9 research outputs found

    Sound Black-Box Checking in the LearnLib

    Get PDF

    Falsification of Cyber-Physical Systems with Robustness-Guided Black-Box Checking

    Full text link
    For exhaustive formal verification, industrial-scale cyber-physical systems (CPSs) are often too large and complex, and lightweight alternatives (e.g., monitoring and testing) have attracted the attention of both industrial practitioners and academic researchers. Falsification is one popular testing method of CPSs utilizing stochastic optimization. In state-of-the-art falsification methods, the result of the previous falsification trials is discarded, and we always try to falsify without any prior knowledge. To concisely memorize such prior information on the CPS model and exploit it, we employ Black-box checking (BBC), which is a combination of automata learning and model checking. Moreover, we enhance BBC using the robust semantics of STL formulas, which is the essential gadget in falsification. Our experiment results suggest that our robustness-guided BBC outperforms a state-of-the-art falsification tool.Comment: Accepted to HSCC 202

    Active Learning of Deterministic Timed Automata with Myhill-Nerode Style Characterization

    Get PDF
    Part of the Lecture Notes in Computer Science book series (LNCS, volume 13964)35th International Conference, CAV 2023, Paris, France, July 17–22, 2023We present an algorithm to learn a deterministic timed automaton (DTA) via membership and equivalence queries. Our algorithm is an extension of the L* algorithm with a Myhill-Nerode style characterization of recognizable timed languages, which is the class of timed languages recognizable by DTAs. We first characterize the recognizable timed languages with a Nerode-style congruence. Using it, we give an algorithm with a smart teacher answering symbolic membership queries in addition to membership and equivalence queries. With a symbolic membership query, one can ask the membership of a certain set of timed words at one time. We prove that for any recognizable timed language, our learning algorithm returns a DTA recognizing it. We show how to answer a symbolic membership query with finitely many membership queries. We also show that our learning algorithm requires a polynomial number of queries with a smart teacher and an exponential number of queries with a normal teacher. We applied our algorithm to various benchmarks and confirmed its effectiveness with a normal teacher

    TOOLympics 2019: An Overview of Competitions in Formal Methods

    Get PDF
    Evaluation of scientific contributions can be done in many different ways. For the various research communities working on the verification of systems (software, hardware, or the underlying involved mechanisms), it is important to bring together the community and to compare the state of the art, in order to identify progress of and new challenges in the research area. Competitions are a suitable way to do that. The first verification competition was created in 1992 (SAT competition), shortly followed by the CASC competition in 1996. Since the year 2000, the number of dedicated verification competitions is steadily increasing. Many of these events now happen regularly, gathering researchers that would like to understand how well their research prototypes work in practice. Scientific results have to be reproducible, and powerful computers are becoming cheaper and cheaper, thus, these competitions are becoming an important means for advancing research in verification technology. TOOLympics 2019 is an event to celebrate the achievements of the various competitions, and to understand their commonalities and differences. This volume is dedicated to the presentation of the 16 competitions that joined TOOLympics as part of the celebration of the 25th anniversary of the TACAS conference

    Probabilistic Black-Box Checking via Active MDP Learning

    Full text link
    We introduce a novel methodology for testing stochastic black-box systems, frequently encountered in embedded systems. Our approach enhances the established black-box checking (BBC) technique to address stochastic behavior. Traditional BBC primarily involves iteratively identifying an input that breaches the system's specifications by executing the following three phases: the learning phase to construct an automaton approximating the black box's behavior, the synthesis phase to identify a candidate counterexample from the learned automaton, and the validation phase to validate the obtained candidate counterexample and the learned automaton against the original black-box system. Our method, ProbBBC, refines the conventional BBC approach by (1) employing an active Markov Decision Process (MDP) learning method during the learning phase, (2) incorporating probabilistic model checking in the synthesis phase, and (3) applying statistical hypothesis testing in the validation phase. ProbBBC uniquely integrates these techniques rather than merely substituting each method in the traditional BBC; for instance, the statistical hypothesis testing and the MDP learning procedure exchange information regarding the black-box system's observation with one another. The experiment results suggest that ProbBBC outperforms an existing method, especially for systems with limited observation.Comment: Accepted to EMSOFT 202

    Model-based quality assurance of instrumented context-free systems

    Get PDF
    The ever-growing complexity of today’s software and hardware systems makes quality assurance (QA) a challenging task. Abstraction is a key technique for dealing with this complexity because it allows one to skip non-essential properties of a system and focus on the important ones. Crucial for the success of this approach is the availability of adequate abstraction models that strike a fine balance between simplicity and expressiveness. This thesis presents the formalisms of systems of procedural automata (SPAs), systems of behavioral automata (SBAs), and systems of procedural Mealy machines (SPMMs). The three model types describe systems which consist of multiple procedures that can mutually call each other, including recursion. While the individual procedures are described by regular automata and therefore are easy to understand, the aggregation of procedures towards systems captures the semantics of context-free systems, offering the expressiveness necessary for representing procedural systems. A central concept of the proposed model types is an instrumentation that exposes the internal structure of systems by making calls to and returns from procedures observable. This instrumentation allows for a notion of rigorous (de-) composition which enables a translation between local (procedural) views and global (holistic) views on a system. On the basis of this translation, this thesis presents algorithms for the verification, testing, and learning of (instrumented) context-free systems, covering a broad spectrum of practical QA tasks. Starting with SPAs as a “base” formalism for context-free systems, the flexibility of this concept is shown by including features such as prefix-closure (SBAs) and dialog-based transductions (SPMMs). In a comparison with related formalisms, this thesis shows that the simplicity of the proposed model types not only increases the understandability of models but can also improve the performance of QA tasks. This makes SPAs, SBAs, and SPMMs a powerful tool for tackling the practical challenges of assuring the quality of today’s software and hardware systems
    corecore