29 research outputs found

    Space proof complexity for random 3-CNFs

    Get PDF
    We investigate the space complexity of refuting 3-CNFs in Resolution and algebraic systems. We prove that every Polynomial Calculus with Resolution refutation of a random 3-CNF φ in n variables requires, with high probability, distinct monomials to be kept simultaneously in memory. The same construction also proves that every Resolution refutation of φ requires, with high probability, clauses each of width to be kept at the same time in memory. This gives a lower bound for the total space needed in Resolution to refute φ. These results are best possible (up to a constant factor) and answer questions about space complexity of 3-CNFs

    Different Approaches to Proof Systems

    Get PDF
    The classical approach to proof complexity perceives proof systems as deterministic, uniform, surjective, polynomial-time computable functions that map strings to (propositional) tautologies. This approach has been intensively studied since the late 70’s and a lot of progress has been made. During the last years research was started investigating alternative notions of proof systems. There are interesting results stemming from dropping the uniformity requirement, allowing oracle access, using quantum computations, or employing probabilism. These lead to different notions of proof systems for which we survey recent results in this paper

    From Small Space to Small Width in Resolution

    Get PDF
    In 2003, Atserias and Dalmau resolved a major open question about the resolution proof system by establishing that the space complexity of CNF formulas is always an upper bound on the width needed to refute them. Their proof is beautiful but somewhat mysterious in that it relies heavily on tools from finite model theory. We give an alternative, completely elementary proof that works by simple syntactic manipulations of resolution refutations. As a by-product, we develop a "black-box" technique for proving space lower bounds via a "static" complexity measure that works against any resolution refutation---previous techniques have been inherently adaptive. We conclude by showing that the related question for polynomial calculus (i.e., whether space is an upper bound on degree) seems unlikely to be resolvable by similar methods

    Narrow proofs may be maximally long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n(Omega(w)). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n(O(w)) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. The lower bound does not extend all the way to Lasserre, however, since we show that there the formulas we study have proofs of constant rank and size polynomial in both n and w.Peer ReviewedPostprint (author's final draft

    A Generalized Method for Proving Polynomial Calculus Degree Lower Bounds

    Full text link
    We study the problem of obtaining lower bounds for polynomial calculus (PC) and polynomial calculus resolution (PCR) on proof degree, and hence by [Impagliazzo et al. '99] also on proof size. [Alekhnovich and Razborov '03] established that if the clause-variable incidence graph of a CNF formula F is a good enough expander, then proving that F is unsatisfiable requires high PC/PCR degree. We further develop the techniques in [AR03] to show that if one can "cluster" clauses and variables in a way that "respects the structure" of the formula in a certain sense, then it is sufficient that the incidence graph of this clustered version is an expander. As a corollary of this, we prove that the functional pigeonhole principle (FPHP) formulas require high PC/PCR degree when restricted to constant-degree expander graphs. This answers an open question in [Razborov '02], and also implies that the standard CNF encoding of the FPHP formulas require exponential proof size in polynomial calculus resolution. Thus, while Onto-FPHP formulas are easy for polynomial calculus, as shown in [Riis '93], both FPHP and Onto-PHP formulas are hard even when restricted to bounded-degree expanders.Comment: Full-length version of paper to appear in Proceedings of the 30th Annual Computational Complexity Conference (CCC '15), June 201

    Narrow Proofs May Be Maximally Long

    Get PDF
    We prove that there are 3-CNF formulas over n variables that can be refuted in resolution in width w but require resolution proofs of size n^Omega(w). This shows that the simple counting argument that any formula refutable in width w must have a proof in size n^O(w) is essentially tight. Moreover, our lower bound generalizes to polynomial calculus resolution (PCR) and Sherali-Adams, implying that the corresponding size upper bounds in terms of degree and rank are tight as well. Our results do not extend all the way to Lasserre, however, where the formulas we study have proofs of constant rank and size polynomial in both n and w
    corecore