. 2 

Orthogonal to that, the following three options regarding the labels of the nodes are 
distinguished: 

a Nodes cannot be relabeled. For large scale distributed systems, relabeling 
requires global coordination that may be undesirable or simply impossible. 

f3 Nodes may be relabeled before computing the routing scheme, but the range 
of the labels must remain 1, ... , n. This model allows a bad distribution of 
labels to be avoided. 

'Y Nodes may be given arbitrary labels before computing the routing scheme, 
but the number of bits used to store the node's label is added to the space re­
quirements of a node. Destinations are given using the new, complex labels. 3 

This model allows us to store additional routing information, e.g., topological 
information, in the label of a node. This sort of network may be appropri­
ate for centrally designed interconnected networks for multiprocessors and 
communication networks. A common example of architecture of this type is 
the binary n-cube network, where the 2n nodes are labeled with elements of 
{O, l}n such that there is an edge between each pair of nodes iff their labels 
differ in exactly one bit position. In this case one can shortest path route 
using only the labels by successively traversing edges corresponding to flip­
ping successive bits in the positions where source node and destination node 
differ. 

These two orthogonal sets of assumptions, IA, IB, or II and a, {3, or 'Y, define the nine 
different models we will consider in this paper. We remark that the lower bounds for 
models without relabeling are less surprising and easier to prove than the bounds for 
the other models. 

1.2. Outline. We determine the optimum space used to represent shortest path 
routing schemes on almost all labeled graphs, namely, the Kolmogorov random graphs 
with randomness deficiency at most clog n, which constitute a fraction of at least 
1 -1/nc of all graphs for every fixed constant c > 0. These bounds straightforwardly 
imply the same bounds for the average case over all graphs, provided we choose c 2 3. 
For an overview of the results, refer to Table 1.1. 4 

We prove that for almost all graphs, D(n2 ) bits are necessary to represent the 
routing scheme, if relabeling is not allowed and nodes know their neighbors (II /\ 
a) or nodes do not know their neighbors (IA V IB).5 Partially matching this lower 
bound, we show that O(n2 ) bits are sufficient to represent the routing scheme if the 

2We do not consider models that give neighbors for free and, at the same time, allow free 
port assignment. Given a labeling of the edges by the nodes to which they connect, the actual 
port assignment doesn't matter at all and can in fact be used to represent d( v) log d( v) bits of the 
routing function. Namely, each assignment of ports corresponds to a permutation of the ranks of the 
neighbors-the neighbors at port i move to position i. There are d(v)! such permutations. 

3 In this model it is assumed that a routing function cannot tell valid from invalid labels and that 
a routing function always receives a valid destination label as input. Requiring otherwise makes the 
problem harder. 

4 In this table, arrows indicate that the bound for that particular model follows from the bound 
found by tracing the arrow. In particular, the average-case lower bound for model IA I\ f3 is the 
same as the IA I\ 'Y bound found by tracing -->. The reader may have guessed that a ? marks an 
open question. 

5We write A V B to indicate that the results hold under model A or model B. Similarly, we 
write A I\ B to indicate the result holds only if the conditions of both model A and model B hold 
simultaneously. If only one of the two "dimensions" is mentioned, the other may be taken arbitrarily 
(i.e., IA is shorthand for (IA/\ a) V (IA /\ (3) V (IA/\ 1)). 
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TABLE 1.1 
Size of shortest path routing schemes, overview of results. The results presented in this paper are 

quoted with exact constants and asymptotically {with the lower order of magnitude terms suppressed). 
This table contains only results on shortest path routing, not the other results in this paper. 

No relabeling Permutation Free relabeling 
(0<) (/3) ('y) 

Worst case--lower bounds 
Port assignment free (IB) -> O(n2 logn) [5] n2 /32 [Thm 4.2] 
Neighbors known (II) (n2/9)logn [Thm 4.4] O(n2 ) [4] O(n716) [10] 
Average case--upper bounds 
Port assignment fixed (IA) (n2 /2)1ogn [Thm 3.6] +- +-

Port assignment free (IB) 3n2 [Thm 3.1] +- +-

Neighbors known (II) 3n2 [Thm 3.1] +- 6n log2 n [Thm 3.2] 

Average case-lower bounds 
Port assignment fixed (IA) (n2 /2)1ogn [Thm4.3] -> n 2 /32 [Thm 4.2] 
Port assignment free (IB) n 2 /2 [Thm 4.1] -> n 2 /32 [Thm 4.2] 
Neighbors known (II) n 2 /2 [Thm 4.1] ? ? 

port assignment may be changed or if nodes do know their neighbors (IB V II). In 
contrast, for almost all graphs, the lower bound rises to asymptotically (n2 /2) log n 
bits if both relabeling and changing the port assignment are not allowed (IA /\ a), 
and this number of bits is also sufficient for almost all graphs. And, again for almost 
all graphs, the upper bound drops to 0( n log2 n) bits if nodes know the labels of their 
neighbors and nodes may be arbitrarily relabeled (II /\ 'Y). 

Full-information shortest path routing schemes are shown to require, on almost 
all graphs, asymptotically n 3 /4 bits to be stored if relabeling is not allowed (a), and 
this number of bits is also shown to be sufficient for almost all graphs. (The obvious 
upper bound for all graphs is n3 bits.) 

For stretch factors larger than 1 we obtain the following results. When nodes 
know their neighbors (II), for almost all graphs, routing schemes achieving stretch 
factors s with 1 < s < 2 can be stored using a total of 0( n log n) bits. 6 Similarly, for 
almost all graphs in the same models (II), O(nloglogn) bits are sufficient for routing 
with stretch factor :'.:: 2. Finally, for stretch factors :;::: 6 log n on almost all graphs 
again in the same model (II), the routing scheme occupies only O(n) bits. 

For worst-case static networks we prove, by construction of explicit graphs, an 
O(n2 logn) lower bound on the total size of any routing scheme with stretch factor 
< 2 if nodes may not be relabeled (a). 

The novel incompressibility technique based on Kolmogorov complexity [9] has 
already been applied in many areas but not so much in a distributed setting. A 
methodological contribution of this paper is to show how to apply the incompressibility 
method to obtain results in distributed computing for almost all objects concerned, 
rather than for the worst-case object. This hinges on our use of Kolmogorov random 
graphs in a fixed family of graphs. Our results also hold averaged over all objects 
concerned. 

Independent recent work [8, 7] applies Kolmogorov complexity to obtain related 
worst-case results mentioned in the next section. They show, for example, that for 
each n there exist graphs on n nodes which may not be relabeled (a) that require in 
the worst case O(n3 ) bits to store a full-information shortest path routing scheme. 

6For Kolmogorov random graphs which have diameter 2 by Lemma 2.6, routing schemes with 
s = 1.5 are the only ones possible in this range. 
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\Ve prove for tlw same model that for almost all graphs, full-information routing n 3 /4 
hits in total is necessary and sufficient (asymptotically). 

1.3. Related work. Previous upper and lower bounds on the total number of 
bits neC'essary and sufficient to store the routing scheme in worst-case static commu­
uication neh~·orks an' due to P<'leg and Upfal [10] and Fraigniaud and Gavoille [4]. 

In [10] it was shown that for any stretch factor s ~ 1, the total number of bits 
required to store the routing scheme for some n-node graph is at least n(nl+l/(2s+4)) 
and that there exist routing schemes for all n-node graphs, with stretch factor s = 
l:.lk + 3. using O(k3n l+ l/k log n) bits in total. For example, with stretch factor s = 15 
\Ve have A· = 1 and their method guarantees O(n2 logn) bits to store the routing 
:,;cheme. The luwer bound is shown in the model where nodes may be arbitrarily 
n'labeled and where nodes know their neighbors (II /\ J'). Free port assignment in 
conjunction with a model where the neighbors are known (II), however, cannot be 
allowed. Othen'.'ise, each node woukl gain n log n bits to store the routing function 
{see footnote 2). 

Fraigniaud and Gavoille [4] showed that for stretch factors s < 2 there are routing 
schemes that require a total of f2(n2 ) bits to be stored in the worst case if nodes may 
be relabeled by permutation (;3). This was improved for shortest path routing by 
Gavoillt' and Perennes [5], who showed that for each d ::::; n there are shortest path 
routing :,;chemes that require a total of n ( n 2 log d) bits to be stored in the worst case 
for some graphs with maximal degreed if nodes may be relabeled by permutation an<l 
the port assignment may be changed (IB /\ {3). This last result is clearly optimal for 
the worst case both for general networks (d = 8(n)) and bounded degree networks 
(d < n). In [7] it was shown that for each d 2 3 there are networks for which any 
routing schenw with stretch factor < 2 requires a total of S1(n2 / log2 n) bits. 

Interval routing on a graph G = ( V, E), V = { 1, ... , n}, is a routing strategy 
where for each node i, for each incident edge e of i, a (possibly empty) set of pairs 
uf node labels represents disjoint intervals with wraparound. Each pair indicates the 
initial edge on a ,;ho1-test path from i to any node in the interval, and for each node 
j i- i there is such a pair. We are allowed to permute the labels of graph G to optimize 
the interval setting. 

Gavoille and Perennes [5] show that there exist graphs for each bounded degree 
J ~ 3 such that for each interval routing scheme, each of Sl(n) edges are labeled by 
S1(n) intervals. Thit> shows that interval routing can be worse than straightforward 
coding of routing tables, which can be trivially done in O(n2 log d) bits total. (This 
improves [7], showing that there exist graphs such that for each interval routing scheme 
some incident edge on each of S1(n) nodes is labeled by D(n) intervals and that for 
<'ach d ~ 3 there are graphs of maximal node degree d such that for each interval 
:outing scheme some incident edge on each of D( n) nodes is labeled by D( n/ log n) 
mtervals.) 

Flammini, van Leeuwen, and Marchctti-Spaccamela [3] provide history and back­
grou~1d on the compactness (or lack thereof) of interval routing using probabilistic 
proof methods. To the best of our knowledge, one of the authors of that paper, Jan 
va_n _Leem:en, was the first to formulate explicitly the question of what exactly is the 
mmimal size of the routing functions, and he also recently drew our attention to this 
group of problems. 

2. Kolmogoro~ complexity. The Kolmogorov complexity [6] of x is the length 
of the. s~ortes: effeet:ve ~escription of ::x:. That is, the Kolmogorov complexity C(x) 
of a fimte strmg ;c is snnply the length of the shortest program, say, in Fortran 



SPACE-EFFICIENT ROUTING TABLES 1419 

(or in Turing machine codes) encoded in binary, which prints x without any input. 
A similar definition holds conditionally in the sense that C(xly) is the length of 
the shortest binary program which computes x given y as input. It can be shown 
that the Kolmogorov complexity is absolute in the sense of being independent of the 
programming language up to a fixed additional constant term which depends on the 
programming language but not on x. We now fix one canonical programming language 
once and for all as a reference and thereby C(). 

For the theory and applications, see [9]. Let x, y, z EN, where N denotes the nat­
ural numbers. Identify N and {O, l}* according to the correspondence (0, E), (1,0), (2, 1), 
(3, 00), ( 4, 01), .... Hence, the length lxl of x is the number of bits in the binary string 
x. Let T1, T2, ... be a standard enumeration of all Turing machines. Let ( ·, ·) be a 
standard invertible effective bijection from N x N to N. This can be iterated to 
( (.' . ) ' . ) . 

DEFINITION 2 .1. Let U be an appropriate universal Tur·ing machine such that 
U ( ( (i, p), y)) = T; ( (p, y)) for all i and (p, y). The Kolmogorov complexity of x given 
y (for free) is 

C(xly) = min{IPI: U((p,y)) = x,p E {O, l}*}. 

2.1. Kolmogorov random graphs. One way to express irregularity or ran­
domness of an individual network topology is by a modern notion of randomness like 
Kolmogorov complexity. A simple counting argument shows that for each y in the con­
dition and each length n, there exists at least one x of length n which is incompressible 
in the sense of C(xly) 2: n; 503 of all x's of length n are incompressible but for one bit 
(C(xiy) 2: n -1), 753 of all x's are incompressible but for two bits (C(xly) 2: n - 2), 
and in general a fraction of l - l/2c of all strings cannot be compressed by more than 
c bits [9]. 

DEFINITION 2.2. Each labeled graph G = (V, E) on n nodes V = {l, 2, ... , n} can 
be coded by a binary string E(G) of length n(n -1)/2. We enumerate the n(n - 1)/2 
possible edges ( u, v) ·in a graph on n nodes in standard lexicographical order without 
repetitions and set the ith bit in the string to 1 if the ith edge is present and to 0 
otherwise. Conversely, each binary string of length n( n - 1) /2 encodes a graph on n 
nodes. Hence we can identify each such graph with its corresponding binary string. 

We define the high complexity graphs in a particular family Q of graphs. 
DEFINITION 2.3. A labeled graph G on n nodes of a family Q of graphs has 

randomness deficiency at most 8(n) and ·is called 8(n)-random in Q if it satisfies 

(2.1) C(E(G)ln,8,Q) 2: loglQI - 8(n). 

In th·is paper Q is the set of all labeled graphs on n nodes. Then, log 191=n(n-1)/2, 
that is, precisely the length of the encoding of Definition 2.2. In what follows we just 
say "8(n)-random" with Q understood. 

Elementary counting shows that a fraction of at least 

1 - 1/28(n) 

of all labeled graphs on n nodes in Q has that high complexity [9]. 

2.2. Self-delimiting binary strings. We need the notion of self-delimiting 
binary strings. 

DEFINITION 2.4. We call x a proper prefix of y if there is a z such that y = xz 
with lzl > O. A set A ~ {O, l}* is prefix-free if no element in A is the proper 
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prefix of another element in A. A 1:1 function E: {O, 1}* -+ {O, 1}* {equivalently, 
E : N --. {O, 1}*) defines a prefix-code if its range is prefix-free. A simple prefix­
co~e we use throughout is obtained by reserving one symbol, say 0, as a stop sign and 
encoding 

x = 1lxlox, 

lxl = 2lxl + 1. 

Sometimes we need the shorter prefix-code x': 

x' = 1Xfx, 
lx'J = lxl + 2flog(lxl + l)l + 1. 

We call x or x' a self-delimiting version of the binary string x. We can effectively 
recover both x and y unambiguously from the binary strings xy or x'y. For example, 
if xy = 111011011, then x = 110 and y = 11. If xfj = 1110110101, then x = 110 
and y = 1. The self-delimiting form x' ... y' z allows the concatenated binary sub­
descriptions to be parsed and unpacked into the individual items x, ... , y, z; the code 
x' encodes a separation delimiter for x using 2flog(lxl + l)l extra bits, and so on [9]. 

2.3. Topological properties of Kolmogorov random graphs. High com­
plexity labeled graphs have many specific topological properties, which seems to 
contradict their randomness. However, randomness is not "lawlessness" but rather 
enforces strict statistical regularities, for example, to have diameter exactly 2. Note 
that randomly generated graphs have diameter 2 with high probability. In another 
paper [2] two of us explored the relationship between high probability properties of 
random graphs and properties of individual Kolmogorov random graphs. For this 
discussion it is relevant to mention that, in a precisely quantified way, every Kol­
mogorov random graph individually possesses all simple properties which hold with 
high probability for randomly generated graphs. 

LEMMA 2.5. The degree d of every node of a 8(n)-random labeled graph on n 
nodes satisfies 

Id - (n -1)/21=0 ( y'(8(n) + logn)n). 

Proof Assume that there is a node such that the deviation of its degree d from 
(n - 1)/2 is greater than k, that is, Id - (n - 1)/21 > k. From the lower bound 
on C(E(G)ln, 8, 9) corresponding to the assumption that G is random in 9, we can 
estimate an upper bound on k, as follows. 

In a description of G = (V, E) given n, 8, we can indicate which edges are inci­
dent on node i by giving the index of the interconnection pattern (the characteristic 
sequence of the set Vi = {j E V - { i} : ( i, j) E E} in n - 1 bits, where the jth bit is 
1 if j E Vi and 0 otherwise) in the ensemble of 

(2.2) m = L (n ~ 1) ::::; 2ne-2k2/3(n-1) 

ld-(n-1)/2l>k 

possibilities. The last inequality follows from a general estimate of the tail probability 
of the binomial distribution with Sn the number of successful outcomes in n experi­
ments with probability of success p = ~· Namely, by Chernoff's bounds, in the form 
used in [1, 9], 

(2.3) 
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To describe G, it then suffices to modify the old code of G by prefixing it with 
(i) a description of this discussion in 0(1) bits; 

(ii) the identity of node i in pog(n + l)l bits; 

1421 

(iii) the value of kin pog(n + l)l bits, possibly adding nonsignificant O's to pad 
up to this amount; 

(iv) the index of the interconnection pattern in log m bits (we know n, k, and 
hence log m); followed by 

(v) the old code for G with the bits in the code denoting the presence or absence 
of the possible edges that are incident on node i deleted. 

Clearly, given n we can reconstruct the graph G from the new description. The 
total description we have achieved is an effective program of 

logm + 2logn + n(n -1)/2 - n + 0(1) 

bits. This must be at least the length of the shortest effective binary program, which 
is C(E(G))n,8,g), satisfying (2.1). Therefore, 

logm 2: n - 2logn - 0(1) - 8(n). 

Since we have estimated in (2.2) that 

log m ~ n - ( 2k2 / 3 ( n - 1)) log e, 

it follows that k ~ V~(8(n) + 2logn + O(l))(n - l)/log e. 0 

LEMMA 2.6. Every o(n)-random labeled graph on n nodes has diameter 2. 
Proof. The only graphs with diameter 1 are the complete graphs which can be 

described in 0(1) bits, given n, and hence are not random. It remains to consider 
G = (V, E) is an o(n)-random graph with diameter greater than 2, which contradicts 
(2.1) from some n onwards. 

Let i, j be a pair of nodes with distance greater than 2. Then we can describe G 
by modifying the old code for G as follows: 

(i) a description of this discussion in 0(1) bits; 
(ii) the identities of i < j in 2 log n bits; 

(iii) the old code E(G) of G with all bits representing presence or absence of an 
edge (j, k) between j and each k with (i, k) E E deleted. We know that all the bits 
representing such edges must be 0 since the existence of any such edge shows that 
(i, k), (k,j) is a path of length 2 between i and j, contradicting the assumption that i 
and j have distance > 2. This way we save at least n/4 bits since we save bits for as 
many edges (j, k) as there are edges (i, k), that is, the degree of i, which is n/2 ± o(n) 
by Lemma 2.5. 

Since we know the identities of i and j and the nodes adjacent to i (they are in 
the prefix of code E(G) where no bits have been deleted), we can reconstruct G from 
this discussion and the new description, given n. Since by Lemma 2.5 the degree of i 
is at least n/4, the new description of G, given n, requires at most 

n(n - 1)/2 - n/4 + O(logn) 

bits, which contradicts (2.1) for large n. 0 
LEMMA 2. 7. Let c 2: 0 be a fixed constant, and let G be a clog n-random labeled 

graph. Then from each node i all other nodes are either directly connected to i or are 

directly connected to one of the least ( c + 3) log n nodes directly adjacent to i. 
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Proof Given i, let A be the set of the least (c + 3) logn nodes dir~ctly ad}acent 
to i. Assume by way of contradiction that there is a node k of G that is not directly 
connected to a node in A LJ{ i}. We can describe G as follows: 

(i) a description of this discussion in 0(1) bits; 
(ii) a literal description of i in log n bits; . 

(iii) a literal description of the presence or absence of edges between z and the 
other nodes in n - 1 bits; 

(iv) a literal description of k and its incident edges in log n + n - 2 - ( c + 3) log n 
bits; 

(v) the encoding E(G) with the edges incident with nodes i and k deleted, 
saving at least 2n - 2 bits. 

Altogether the resultant description has 

n( n - 1) /2 + 2 log n + 2n - 3 - ( c + 3) log n - 2n + 2 

bits, which contradicts the clogn-randomness of G by (2.1). 0 
In the description we have explicitly added the adjacency pattern of node i, which 

we deleted again later. This zero-sum swap is necessary to be able to unambiguously 
identify the adjacency pattern of i in order to reconstruct G. Since we know the 
identities of i and the nodes adjacent to i (they are the prefix where no bits have been 
deleted), we can reconstruct G from this discussion and the new description, given n. 

3. Upper bounds. We give methods to route messages over Kolmogorov ran­
dom graphs with compact routing schemes. Specifically, we show that in general 
(on almost all graphs) one can use shortest path routing schemes occupying at most 
O(n2 ) bits. If one can relabel the graph in advance, and if nodes know their neighbors, 
shortest path routing schemes are shown to occupy only O(nlog2 n) bits. Allowing 
stretch factors larger than 1 reduces the space requirements-to O(n) bits for stretch 
factors of O(log n). 

Let G be an O(logn)-random labeled graph on n nodes. By Lemma 2.7 we know 
that from each node u we can shortest path route to each other node through the least 
O(logn) directly adjacent nodes ofu. So we route through node v. Once the message 
reaches node v, its destination is either node v or a direct neighbor of node v (which 
is known in node v by assumption). Therefore, routing functions of size O(n log log n) 
bits per node can be used to do shortest path routing. However, we can do better. 

THEOREM 3.1. Let G be an O(logn)-random labeled graph on n nodes. Assume 
that the port assignment may be changed or nodes know their neighbors (IB V II). 
Then for shortest path routing it suffices to have local routing functions stored in 3n 
bits per node. Hence the complete routing scheme is represented by 3n2 bits. 

Proof Let G be as in the statement of the theorem. By Lemma 2.7 we know 
that from each node u we can route via shortest paths to each node v through the 
O(log n) directly adjacent nodes of u that have the least indexes. Assume we route 
through node v. Once the message has reached node v, its destination is either node 
v or a direct neighbor of node v (which is known in node v by assumption). 

Let Ao ~ V be the set of nodes in G which are not directly connected to u. Let 
Vi, ..• , Vm be the O(log n) least indexed nodes directly adjacent to node u (Lemma 2. 7) 
through which we can shortest path route to all nodes in Ao. For t = 1, 2 ... , l define 
At = {w E Ao - u!:iAs : (vi,w) E E}. Let mo = IAol, and define ffit+l = 
mt - I At+ 1 I. Let l be the first t such that mt < n/ log log n. Then we claim that Vt is 
connected by an edge in E to at least 1/3 of the nodes not connected by edges in E 
to nodes u, v1 , •.. , Vt-1 · 
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CLAIM 1. IAtl > m1-i/3 for l :St :S l. 

Proof Suppose, by way of contradiction, that there exists a least t :S l such that 

llAtl - m1-i/21 :::::: m1-i/6. Then we can describe G, given n, as follows: 
(i) A description of this discussion in 0(1) bits; 

(ii) a description of nodes u, v1 in 2 log n bits, padded with O's if necessary; 
(iii) a de8cription of the presence or absence of edges incident with nodes 

u, vi, ... , Vt-l in r = n - 1 + · · · + n - (t - 1) bits. This gives us the characteristic 
sequences of Ao, ... , A1_ 1 in V, where a characteristic sequence of A in Vis a string 
of JVI bits with, for each v E V, the vth bit equal to 1 if v EA and the vth bit equal 
to 0 otherwise; 

(iv) a self-delimiting description of the characteristic sequence of At in Ao -
LJ~:i As, using Chernoff's bound (2.3), in at most m1-1 - ~ (-~ )2 m1-i log e+O(log m1_i) 
bits; 

(v) the description E(G) with all bits corresponding to the presence or absence 

of edges between 'Vt and the nodes in Ao - u~:i As deleted, saving mt-1 bits. Fur­
thermore, we also delete all bits corresponding to the presence or absence of edges 
incident with ·u, v1 , ... , v1_ 1 , saving a further r bits. 

This description of G uses at most 

2 ( 1) 2 
n(n - 1)/2 + O(logn) + mt-I - 3 6 mt--1 loge - m1-1 

bits, which contradicts the O(logn)-randomness of G by (2.1), because mi-i > 
n/ log log n. D 

Recall that l is the least integer such that m1 < n/ log log n. We construct the 
local routing function F('u) as follows: 

(i) A table of intermediate routing node entries for all the nodes in Ao in in­

creasing order. For each node w in LJ~==l As we enter in the wth position in the table 
the unary representation of the least intermediate node v with ('u, v), (v, w) E E fol­

lowed by a 0. For the nodes that are not in LJ~== 1 As we enter a 0 in their position in 
the table, indicating that an entry for this node can be found in the second table. By 
Claim 1, the size of this table is bounded by 

l l ('))s-1 oo 1 (2)s-1 
n + ~ - .'.:'. sn < n + ~ - - sn < 4n. 

L_..,3 3 - L_.., 3 3 -
s==l s=l 

(ii) A table with explicitly binary coded intermediate nodes on a shortest path 
for the ordered set of the remaining destination nodes. Those nodes had a 0 entry in 
the first table and there are at most m1 < n/ log log n of them, namely, the nodes in 

A0 -LJ~==l As. Each entry consists of the code of length log logn+O(l) for the position 
in increasing order of a node out of v1 , ... ,vm with m = O(logn) by Lemma 2.7. 
Hence thi8 second table requires at most 2n bits. 

The routing algorithm is as follows: The direct neighbors of u are known in node 
u and are routed without a routing table. If we route from start node u to target 
node w, which is not directly adjacent to u, then we do the following: If node w has 
an entry in the first table, then route over the edge coded in unary; otherwise find an 
entry for node w in the second table. 

Altogether, we have IF(u) I :S 6n. Adding another n-1 in case the port assignment 
may be chosen arbitrarily, this proves the theorem with 7n instead of 6n. Slightly 
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more precise counting and choosing l such that m1 is the first such quantity< n/ log n 

shows IF(u)I:::; 3n. D 
[f we allow arbitrary labels for the nodes, then shortest path routing schemes of 

O(n log2 n) bits suffice ~n Kolmogorov random graphs, as witnessed by the following 

theorem. 
THEOREM 3.2. Let c ~ O be a constant, and let G be a clog n-random labeled 

graph on n node8. A.s8ume that nodes know their ne'ighbors and that nodes may be 
arbitrnrily relabeled (II /\ 1 ), and we allow the use of labels of (l + ( c + 3) log n) log n 
bits. Then we can shortest path route with local routing Junctions stored in 0(1) bits 
per node (hence the complete routing scheme is represented by ( c+3)n log2 n+n log n+ 
O(n) bits). 

Proof. Let c and G be as in the statement of the theorem. By Lemma 2. 7 we 
know that from each node u we can shortest path route to each node w through the 
first ( c + 3) log n directly adjacent nodes J ( u) = v1, ... , Vm of u. By Lemma 2.6, G 
has diameter 2. Relabel G such that the label of node u equals u followed by the 
original labels of the first (c+ 3)logn directly adjacent nodes f(u). This new label 
occupies ( 1 + ( c + 3) log n) log n bits. To route from source u to destination v do the 
following. 

If v is directly adjacent to u, we route to v in one step in our model (nodes 
know their neighbors). If 1.1 is not directly adjacent to u, we consider the immediate 
neighbors f ( v) contained in the name of v. By Lemma 2. 7, at least one of the neighbors 
of u must have a label whose original label (stored in the first log n bits of its new 
label) corresponds to one of the labels in J(v). Node u routes the message to any 
such neighbor. This routing function can be stored in 0(1) bits. D 

vVithout relabeling, routing using less than O(n2) bits is possible if we allow 
stretch factors larger than 1. The next three theorems clearly show a trade-off between 
the stretch factor and the size of the routing scheme. 

THEOREM 3.3. Let c ? 0 be a constant, and let G be a clog n-random labeled 
graph on n nodes. A.sS'ume that nodes know their neighbors (II). For routing with 
any 8tretch factor > 1 it suffices to have n - 1 - ( c + 3) log n nodes with local routing 
Junctions stored in at most IJog(n + l)l bits per node and 1+(c+3) log n nodes with 
local routing functions stored in 3n bits per node {hence the complete routing scheme 
is represented by less than (3c+20)nlogn bits). Moreover, the stretch is at most 1.5. 

Proof Let c and G be as in the statement of the theorem. By Lemma 2. 7 we know 
that from each node ·u we can shortest path route to each node w through the first 
( c + 3) log n directly adjacent nodes v1, ... , Vm of u. By Lemma 2. 6, G has diameter 2. 
Consequently, each node in Vis directly adjacent to some node in B = { u, v1 , ... , Vm}. 

Hence it suffices to select the nodes of B as routing centers and store, in each node 
w E B, a shortest path routing function F(w) to all other nodes occupying 3n bits 
(the same routing function as constructed in the proof of Theorem 3.1 if the neighbors 
arc known). Nodes v E V - B route any destination unequal to their own label to 
some fixed directly adjacent node w E B. Then !F(v)! :s; pog(n + l)l + 0(1), and 
this gives the bit count in the theorem. 

To route from an originating node v to a target node w, the following steps are 
taken. If w is directly adjacent to v, we route tow in one step in our model. If w is not 
directly adjacent to v, then we first route in one step from v to its directly connected 
node in Band then via a shortest path tow. Altogether, this takes either two or three 
steps, whereas the shortest path has length 2. Hence the stretch factor is at most 1.5, 
which for graphs of diameter 2 (i.e., all clogn-random graphs by Lemma 2.6) is the 
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only possibility between stretch factors 1 and 2. This proves the theorem. D 
THEOREM 3.4. Let c ~ 0 be a constant, and let G be a clogn-random labeled 

graph on n nodes. Assume that the nodes know their neighbors (II). For routing with 
stretch factor 2 it suffices to have n - 1 nodes with local routing functions stored in at 
most log log n bits per node and one node with its local routing function stored in 3n 
bits {hence the complete routing scheme is represented by n log log n + 3n bits). 

Proof Let c and G be as in the statement of the theorem. By Lemma 2.6, G has 
diameter 2. Therefore the following routing scheme has stretch factor 2: Let node 1 
store a shortest path routing function. All other nodes store only a shortest path to 
node 1. To route from an originating node v to a target node w, the following steps 
are taken: If w is an immediate neighbor of v, we route tow in one step in our model. 
If not, we first route the message to node 1 in at most two steps and then from node 
1 through a node v to node w in, again, two steps. Because node 1 stores a shortest 
path routing function, either v = w or w is a direct neighbor of v. 

Node 1 can store a shortest path routing function in at most 3n bits using the 
same construction as used in the proof of Theorem 3.1 (if the neighbors are known). 
The immediate neighbors of 1 route either to 1 or directly to the destination of the 
message. For these nodes, the routing function occupies 0(1) bits. For nodes v at 
distance 2 of node 1 we use Lemma 2.7, which tells us that we can shortest path 
route to node 1 through the first (c + 3) logn directly adjacent nodes of v. Hence, 
to represent this edge takes log log n + log(c + 3) bits, and hence the local routing 
function F(v) occupies at most loglogn + 0(1) bits. D 

THEOREM 3.5. Let c ~ 0 be a constant, and let G be a clogn-random labeled 
graph on n nodes. Assume that nodes know their neighbors (II). For routing with 
stretch factor ( c + 3) log n it suffices to have local routing functions stored in 0 (1) bits 
per node {hence the complete routing scheme is represented by O(n) bits). 

Proof Let c and G be as in the statement of the theorem. From Lemma 2. 7 
we know that from each node u we can shortest path route to each node v through 
the first (c + 3) log n directly adjacent nodes of u. By Lemma 2.6, G has diameter 
2. So the local routing function-representable in 0(1) bits-is to route directly to 
the target node if it is a directly adjacent node, otherwise simply traverse the first 
( c + 3) log n incident edges of the starting node and look in each of the visited nodes 
to see whether the target node is a directly adjacent node. If so, the message is 
forwarded to that node, otherwise it is returned to the starting node in order to try 
the next node. Hence each message for a destination at distance 2 traverses at most 
2(c + 3) logn edges. 

Strictly speaking we do not use routing tables at all. We use the fact that a 
message can go back and forth several times to a node. The header of the message can 
code some extra information as a tag "failed." In this case it is possible to describe 
an 0(1) bit size routing function which allows one to extract the destination from 
the header without knowing about log n, for example, by the use of self-delimiting 
encoding. D 

THEOREM 3.6. Let G be an O(logn)-random labeled graph on n nodes. Assume 
that nodes do not know their neighbors and relabeling and changing the port assignment 
are not allowed (IA A a). Then for shortest path routing it suffices that each local 
routing function uses (n/2) logn(l + o(l)) bits {hence the complete routing scheme 
uses at most (n2 /2) logn(l + o(l)) bits to be stored). 

Proof At each node we can give the neighbors by the positions of the l 's in a 
binary string of length n - l. Since each node has at most n/2 + o(n) neighbors by 
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Lemma 2.5, a permutation of port assignments to neighbors can have Kolmogorov 
complexity at most (n/2) logn(l + o(l)) [9]. This permutation 7r describes part of the 
local routing function by determining, for each direct neighbor, the port through which 
to route messages for that neighbor. If G is O(log n)-random, then by Theorem 3.1 
we require only O(n) bits of additional routing information in each node. Namely, 
because the assignment of ports (outgoing edges) to direct neighbors is known by 
permutation 7f, we can use an additional routing table in 3n bits per node to route to 
the remaining nonneighbor nodes as described in the proof of Theorem 3.1. In total 
this gives (n2 /2) logn(l + o(l)) bits. D 

Our last theorem of this section determines the upper bounds for full-information 
shortest path routing schemes on Kolmogorov random graphs. 

THEOREM 3. 7. For full-information shortest path ro·uting on o( n )-random labeled 
graphs on n nodes where relabeling is not allowed (o.), the local routing function oc­
cupies at most n2 /4 + o(n2) bits for every node (hence the complete routing scheme 
takes at most n3 /4 + o(n3 ) bits to be stored). 

Proof Since for o(n)-random labeled graphs on n the node degree of every node 
is n/2 + o(n) by Lemma 2.5, we can describe in each source node the appropriate 
outgoing edges (ports) for each destination node by the l's in a binary string of 
length n/2 + o(n). For each source node it suffices to store at most n/2 + o(n) such 
binary strings corresponding to the nonneighboring destination nodes. In each node 
we can give the neighbors by the positions of the 1 's in a binary string of length n - 1. 
Moreover, in each node we can give the permutation of port assignments to neighbors 
in (n/2) log n(l + o(l)) bits. This leads to a total of at most (n2 / 4) ( 1 + o(l)) bits per 
node and hence to (n3 /4)(1 + o(l)) bits to store the overall routing scheme. D 

4. Lower bounds. The first two theorems of this section together show that 
Q(n2 ) bits are indeed necessary to route on Kolmogorov random graphs in all mod­
els we consider, except for the models where nodes know their neighbors and label 
permutation or relabeling is allowed (II/\ f3 or II /\ "f). Hence the upper bound in 
Theorem 3. 1 is tight up to order of magnitude. 

THEOREM 4 .1. For shortest path routing in o( n )-random labeled graphs where 
relabeling is not allowed and nodes know their neighbors (II /\ a.), each local routing 
function must be stored in at least n/2-o(n) bits per node (hence the complete routing 
scheme requires at least n2 /2 - o(n2 ) bits to be stored). 

Proof Let G be an o(n)-random graph. Let F(u) be the local routing function 
of node u of G, and let IF(u)i be the number of bits used to store F(u). Let E(G) 
be the standard encoding of Gin n(n - 1)/2 bits as in Definition 2.2. We now give 
another way to describe G using some local routing function F(u): 

(i) a description of this discussion in 0(1) bits; 
(ii) a description of u in exactly log n bits, padded with O's if necessary; 
(iii) a description of the presence or absence of edges between u and the other 

nodes in V in n - 1 bits; 
(iv) a self-delimiting description of F(u) in IF(u)i + 2 log IF( u)I bits; 
(v) the code E(G) with all bits deleted corresponding to edges (v, w) EE for each 

v and w such that F(u) routes messages tow through the least intermediary node v. 
This saves at least n/2-o(n) bits since there are at least n/2-o(n) nodes w such that 
(u, w) ~Eby Lemma 2.5, and since the diameter of G is 2 by Lemma 2.6, there is a 
shortest path (u,v),(v,w) for some v. Furthermore, we delete all bits corresponding 
to the presence or absence of edges between u and the other nodes in V, saving another 
n - 1 bits. This corresponds to the n - 1 bits for edges connected to u, which we 
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added in one connected block (item (iii)) above. 
In the description, we have explicitly added the adjacency pattern of node u, 

which we deleted elsewhere. This zero-sum swap is necessary to be able to unam­
biguously identify the adjacency pattern of u in order to reconstruct G given n, as 
follows. Reconstruct the bits corresponding to the deleted edges using u and F( u) 
and subsequently insert them in the appropriate positions of the remnants of E(G). 
We can do so because these positions can be simply reconstructed in increasing order. 
In total this new description has 

n(n - 1)/2 + 0(1) + O(log n) + IF(u)I - n/2 + o(n) 

bits, which must be at least n(n - 1)/2 - o(n) by (2.1). Hence, IF(u)I 2: n/2 - o(n), 
which proves the theorem. D 

THEOREM 4.2. Let G be an o(n)-random labeled graph on n nodes. Assume 
that the neighbors are not known (IA V IB) but relabeling is allowed h). Then for 
shortest path routing the complete routing scheme requires at least n 2 /32 - o(n2 ) bits 
to be stored. 

Proof In the proof of this theorem we need the following combinatorial result. 
CLAIM 2. Let k and n be arbitrary natural numbers such that 1 :'.S: k :'.S: n. Let Xi 

for 1 :'.S: i :'.S: k be natural numbers such that Xi 2: l. If '£7=1 Xi = n, then 

k 

I)logxil :'.S: n - k. 
i=l 

Proof The proof is by induction on k. If k = 1, then x1 = n, and clearly 
pog n l s; n - 1 if n 2: l. Supposing the claim holds for k and arbitrary n and 

k' 
xi, we now prove it for k' = k + 1, n, and arbitrary Xi· Let Li=l Xi = n. Then 

'£7=1 x; = n - Xk'· Now 

k' k 

I:llogx;l = Lllogxil + llogxk1 l-
i=l i=l 

By the induction hypothesis the first term on the right-hand side is less than or equal 
to n - :x;k' - k, so 

k' 

I:llogx;l::::; n - Xk' - k + llogxk1 l = n -k' + llogxk1 l + 1- Xk 1 • 

·i=l 

Clearly !log Xk' l + 1 ::::; Xk' if Xk' 2: 1, which proves the claim. D 
Recall that in model I each router must be able to output its own label. Using 

the routing scheme we can enumerate the labels of all nodes. If we cannot enumerate 
the labels of all nodes using less than n 2 /32 bits of information, then the routing 
scheme requires at least that many bits of information and we are done. So assume 
we can (this includes models n: and (3, where the labels are not charged for, but can 
be described using log n bits). Let G be an o( n )-random graph. 

CLAIM 3. Given the labels of all nodes, we can describe the interconnection pattern 
of a node u using the local routing function of node u plus an additional n/2 + o(n) 
bits. 
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Proof. Apply the local routing function to each of the labels of the nodes in turn 
(these are given by assumption). This will return for each edge a list of destinations 
reached over that edge. To describe the interconnection pattern, it remains to encode 
for each edge which of the destinations reached is actually its immediate neighbor. If 
edge i routes Xi destinations, this will cost !log Xi l bits. By Lemma 2.5 the degree 
of a node in G is at least n/2 - o(n). Then in total, L.:~~i-o(n) !log:ril bits will be 
sufficient; separations need not be encoded because they can be determined using the 
knowledge of all x/s. Using Claim 2 finishes the proof. D 

Now we show that there are n/2 nodes in G whose local routing function requires 
at least n/8 - 3logn bits to describe (which implies the theorem). 

Assume, by way of contradiction, that there are n/2 nodes in G whose local 
routing function requires at most n/8- 3 logn bits to describe. Then we can describe 
G as follows: 

(i) a description of this discussion in 0(1) bits; 
(ii) the enumeration of all labels in at most n 2 /32 (by assumption); 
(iii) a description of the n/2 nodes in this enumeration in at most n bits; 
(iv) the interconnection patterns of these n/2 nodes in n/8 - 3 log n plus n/2 + 

o(n) bits each (by assumption and using Claim 3); this amounts to n/2(5n/8 -
3 log n) + o(n2 ) bits in total with separations encoded in another n log n bits; 

(v) the interconnection patterns of the remaining n/2 nodes only among them­
selves using the standard encoding, in 1/2(n/2)2 bits. 

This description altogether uses 

0(1) + n2 /32 + n + n/2(5n/8 - 3logn) 

+ o(n2 ) + nlogn + l/2(n/2) 2 

= n2 /2 - n2 /32 + n + o(n2 ) - n/21ogn 

bits, contradicting the o(n)-randomness of G by (2.1). We conclude that on at least 
n/2 nodes, a total of n2 /16 - o(n2) bits are used to store the routing scheme. D 

If neither relabeling nor changing the port assignment is allowed, the next the­
orem implies that for shortest path routing on almost all such "static" graphs one 
cannot do better than storing part of the routing tables literally, in ( n 2 /2) log n bits. 
Note that it is known [5] that there are worst-case graphs (even in models where 
relabeling is allowed) such that n 2 logn - O(n2 ) bits are required to store the routing 
scheme, and this matches the trivial upper bound for all graphs exactly. But in our 
Theorem 4.3 we show that in a certain restricted model for almost all graphs asymp­
totically (n2 /2) log n bits are required and by Theorem 3.6 that many bits are also 
sufficient. 

THEOREM 4.3. Let G be an o(n)-random labeled graph on n nodes. Assume that 
nodes do not know their neighbors and relabeling and changing the port assignment 
are not allowed (IA /\ a). Then for shortest path routing each local routing function 
must be stored in at least (n/2) log n - 0( n) bits per node (hence the complete routing 
scheme requires at least (n2/2) logn - O(n2) bits to be stored). 

Proof If the graph cannot be relabeled and the port assignment cannot be 
changed, the adversary can set the port assignment of each node to correspond to a 
permutation of the destination nodes. Since each node has at least n/2 - o(n) neigh­
bors by Lemma 2.5, such a permutation can have Kolmogorov complexity as high as 
(n/2) logn-O(n) [9]. Because the neighbors are not known, the local routing function 
must determine, for each neighbor node, the port through which to route messages 
for that neighbor node. Hence the local routing function completely describes the 
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FIG. 4.1. Graph Gk· 

permutation, given the neighbors, and thus it must occupy at least (n/2) log n - O(n) 
bits per node. D 

Note that in this model (IA /\ a) we can trivially find by the same method a lower 
bound of n2 logn - O(n2 ) bits for specific graphs like the complete graph and this 
matches exactly the trivial upper bound in the worst case. However, Theorem 4.3 
shows that for this model for almost all labeled graphs asymptotically 503 of this 
number of bits of total routing information is both necessary and sufficient. 

Even if stretch factors between 1 and 2 are allowed, the next theorem shows that 
D(n2 logn) bits are necessary to represent the routing scheme in the worst case. 

THEOREM 4.4. For routing with stretch factor< 2 in labeled graphs where relabel­

ing is not allowed (o:), there exist graphs on n nodes (almost (n/3)! such graphs) where 
the local routing function must be stored in at least (n/3) logn - O(n) bits per node at 

n/3 nodes (hence the complete routing scheme requires at least (n2 /9) log n - O(n2 ) 

bits to be stored). 
Proof Consider the graph Gk with n = 3k nodes depicted in Figure 4.1. Each 

node Vi in Vk+i 1 ••• , v2 k is connected to v;+k and to each of the nodes v1 , ... , Vk· Fix a 
labeling of the nodes v1 , ... , v2k with labels from { 1, ... , 2k}. Then any labeling of the 
nodes V2k+l, ... , v3 k with labels from {2k + 1, ... , 3k} corresponds to a permutation 
of {2k + 1, ... , 3k} and vice versa. 

Clearly, for any two nodes Vi and Vj with 1 :::; i :::; k and 2k + 1 S j :::; 3k, the 
shortest path from v; to Vj passes through node Vj-k and has length 2, whereas any 
other path from vi to Vj has length at least 4. Hence any routing function on Gk with 
stretch factor < 2 routes such Vj from v; over the edge (7!;, Vj-k)· Then at each of 
the k nodes v1 , ... , Vk the local routing functions corresponding to any two labelings 
of the nodes Vzk+i, ... , v 3 k are different. Hence each representation of a local routing 
function at the k nodes v;, 1 S i S k, corresponds one-to-one to a permutation 
of {2k + 1, ... , 3k}. So given such a local routing function, we can reconstruct the 
permutation (by collecting the response of the local routing function for each of the 
nodes k + 1, ... , 3k and grouping all pairs reached over the same edge). The number 
of such permutations is k!. A fraction of at least 1 - 1/2k of such permutations 7r has 
Kolmogorov complexity C(7r) = klogk - O(k) [9]. Because 7r can be reconstructed 
given any of the k local routing functions, these k local routing functions must each 
have Kolmogorov complexity k log k - O(k), too. This proves the theorem for n a 
multiple of 3. For n = 3k - 1 or n = 3k - 2 we can use Gk, dropping Vk and Vk-l· 
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Note that the proof requires only that there be no relabeling; apart from that the 
direct neighbors of a node may be known and ports may be reassigned. 

By the above calculation there are at least (1 - 1;2nf3)(n/3)! labeled graphs on 
n nodes for which the theorem holds. D 

Our last theorem shows that for full-information shortest path routing schemes 
on Kolmogorov random graphs one cannot do better than the trivial upper bound. 

THEOREM 4.5. For full-information shortest path routing on o(n)-random labeled 
graphs on n nodes where relabeling is not allowed ( o:), the local routing function oc­
cupies at least n 2 /4 - o(n2 ) bits for every node (hence the complete routing scheme 
requires at least n3/4 - o(n3 ) bits to be stored). 

Proof. Let G be a graph on nodes {1, 2, ... , n} satisfying (2.1) with 8(n) = o(n). 
Then we know that G satisfies Lemmas 2.5 and 2.6. Let F( u) be the local routing 
function of node u of G, and let IF('u)I be the number of bits used to encode F(u). 
Let E(G) be the standard encoding of Gin n(n - 1)/2 bits as in Definition 2.2. We 
now give another way to describe G using some local routing function F(u): 

(i) a description of this discussion in 0(1) bits; 
(ii) a description of u in logn bits (if it is less, pad the description with O's); 

(iii) a description of the presence or absence of edges between u and the other 
nodes in V in n - 1 bits; 

(iv) a description of F(u) in !F(u)I + O(log !F(u)i) bits (the logarithmic term to 
make the description self-delimiting); 

(v) the code E(G) with all bits deleted corresponding to the presence or absence 
of edges between each w and v such that v is a neighbor of u and w is not a neighbor 
of u. Since there are at least n/2 - o(n) nodes w such that (u, w) ~ E and at least 
n/2-o(n) nodes v such that (u, v) EE, by Lemma 2.5, this saves at least (n/2-o(n)) 2 

bits. 
From this description we can reconstruct G, given n, by reconstructing the bits 

corresponding to the deleted edges from u and F(u) and subsequently inserting them 
in the appropriate positions to reconstruct E(G). We can do so because F(u) repre­
sents a full-information routing scheme implying that (v, w) E E iff (u, v) is among 
the edges used to route from u to w. In total this new description has 

n(n - 1)/2 + O(logn) + IF(u)i - n 2 /4 + o(n2 ) 

bits, which must be at least n(n - 1)/2 - o(n) by (2.1). We conclude that IF(u)! = 
n2 /4- o(n2), which proves the theorem. 

Note that the proof requires only that there be no relabeling; apart from that the 
direct neighbors of a node may be known and ports may be reassigned. D 

5. Average case. What about the average cost, taken over all labeled graphs of 
n nodes, of representing a routing scheme for graphs over n nodes? The results above 
concerned precise overwhelmingly large fractions of the set of all labeled graphs. The 
numerical values of randomness deficiencies and bit costs involved show that these 
results are actually considerably stronger than the corresponding average case results 
which are straightforward. 

DEFINITION 5 .1. For each labeled graph G, let Ts ( G) be the minimal total number 
of bds used to store a routing scheme of type S (where S indicates shortest path 
routing, full-information routing, and the like). The average minimal total number 
of bits to store a routing scheme for S-routing over labeled graphs on n nodes is 
"£,Ts(G)/2n(n-l)/2 with the sum taken over all graphs G on nodes {l, 2, ... ,n}. (That 
is, the uniform average over all the labeled graphs on n nodes.) 
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The results on Kolmogorov random graphs above have the following corollaries. 
The set of (3logn)-random graphs constitutes a fraction of at least (1-1/n3 ) of the 
set of all graphs on n nodes. The trivial upper bound on the minimal total number 
of bits for all routing functions together is O(n2 logn) for shortest path routing on 
all graphs on n nodes (or O(n3 ) for full-information shortest path routing). Simple 
computation shows that the average total number of bits to store the routing scheme 
for graphs of n nodes is (asymptotically and ignoring lower order of magnitude terms 
as in Table 1.1) as follows: 

1. :::; 3n2 for shortest path routing in model IB VII (Theorem 3.1); 
2. :::; 6n log2 n for shortest path routing in model II /\ "f, where the average is 

taken over the initially labeled graphs on n nodes with labels in {l, 2, ... , n} before 

they were relabeled with new and longer labels giving routing information (Theo­
rem 3.2); 

3. :::; :38n log n for routing with any stretch factor s for 1 < s < 2 in model II 
(Theorem 3.3); 

4. :::; n log log n for routing with stretch factor 2 in model II (Theorem 3.4); 
5. O(n) for routing with stretch factor 6logn in model II (Theorem 3.5 with 

c = 3); 
6. ::'.'. n2 /2 for shortest path routing in model a (Theorem 4.1); 
7. ::'.'. n 2 /32 for shortest path routing in model IA and IB (under all relabeling 

conventions, Theorem 4.2); 
8. = (n2 /2) logn for shortest path routing in model IA/\ a (Theorems 3.6 and 

4.3); 
9. = n 3 /4 for full-information shortest path routing in model a (Theorems 3.7 

and 4.5). 

6. Conclusion. The space requirements for compact routing for almost all la­
beled graphs on n nodes, and hence for the average case of all graphs on n nodes, 
are conclusively determined in this paper. We introduce a novel application of the 
incompressibility method. The next question arising in compact routing is the follow­
ing: For practical purposes the class of all graphs is too broad in that most graphs 
have high node degree (around n/2). Such high node degrees are unrealistic in real 
communication networks for large n. So the question that arises is: How do we ex­
tend the current treatment to almost all graphs on n nodes of maximal node degree 
d, where d ranges from 0( 1) to n? Clearly, for shortest path routing O(n2 log d) bits 
suffice, and [5] showed that for each d < n there are shortest path routing schemes 
that require a total of n(n2 log d) bits to be stored in the worst case for some graphs 
with maximal degree d, where we allow that nodes are relabeled by permutation and 
the port assignment may be changed (IB /\ /]). This does not hold for average routing, 
since by our Theorem 3.1 O(n2 ) bibi suffice ford= 8(n). (Trivially, O(n2 ) bits suffice 
for routing in every graph with d = 0(1).) We believe it may be possible to show 
by an extension of our method that 8(n2 ) bits (independent of d) are necessary and 
sufficient for shortest path routing in almost all graphs of maximum node degree d, 
provided d grows unboundedly with n. 

Another research direction is to resolve the questions addressed in this paper for 
Kolmogorov random unlabeled graphs, in particular with respect to the free relabeling 
model (insofar as they do not follow a fortiori from the results presented here). 
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