47 research outputs found

    Heaviest Induced Ancestors and Longest Common Substrings

    Full text link
    Suppose we have two trees on the same set of leaves, in which nodes are weighted such that children are heavier than their parents. We say a node from the first tree and a node from the second tree are induced together if they have a common leaf descendant. In this paper we describe data structures that efficiently support the following heaviest-induced-ancestor query: given a node from the first tree and a node from the second tree, find an induced pair of their ancestors with maximum combined weight. Our solutions are based on a geometric interpretation that enables us to find heaviest induced ancestors using range queries. We then show how to use these results to build an LZ-compressed index with which we can quickly find with high probability a longest substring common to the indexed string and a given pattern

    Universal Compressed Text Indexing

    Get PDF
    The rise of repetitive datasets has lately generated a lot of interest in compressed self-indexes based on dictionary compression, a rich and heterogeneous family that exploits text repetitions in different ways. For each such compression scheme, several different indexing solutions have been proposed in the last two decades. To date, the fastest indexes for repetitive texts are based on the run-length compressed Burrows-Wheeler transform and on the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on the other hand, are based on the Lempel-Ziv parsing and on grammar compression. Indexes for more universal schemes such as collage systems and macro schemes have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed that all dictionary compressors can be interpreted as approximation algorithms for the smallest string attractor, that is, a set of text positions capturing all distinct substrings. Starting from this observation, in this paper we develop the first universal compressed self-index, that is, the first indexing data structure based on string attractors, which can therefore be built on top of any dictionary-compressed text representation. Let γ\gamma be the size of a string attractor for a text of length nn. Our index takes O(γlog(n/γ))O(\gamma\log(n/\gamma)) words of space and supports locating the occocc occurrences of any pattern of length mm in O(mlogn+occlogϵn)O(m\log n + occ\log^{\epsilon}n) time, for any constant ϵ>0\epsilon>0. This is, in particular, the first index for general macro schemes and collage systems. Our result shows that the relation between indexing and compression is much deeper than what was previously thought: the simple property standing at the core of all dictionary compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment

    Dualities in tree representations

    Get PDF
    A characterization of the tree T∗ such that BP(T∗) = ↔ DFUDS(T), the reversal of DFUDS(T) is given. An immediate consequence is a rigorous characterization of the tree T such that BP( T^) = DFUDS(T^). In summary, BP and DFUDS are unified within an encompassing framework, which might have the potential to imply future simplifications with regard to queries in BP and/or DFUDS. Immediate benefits displayed here are to identify so far unnoted commonalities in most recent work on the Range Minimum Query problem, and to provide improvements for the Minimum Length Interval Query problem
    corecore