35,823 research outputs found

    Space-Efficient Data Structures for Lattices

    Get PDF
    A lattice is a partially-ordered set in which every pair of elements has a unique meet (greatest lower bound) and join (least upper bound). We present new data structures for lattices that are simple, efficient, and nearly optimal in terms of space complexity. Our first data structure can answer partial order queries in constant time and find the meet or join of two elements in O(n3/4)O(n^{3/4}) time, where nn is the number of elements in the lattice. It occupies O(n3/2logn)O(n^{3/2}\log n) bits of space, which is only a Θ(logn)\Theta(\log n) factor from the Θ(n3/2)\Theta(n^{3/2})-bit lower bound for storing lattices. The preprocessing time is O(n2)O(n^2). This structure admits a simple space-time tradeoff so that, for any c[12,1]c \in [\frac{1}{2}, 1], the data structure supports meet and join queries in O(n1c/2)O(n^{1-c/2}) time, occupies O(n1+clogn)O(n^{1+c}\log n) bits of space, and can be constructed in O(n2+n1+3c/2)O(n^2 + n^{1+3c/2}) time. Our second data structure uses O(n3/2logn)O(n^{3/2}\log n) bits of space and supports meet and join in O(dlognlogd)O(d \frac{\log n}{\log d}) time, where dd is the maximum degree of any element in the transitive reduction graph of the lattice. This structure is much faster for lattices with low-degree elements. This paper also identifies an error in a long-standing solution to the problem of representing lattices. We discuss the issue with this previous work.Comment: Accepted in SWAT 202

    An Efficient Linear Programming Algorithm to Generate the Densest Lattice Sphere Packings

    Full text link
    Finding the densest sphere packing in dd-dimensional Euclidean space Rd\mathbb{R}^d is an outstanding fundamental problem with relevance in many fields, including the ground states of molecular systems, colloidal crystal structures, coding theory, discrete geometry, number theory, and biological systems. Numerically generating the densest sphere packings becomes very challenging in high dimensions due to an exponentially increasing number of possible sphere contacts and sphere configurations, even for the restricted problem of finding the densest lattice sphere packings. In this paper, we apply the Torquato-Jiao packing algorithm, which is a method based on solving a sequence of linear programs, to robustly reproduce the densest known lattice sphere packings for dimensions 2 through 19. We show that the TJ algorithm is appreciably more efficient at solving these problems than previously published methods. Indeed, in some dimensions, the former procedure can be as much as three orders of magnitude faster at finding the optimal solutions than earlier ones. We also study the suboptimal local density-maxima solutions (inherent structures or "extreme" lattices) to gain insight about the nature of the topography of the "density" landscape.Comment: 23 pages, 3 figure

    Quantum walk approach to search on fractal structures

    Full text link
    We study continuous-time quantum walks mimicking the quantum search based on Grover's procedure. This allows us to consider structures, that is, databases, with arbitrary topological arrangements of their entries. We show that the topological structure of the database plays a crucial role by analyzing, both analytically and numerically, the transition from the ground to the first excited state of the Hamiltonian associated with different (fractal) structures. Additionally, we use the probability of successfully finding a specific target as another indicator of the importance of the topological structure.Comment: 15 pages, 14 figure

    Block Circulant and Toeplitz Structures in the Linearized Hartree–Fock Equation on Finite Lattices: Tensor Approach

    Get PDF
    This paper introduces and analyses the new grid-based tensor approach to approximate solution of the elliptic eigenvalue problem for the 3D lattice-structured systems. We consider the linearized Hartree-Fock equation over a spatial L1×L2×L3L_1\times L_2\times L_3 lattice for both periodic and non-periodic problem setting, discretized in the localized Gaussian-type orbitals basis. In the periodic case, the Galerkin system matrix obeys a three-level block-circulant structure that allows the FFT-based diagonalization, while for the finite extended systems in a box (Dirichlet boundary conditions) we arrive at the perturbed block-Toeplitz representation providing fast matrix-vector multiplication and low storage size. The proposed grid-based tensor techniques manifest the twofold benefits: (a) the entries of the Fock matrix are computed by 1D operations using low-rank tensors represented on a 3D grid, (b) in the periodic case the low-rank tensor structure in the diagonal blocks of the Fock matrix in the Fourier space reduces the conventional 3D FFT to the product of 1D FFTs. Lattice type systems in a box with Dirichlet boundary conditions are treated numerically by our previous tensor solver for single molecules, which makes possible calculations on rather large L1×L2×L3L_1\times L_2\times L_3 lattices due to reduced numerical cost for 3D problems. The numerical simulations for both box-type and periodic L×1×1L\times 1\times 1 lattice chain in a 3D rectangular "tube" with LL up to several hundred confirm the theoretical complexity bounds for the block-structured eigenvalue solvers in the limit of large LL.Comment: 30 pages, 12 figures. arXiv admin note: substantial text overlap with arXiv:1408.383

    The mechanical response of cellular materials with spinodal topologies

    Full text link
    The mechanical response of cellular materials with spinodal topologies is numerically and experimentally investigated. Spinodal microstructures are generated by the numerical solution of the Cahn-Hilliard equation. Two different topologies are investigated: "solid models," where one of the two phases is modeled as a solid material and the remaining volume is void space; and "shell models," where the interface between the two phases is assumed to be a solid shell, with the rest of the volume modeled as void space. In both cases, a wide range of relative densities and spinodal characteristic feature sizes are investigated. The topology and morphology of all the numerically generated models are carefully characterized to extract key geometrical features and ensure that the distribution of curvatures and the aging law are consistent with the physics of spinodal decomposition. Finite element meshes are generated for each model, and the uniaxial compressive stiffness and strength are extracted. We show that while solid spinodal models in the density range of 30-70% are relatively inefficient (i.e., their strength and stiffness exhibit a high-power scaling with relative density), shell spinodal models in the density range of 0.01-1% are exceptionally stiff and strong. Spinodal shell materials are also shown to be remarkably imperfection insensitive. These findings are verified experimentally by in-situ uniaxial compression of polymeric samples printed at the microscale by Direct Laser Writing (DLW). At low relative densities, the strength and stiffness of shell spinodal models outperform those of most lattice materials and approach theoretical bounds for isotropic cellular materials. Most importantly, these materials can be produced by self-assembly techniques over a range of length scales, providing unique scalability

    Multi-core computation of transfer matrices for strip lattices in the Potts model

    Full text link
    The transfer-matrix technique is a convenient way for studying strip lattices in the Potts model since the compu- tational costs depend just on the periodic part of the lattice and not on the whole. However, even when the cost is reduced, the transfer-matrix technique is still an NP-hard problem since the time T(|V|, |E|) needed to compute the matrix grows ex- ponentially as a function of the graph width. In this work, we present a parallel transfer-matrix implementation that scales performance under multi-core architectures. The construction of the matrix is based on several repetitions of the deletion- contraction technique, allowing parallelism suitable to multi-core machines. Our experimental results show that the multi-core implementation achieves speedups of 3.7X with p = 4 processors and 5.7X with p = 8. The efficiency of the implementation lies between 60% and 95%, achieving the best balance of speedup and efficiency at p = 4 processors for actual multi-core architectures. The algorithm also takes advantage of the lattice symmetry, making the transfer matrix computation to run up to 2X faster than its non-symmetric counterpart and use up to a quarter of the original space
    corecore